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De oplossing The solution

On the resolution of Marton's
conjecture from additive
combinatorics

In this article, Briét delves into the history and scope of Marton’s conjecture, which is
also known as the polynomial Freiman-Ruzsa conjecture. This conjecture concerns set
coverings by cosets of subgroups in case of small doubling in finite-field setting.

Already in 1927, Van der Waerden published an article about arithmetic progressions
(APs) in this magazine. Via the conjecture by Erdés en Turan, an ergodic version by Fur-
stenberg and proofs constructed via Fourier-analytic techniques and ergodic theory, Briét
arrives at the proof of Marton’s conjecture by Gowers, Green, Manners and Tao in 2023.
This proof was achieved using information-theoretic tools, in particular, the entropic Ru-
zsa distance. Briét concludes with the importance of equivalent formulations for various

fields and a brief outline.

Breakthroughs are supposed to be rare.
Not so, it seems, for the relatively young
field of additive combinatorics lately. Ad-
ditive combinatorics is sometimes said
to have its origins in a 1927 paper of van
der Waerden published in this very journal
[44]. Van der Waerden’s theorem asserts
that for any coloring of the integers I, ... n
with 7 colors, there will be a k-term arith-
metic progression (k-AP) whose terms all
have the same color, provided = is big en-
ough in terms of £ and r.

The pigeonhole principle implies that
one of the color classes has at least a -
-fraction of I, ..., m. It was conjectured by
Erd8s and Turan [6] that this fact alone is
sufficient, in other words, that dense sets
of the integers always contain long arith-
metic progressions. ErdGs went even fu-
rther and conjectured that any set AC N
satisfying >, _ --=oocontains arithme-
tic progressions of arbitrary length. Per-
haps the most important example of such
a set is formed by the prime numbers.

The first progress towards the Erdds-

Turdn conjecture was made by Roth in
1953, who used Fourier analysis over
Z/nZ to prove that any set of size roug-
hly loglﬁ contains a 3-AP [36]. Roth’s
methodsgéurned out hard to generalize to
deal with longer progressions, however.
The next advance came from Szemerédi in
1975, who reproved Roth’s theorem with
combinatorial methods — introducing the
now famous regularity lemma from graph
theory — which he could generalize to pro-
ve the conjecture for arbitrary progression
lengths [41].

A downside of Szemerédi’s proof was
that it gave extremely poor quantitative
upper bounds on 7,(n), the maximal size
of a k-AP-free setin {1,---,n}. In particular,
Roth’s proof gave far superior bounds on
3 (n). This fact, in addition to the elegance
of Roth’s proof, motivated Gowers in the
late 9o’s to search for suitable adaptations
of Fourier analysis over Z/nZ to reprove
Szemerédi’s theorem — not for a second,
but a third time [10, 11]. A surprising new
proof had already been discovered in the

late 70’s by Furstenburg by translating the
theorem to an equivalent statement in er-
godic theory [9]. The new ergodic theory
proof gave no quantitative bounds on 7,(n)
at all, however, although it did give rise to
powerful generalizations of van der Waer-
den’s theorem and Szemerédi’s theorem,
such as a density version of the Hales-Je-
wett theorem and Szemerédi’s theorem
with polynomial progressions [8, 2]. Quan-
titative combinatorial and Fourier-analytic
proofs for these results were developed
only relatively recently [34, 35, 31].

Gowers’s new proof of Szemerédi’s the-
orem involves ingenious innovations of
Fourier-analytic techniques, intitiating the
new field of higher-order Fourier analysis
[15, 43]. Building on these ideas, Green
and Tao famously managed to prove that
the primes indeed contain arbitrarily long
arithmetic progressions [19].

A key tool in the (higher-order) Fou-
rier-analytic proof of Szemerédi’s theorem
comes from the theory of set addition de-
veloped by Freiman [7]. A main goal in this
theory is to understand the structure of a
finite subset A of an abelian group whose
doubling, A+A={a+b|a,beA}, is not
much bigger than A itself. Cosets of sub-
groups are extreme examples where such
set addition leads to no growth at all. Mar-
ton’s conjecture concerns an inverse theo-
rem for sets in finite vector spaces, asser-
ting that if such a set has small doubling,
then it can be covered by a few cosets of



218 NAW 5/25 nr. 4 december 2024

On the resolution of Marton’s conjecture from additive combinatorics

Jop Briét

a relatively small subgroup. Her motivation
for posing the conjecture did not have to
do with questions from additive combina-
torics but rather originated from an infor-
mation-theoretic source-coding problem
[25]. However, the relevance of the conjec-
ture to higher-order Fourier analysis is the
reason for most of the attention it received
in the last couple of decades.

Finite-field models

The finite-field setting of Marton’s conjec-
ture comes about in a heuristic that is of-
ten considered in additive combinatorics
where the integers are replaced by finite
vector spaces. A variant of Roth’s theo-
rem was proved by Meshulam in 1995 and
shows that any set A €3 (the n-dimen-
sional vector space over the field of three
elements) of size about W contains a
3-term arithmetic progression (or equiva-
lently, an affine line) [30]. Meshulam’s the-
orem can be proved in much the same way
as Roth’s theorem, now using Fourier ana-
lysis over 3. Remarkably, the resulting
proof is much cleaner and yields compara-
tively better bounds. Such finite-field mo-
dels have proved to be a valuable testing
grounds for problems over the integers or
cyclic groups [14, 45, 32]. The relevance of
finite vector spaces in theoretical compu-
ter science, in particular F9', also led to an
ever-continuing process of cross fertilizati-
on between disciplines [29].

Many prior spectacular results not-
withstanding, recent years have witnessed
a surprising number of major strides in
additive combinatorics. These include for
instance the resolution of the cap set con-
jecture by Ellenberg and Gijswijt, showing
that 75(IF4") < 3°" for some absolute con-
stant ¢ <1 [5]; a proof of the above-menti-
oned Erd@s conjecture for 3-APs by Bloom
and Sisask [4]; and a further strong quanti-
tative improvement on 73(n) by Kelley and
Meka [24], which gets tantalizingly close to
a lower bound due to Behrend from 1946
[1]. In the words of mathematician and
popular math-blogger Gil Kalai, the most
recent breakthrough is due to a veritable
A-Team of mathematics. In November of
2023, Tim Gowers, Ben Green, Freddie
Manners and Terence Tao posted an arXiv
preprint [12] in which they settled Marton’s
conjecture, widely known in the literature
as the polynomial FreTman-Ruzsa conjec-
ture.

Marton’s conjecture

Let G be an abelian group.
For a pair of finite subsets
A,BC @G, define their sum
and difference sets by
AxB={a+bla€AbecB}.
The key quantity of interest is the dou-
bling p%a_ir_nftleter of A, which is defined by
o4)= TThis parameteris easily seen
to be bounéed by 1 <6(4) < %(IA [+1).
Sets that attain the upper bound, known
as Sidon sets, have the property that all
sums of pairs from A are distinct. A basic
example of a Sidon set is the set of stan-
dard basis vectors in F3'. Of interest to
Marton’s conjecture, however, is the lower
end of the spectrum, where the doubling
parameter turns out to be a proxy for alge-
braic structure. To see why, it is instructive
to first consider the extreme case.

Cosets of subgroups are easily seen to
have doubling parameter 1. It turns out that
the converse also holds.

Proposition 1 Let A € G be a finite subset
with doubling 1. Then A is a coset of a sub-
group of G.

Proof: We may suppose that A contains
0 because for any b€ A, the translate
A—-b={a—b|a €A} contains zero and
has doubling 6(4). If A contains 0, then
ACA+A and in fact equality A=A+A
holds because 6(4) = 1. Hence, 4 is clo-
sed under addition. This implies that for
each z € A, we have that z+A = A as the-
se two sets have equal size. Since 0 € 4,
we thus have that —z € A.

A natural question that arises from this
characterization is what can be said about
sets with “small” doubling. As an example,
if HC G isacosetofsubgroupand ACH
is any set that occupies an €-proportion of
H, then A has doubling at most = since
[A+Al<|H+H|=|H|<L|aTn 1973,
FreTman slightly moved the scale and sho-
wed that these are the only examples if the
doubling is not too much larger than 1 [7].
Theorem 2 (Freiman) Let A € G be a finite
subset with doubling parameter at most 5
Then A—A is subgroup of G.

A result of Pliinnecke implies that for any
finite set BC G, the size of its difference
set is related to its doubling parameter
by |B—B|<6(B)?|B| [33]. Therefore, by
translating A—A by an arbitrary element
of A, we ensure that it contains A and arrive
at the following corollary.

Corollary 3 Let AC G be a finite subset
with doubling parameter at most % Then,

Marton

thereisa subgroup H € G and z € G such
that ACH+z and [H|<J|A.

Does such a statement still hold if the
scale is moved further? In the paper that
first explicitly recorded Marton’s conjectu-
re, Ruzsa [7] proved that it does with the
following finite-field analog of another ce-
lebrated result of FreTman over the integers
[17](46].

Theorem 4 (Frefman—Ruzsa theorem)
Let p be a prime number and let ACTF
be a set with doubling parameter K. Then,
there is an affine subspace H C I, of size
|H\SK2pK4|A | suchthat ACH.

Marton’s conjecture concerns the de-
pendence of the ratio |H|/|A| on the
doubling parameter K. An improvement on
this dependence was obtained by Green
and Ruzsa, who showed that the exponent
K* could be reduced to |2x%—2| [17]. As
stated, however, Theorem 4 cannot admita
better function than pKC for some constant
¢>0, as the following example shows.
Let VC F4 be the subspace spanned by
the last » —k standard basis vectors and
let A={ey, --,e.} + V. Since A consists of
k pairwise disjoint cosets of V, it has size
k2" *. Due to the standard basis vectors,
A has doubling about k/2 and any affine
subspace containing A must have size at
least 2" ! =%2k_1 | A 1. In light of this, to
what extent could one hope to improve on
Theorem 47

An important observation to make
about the above example is that it con-
tains a subspace V of size at most |A]|
such that A is covered by only about K
translates of V. Ruzsa attributed to Marton
the conjecture that this fact points to a ge-
neral economic description of small-dou-
bling sets by subspaces. More precisely,
Marton’s conjecture, or polynomial Frel-
man-Ruzsa conjecture, states that there is
a subspace H of size at most |4 | such that
A can be covered using K¢ translates of
H for some absolute constant ¢ >0 (see
[37D.

Major progress towards this conjectu-
re was obtained in 2012 by Sanders [39],
who used sophisticated Fourier-analytic
methods to show that a quasi-polynomi-
al in K number of translates suffice. With
similar methods, Konyagin shortly after
showed a slightly better but still quasi-po-
lynomial bound (see [40]). Remarkably,
with only one more big leap the conjecture
was recently settled in full [12].
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Theorem 5 (Gowers, Green, Manners and
Tao (2023)) If ACF3 has doubling para-
meter K, then there is a subspace H of size
|H|<|A| suchthatA can be covered by at
most 2K translates of H, where C >0 is
an absolute constant.

The original proof gave the result with
C =12 but not long after it appeared this
was improved to C' =9 by Liao [26]. Sub-
sequently, it was shown by the same ori-
ginal authors that their result holds more
generally over finite fields of larger charac-
teristic [13]. A few words will be devoted to
the ideas behind the proof of this result
here, but it is worthwhile to first highlight
a couple of intriguing equivalent formula-
tions (for more formulations, see [23] and
[12]). One example is of fundamental im-
portance to the field of algebraic property
testing [38].
Corollary 6 (Linearity testing) There are
absolute constants ¢,C >0 such that the
following holds. Suppose f:Fy" —F4 isa
function such that if z,y are uniformly dis-
tributed over 5", we have

Pr[fa+y) = 1) +/ ()] = %

Then, there exists a linear map ¢:F3" — Fy'
such that

Pr| /(z) :g(x)]zﬁ

Another formulation lies at the heart of
higher-order Fourier analysis and concerns
inverse theorems for the Gowers uniformi-
ty norms.

Gowers Inverse Theorems

The uniformity norms measure how much
a function behaves like a polynomial by
looking at how much it oscillates after a
certain derivative operation has been ap-
plied a number of times. Given a function
f:G— C, its multiplicative derivative in
direction h € G is given by the function
A,f:G — C defined by

Ayf (@) = f(z+h)f(z).

An example to keep in mind to make sense
of the terminology is a polynomial phase
function f(z) = o’ @ where pis a prime,
o =" and P(z) €F, [z, -2, is an
n-variate polynomial over I,,. Then,

Ahf(l') _ (DP(h-%—z)—P(x)'

The exponent P(h+z)—P(z) is the stan-
dard discrete derivative of P(z) in directi-
on h and if P has degree d, then this deri-

vative has degree d — 1. So, after applying
the multiplicative derivative d + 1 times to
/, for any choice of directions, one is left
with the constant-1 function, which exhi-
bits no oscillation at all.

Definition 7 (Uniformity norms) For a fini-
te abelian group G, positive integer k and
f:G — C, the Gowers k-uniformity norm of
fis defined by

where the expectation is taken over inde-
pendent uniformly distributed random ele-
ments from G.

It is easily verified that the 1-uniformity
norm is simply the absolute value of the
average of f. This means that the 1-unifor-
mity norm is in fact a semi-norm as it can
be zero for nonzero /. For larger k, however,
the uniformity norms are indeed norms.

To get some intuition for these norms,
consider a linear phase function given by a
character % (z) = o'%9) of IF; fora nonze-
ro a € IF};. A single derivative in direction
h turns this into the function x (), which
is independent of z. Orthogonality of the
characters implies that averaging over &
causes such oscillation that the whole
average cancels to zero. But a second de-
rivative yields the constant-1 function. Li-
near phases thus attain the maximum-pos-
sible U%-norm of 1. It is a routine exercise
to show that these are the only such exam-
ples. Moreover, functions whose U?-norm
is bounded away from zero are closely
related to linear phases. Using basic Fou-
rier-analytic tools such as Parseval’s iden-
tity and the Cauchy-Schwarz inequality, it
is also not hard to show that if | ]2 > €,
then f correlates with some character x, in
the sense that

(7.0 =|Ercrpf @) 2 @)|

This basic fact is a key step in a stan-
dard proof of Roth’s theorem and Meshu-
lam’s version over finite vector spaces, as
one can use the U%-norm to count 3-APs in
sets AC G. For a similar reason, Gowers
introduced the U*-norms to count (k+1)
-APs.

The intuition one should have for the
higher-order uniformity norms is that if
|| < 1and f has large U*-norm, then f cor-
relates with a polynomial phase of degree
at most k—1. This intuition turns out to
be approximately correct for functions on
cyclic groups and finite vector spaces, as
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From left to right: Gowers, Green, Manners and Tao

was established in a series of highly non-
trivial works on inverse theorems for the
uniformity norms [10, 38, 20, 3, 43, 22].
Quantitative aspects of these inverse the-
orems are important for their role in proofs
of Szemerédi’s theorem, where they are
used to show that if a set deviates in the
number of APs expected from a random set
of equal size, then a balanced version of
its indicator function must correlate with
a structured function in the form of a po-
lynomial phase. Such correlation can be
leveraged to a density increment of the set
in a large structured set such as an arith-
metic progression or affine subspace. This
argument can then be iterated in a so-cal-
led density increment strategy to show that
AP-free sets of a given density only exist
when the ambient group is not too big.
One of the main recent motivations for
studying Marton’s conjecture is due to its
equivalence to the following polynomi-
al version of the inverse theorem for the
3-uniformity norms over finite vector spa-
ces [27, 21].
Corollary 8 (Polynomial inverse theorem
for the U%-norm) There exists an absolu-
te constant ¢ >0 such that the following
holds. For any function fF, —[-1,1],
there exists a quadratic phase function
¢:IF) — C such that

[KF )= 11715

Entropy version of PFR

We will only briefly touch upon some of
the ideas behind the proof of Theorem 5.
A streamlined and abridged version of it
may also be found on Tao’s blog [42]. The
rough idea behind the proof of Theorem 5
is to follow a “doubling decrement” stra-
tegy. Given a set A C [F3' with doubling K,
the idea is to show that there is a set A’
that is in some way related to A and that
has doubling at most K9, Iterating this
process, one quickly ends up in the pur-
view of Freiman’s j-theorem (Corollary 3),
which gives an affine subgroup with which
one might hope to cover A using only few
translates. Due to certain difficulties of
working with the doubling constant di-
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rectly, Gowers et al. apply a strategy of this
type instead to a smoother but equivalent
information-theoretic setting where sub-
sets are replaced by Fg'-valued random
variables [16].

A subset A is then represented by a uni-
form random variable over A4, denoted Uy.
A key role is played by the Shannon entropy
of finitely supported random variables X,

HIX] =*E[log2 (Prix = x])]

The Shannon entropy serves as a measu-
re of size, as H[Ua] =log2|A|. For two
finitely supported independent random
variables X,Y taking values in an additive
group G, define their entropic Ruzsa dis-
tance by

dIX;Y) =H[X—Y] - S HIX] - S H[Y].

This quantity is referred to as a distance,
but it has the odd property that a random
variable can have nonzero distance to it-
self. It is still useful in the context of dou-
bling parameters, however, due to the fact
that

d[Ua,Ua] = log2K.

As one might expect in light of Propositi-
on 1, it holds that d[X,X] =0 if and only
if X is uniformly distributed over an affine
subspace. Another useful feature, also the
main reason why this function is referred to
as a distance, is that it obeys the triangle
inequality.

Lemma 9 (Ruzsa triangle inequality) Let
X,Y,Z be finitely supported random varia-
bles over an additive group G. Then,

dIX;Y] < d[X;Z) +d|Y:Z).

This is a main tool in the entropic doubling
decrement proof. It is used, very roughly
speaking, to sequentially find certain im-
provements of the original distribution Uy
to obtain distributions that are on the one
hand closer to themselves in entropic Ruz-
sa distance (thereby moving towards a uni-
form distribution on an affine subspace),
while on the other hand not moving too far
away from U, so as to still give an approxi-
mation of it. This results in the following
version of Theorem 5.

Theorem 10 (The entropic polynomi-
al Freiman—Ruzsa theorem) Let X,Y be
FJ -valued random variables such that
dlX,Y] < x. Then, there is a subspace
HC FJ such that

ALX; Uyl +d[Y;Uy) < 112,

When one replaces X and Y with Uy, then
the resulting statement turns out to be
equivalent to Theorem 5. In a large onli-
ne collaboration, the proof of Theorem 10
was formalized in the automated proof as-
sistant Leans (see https://teorth.github.
io/pfr/).

What’s next?

The proof of Marton’s conjecture settled
a major open problem in the field of addi-
tive combinatorics. It shows that any set

A C FJ' with doubling K can be covered by
at most 2K” cosets of a subspace of size
at most A. There is a close connection bet-
ween this type of statement and results on
containment of a large affine subspace in
iterated sum sets of A. Indeed, Theorem 5
also has the following corollary [12].
Corollary 11 There is an absolute constant
C >0 such that the following holds. Sup-
pose AC T3 is a nonempty subset with
doubling parameter K. Then, the m-fold
iterated sum set A+-.-+A contains a
subspace of size at least K “ | A | for some
m <log(K+2)¢.

The relevance of this result is that it may

be viewed as a weak version of the so-cal-
led polynomial Bogulyubov conjecture, po-
sed by Lovett [28].
Conjecture 12 (Polynomial Bogulyubov
conjecture) There is an absolute constant
C >0 such that the following holds. Sup-
pose ACTFJ is a nonempty subset with
doubling parameter K. Then, A+ A+A+A
contains a subspace of size at least
K YAl

The best available result of this type,
involving four-fold sum sets, is quasi-poly-
nomial in K. It was proved by Sanders in
the work that essentially established the
previous best version of Theorem 5, sho-
wing that 44 contains a subspace of size
at least exp(— log (K + 2)0)|A| (391

So while a major hurdle has just been
overcome, a next milestone is already in
clear view. 3

Figure 1 Dependency graph of the formalized proof of Marton’s conjecture in proof assistant Lean4.

Bron: From https://teorth.github.io/pfr/blueprint/dep_graph_document.html
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