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Het doel van wiskundige optimalisatie is het minimaliseren (of 
maximaliseren) van een gegeven doelfunctie onder een set voor-
waarden. Denk bijvoorbeeld aan het ontwerpen van een dienstre-
geling die de gemiddelde reistijd voor passagiers minimaliseert, 
maar binnen een voorgeschreven budget blijft. Formeel gespro-
ken krijgen we een functie :f R Rn "  (de doelfunctie) en functies 
, , :g g g R Rm

n
1 2 "f  (de voorwaarden), en moeten we het minimum 

van f berekenen over de verzameling

: { : ( ) , , ( ) }x g x g x0 0RX n
m1 f! $ $=

van punten die aan de voorwaarden voldoen. Met andere woor-
den, we moeten de waarde bepalen van

opt : ( )inf f x
x X
=
! (1)

Omdat optimalisatieproblemen in het algemeen te complex zijn 
om met de hand op te lossen, zijn we geinteresseerd in het ontwik-
kelen van efficiënte algoritmen waarmee het optimum met behulp 
van een computer kan worden berekend. 

Polynomiale optimalisatie
In mijn proefschrift [8] bestudeer ik zogenaamde polynomiale opti-
malisatieproblemen (POPs), waarin de doelfunctie en de voorwaar-
den polynomen zijn. Deze optimalisatieproblemen hebben brede 
toepassingen, zowel binnen als buiten de wiskunde. Daar staat te-
genover dat het moeilijk (NP-hard) is om ze exact op te lossen. Dit 
motiveert de zoektocht naar efficiënte benaderingsmethoden, die 
het optimum berekenen met een (hopelijk) kleine foutmarge. De 

meest succevolle aanpak is gebasseerd op een link tussen polyno-
miale optimalisatie en algebraische meetkunde.  Om deze link te 
kunnen leggen, hebben we eerst een alternatieve formulatie nodig 
van het probleem (1). We zeggen dat een polynoom p niet-nega-
tief is op X  wanneer ( )p x 0$  voor alle x X! .  We schrijven dan 

( )p P X! . Nu geldt dat

opt ( ) { : ( )} .inf supf x f P Xx RX !m m= = -! !m (2)

Dat wil zeggen, het minimum van f op X  is gelijk aan het grootste 
getal m  zodanig dat f m-  niet-negatief is op X . Deze observatie 
laat zien dat het oplossen van polynomiale optimalisatieproble-
men in feite equivalent is aan het bepalen van niet-negativiteit van 
polynomen.

Sommen van kwadraten
Hoe bepalen we of een polynoom niet-negatief is? Neem bijvoor-
beeld
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Figuur 1 Het Motzkin-polynoom ( , )p x x x x x x x x3 11 2 1
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niet-negatief op geheel R2  (als gevolg van de AM-GM-ongelijk-
heid). Het is echter geen som van kwadraten.



202	 NAW 5/25  nr. 4  december 2024	 Polynomiale optimalisatie en sommen van kwadraten	 L. Slot

I
ll
u
s
t
ra

t
ie

: 
R
y
u
 T

a
ji
ri



L. Slot	 Polynomiale optimalisatie en sommen van kwadraten	 NAW 5/25  nr. 4  december 2024	 203

( , ) .p x x x x x x x x x x2 4 41 2 1
6

1
3
2
2

1
2

1 2 2
4

2
2= - + - + +

Aan de hand van de definitie is het niet onmiddelijk duidelijk of 
p negatieve waardes aan kan nemen. Een korte berekening leert 
echter dat p kan worden geschreven als een som van kwadraten, 
namelijk

( , ) ( ) ( ) .p x x x x x x21 2 1 2
2

1
3

2
2 2= - + -

Dit laat meteen zien dat ( , )p x x 01 2 $  voor alle ,x x R1 2 ! .

Definitie
Een polynoom p is een som van kwadraten (svk) wanneer het ge-
schreven kan worden als 

( ) ( ) ( ) ( ) [ ] .p x p x p x p x p xRi1
2

2
2 2f != + + , _ i

We zeggen dan dat p ! R , en merken op dat ( )RP n3R .
We kunnen sommen van kwadraten ook toepassen om niet-nega-
tiviteit op RX n3  te bepalen. Stel dat een polynoom p geschreven 
kan worden als

( ) ( ) ( ) ( ) ( ) ( ),p x x x g x x g xm m0 1 1 fv v v= + + + (3)

waar elk van de i !v R  een som van kwadraten is. Dan volgt di-
rect dat ( )p x 0$  voor alle x X! . (Immers, per definitie geldt 
( )g x 0i $  voor alle x X! .) We noemen de representatie (3) een 

certificaat van niet-negativiteit voor p op X . De verzameling van 
alle polynomen met zulk een certificaat heet het kwadratische mo-
duul ( )Q X  van X . Er geldt dus dat ( ) ( )Q X P X3 . Met het oog 
op formulatie (2) geeft deze inclusie ons een ondergrens voor het 
optimalisatieprobleem (3), namelijk

svk: { : ( ))} opt.sup f Q XR ! #m m= -!m (4)

Immers, we nemen het supremum hierboven over een kleinere ver-
zameling dan in (2).

Hilbert, Artin en Positivstellensätze
Is de ondergens svk opt#  in het algemeen scherp? Anders ge-
zegd, heeft elk niet-negatief polynoom een som-van-kwadra-
ten-certificaat?  Deze vraag werd al in de late 19e eeuw gesteld 
door Hilbert.  Hij liet zien dat dit niet het geval is: voor n 2$  is 
de inclusie ( )RP nQR  strict, en bijgevolg bestaan er polynomiale 
optimalisatieproblemen (met RX n= ) waar svk opt< . Hilbert’s 
bewijs is niet constructief, en het eerste expliciete voorbeeld van 
een polynoom ( )p RP n =! R  werd pas in 1957 gevonden door 
Motzkin, zie Figuur 1.
Gelukkig verbetert de situatie wanneer we voorwaarden toevoe-
gen: Putinar [7] bewees in 1993 dat, wanneer X  compact is, elk 
positief polynoom op X  een som-van-kwadraten certificaat heeft.

Stelling (Putinar’s Positivstellensatz)
Neem aan dat RX n3  compact [10] is. Laat ( )P X0>  de verzame-
ling van (strikt) positieve polynomen op X . Dan geldt dat

( ) ( ) .P X Q X0> 3

Hieruit volgt dat svk opt=  voor polynomiale optimalisatieproble-

men over X .
Stellingen van dit type worden Positivstellensätze genoemd, 

een verwijzing naar Hilbert’s bekende Nullstellensatz. Ze laten net 
als de Nullstellensatz een correspondentie zien tussen een meet-
kundige eigenschap van polynomen (positiviteit) en een alge-
braisch object (het kwadratisch moduul). Overigens bewees Artin 
[1] in 1927 al dat elk niet-negatieve polynoom op Rn  geschreven 
kan worden als som van rationale kwadraten, dat wil zeggen
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Hiermee loste hij destijds het 17e van Hilbert’s lijst van 23 proble-
men op. De Positivstellensatz van Krivine [4] en Stengle [9] ver-
algemeniseert dit resultaat naar niet-negatieve polynomen over 
verzamelingen RX n3 . Rationale certificaten zijn echter compu-
tationeel lastig om mee te werken, en leiden derhalve niet tot effi-
ciënte algoritmen. We laten ze daarom verder buiten beschouwing.

Efficiënte benaderingsalgoritmen
We hebben gezien dat polynomiale optimalisatie over compacte 
verzamelingen X  kan worden gereduceerd naar de optimalisatie 
van een eenvoudige (lineare) functie over het kwadratisch moduul 
( )Q X , bestaande uit polynomen met een som-van-kwadraten cer-

tificaat (3).  Op zichzelf is nu nog niet duidelijk hoe dit tot efficiënte 
algoritmen zou leiden. Het is namelijk niet duidelijk of eenvoudig 
kan worden gecontroleerd of een gegeven polynoom p zo’n certi-
ficaat heeft.  Sterker nog, het is zeer onwaarschijnlijk dat efficiënt 
kan worden nagegaan of ( )p Q X! !  We hebben een laatste inzicht 
nodig van Lasserre [5] en van Parrilo [6]. Voor r N!  beschouwen 
zij het begrensde kwadratisch moduul ( ) ( )Q X Q Xr 3  dat bestaat 
uit polynomen met een som-van-kwadraten certificaat van graad 
ten hoogste r. Hiermee wordt bedoeld dat elk van de factoren 
, , , m0 1 f !v v v R  in het certificaat (3) graad ten hoogste r heeft.  Nu 

blijkt dat, voor vaste r, efficiënt kan worden bepaald of ( )p Q X r!  
middels het oplossen van een zogenaamd semidefiniet program-
ma. De benodigde rekenkracht om dit programma op te lossen 
hangt onder meer af van de gekozen graad r. De conclusie van Las-
serre en Parrilo is dat, wederom voor vaste r, de parameter

svk : : ( )sup f Q Xr rR !m m= -!m # -
efficiënt kan worden berekend. Tevens geldt dat

svk svk svk opt.1 2 3 f# # # #

Tot slot vertelt Putinar’s Positivstellensatz ons dat 
svk svk optlim

r
r = =

"3

De rij svk ,svk ,1 2 f vormt daarmee een convergente hiërarchie 
van ondergrenzen op het optimum opt , waarvan iedere individu-
ele term efficiënt kan worden berekend. Deze ondergrenzen staan 
bekend als de som-van-kwadraten-hiërarchie (of ook Lassere’s hi-
ërarchie). 

Foutmarges en quantitatieve Positivstellensätze
De vraag die centraal staat in mijn proefschrift is: Hoe snel conver-
geert de som-van-kwadraten-hiërarchie naar het ware optimum? 
Deze vraag kan zowel vanuit het perspectief van de optimalisatie of 
van de algebraïsche meetkunde worden geformuleerd: Binnen de 
optimalisatie is men geinteresseerd in de relatie tussen de graad r 
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bestaat uit bijzondere convolutieoperatoren, van de vorm

: ,

( )( ): ( ) ( , ) .

waarK p K p

K p x p y K x y dy
X

7 *

* = #
Hier refereert K abusievelijk zowel naar een lineare operator, 
als naar een functie R R Rn n "# .

2. Binnen de klasse K  gaan we op zoek naar een operator K die 
zich (bijna) gedraagt als de identiteit, dat wil zeggen K p p* . . 
Als we zo een operator kunnen vinden, stelt ons dit in staat een 
certificaat voor K p*  uit de vorige stap om te vormen tot een 
certificaat voor p f+  betrekkelijk klein. Dit laat (ruwweg) zien 
dat de foutmarge van Lasserre’s ondergrens svkr  ten hoogste 
f  is.

3. Om onze zoektocht te vereenvoudigen, maken we gebruik 
van de symmetrie van X  om de speciale klasse van operatoren 
te karakteriseren. Kort gezegd kan de hele klasse worden gevat 
in termen van polynomen van één variabele. Deze beschrijving 
is het mooist in het geval van de eenheidssfeer. Daar bestaat de 
klasse uit alle operatoren van de vorm

( )( ) ( ) ( ) ,K p x p y q x y dy
Sn 1* $= -#

waar q een som van kwadraten in één variabele is.

4. Tot slot laten we zien dat ‘de beste’ operator K K!  gevon-
den kan worden door een relatief eenvoudig optimalisatie-
probleem op te lossen over de ruimte van polynomen in één 
variabele. Door de juiste orthogonale basis voor deze ruimte 
te kiezen, kan dit probleem met de hand worden opgelost. Dit 
leidt dan uiteindelijk tot een convergentiesnelheid voor Lasser-
re’s hiërarchie.

Stelling (Slot 2022)
De convergentiesnelheid van Lasserre’s hiërarchie kan, in de aan-
wezigheid van voldoende symmetrie, worden beschreven in ter-
men van het gedrag van klassieke orthogonale polynomen in één 
variabele.

	 ←

van de certificaten (en daarmee de benodigde rekenkracht), en de 
foutmarge opt svkr-  van de resulterende ondergrenzen. Binnen 
de algebraische meetkunde probeert men quantitatieve versies 
te bewijzen van Positivstellensätze, waarin de benodigde graad 
van certificaten wordt uitgedrukt in ‘de mate van positiviteit’ van 
een polynoom. In de afgelopen twee decennia zijn vanuit beide 
gemeenschappen tal van publicaties verschenen die deze vragen 
(gedeeltelijk) beantwoorden. 

Een raamwerk voor snelle convergentie
In mijn proefschrift bewijs ik nieuwe stellingen over de conver-
gentiesnelheid van Lasserre’s hiërarchie voor optimalisatie over 
verzamelingen X  met bepaalde symmetrie. Hieronder vallen de 
eenheidsbol, de standaardsimplex nD , de kubus [ , ]1 1 n-  en de 
Booleaanse kubus { , }1 1 n- . Deze betrekkelijk eenvoudige domei-
nen omvatten desalniettemin veel van de fundamentele proble-
men die polynomiale optimalisatie motiveren. In deze bijzondere 
gevallen is het mogelijk sterke convergentiesnelheden te garande-
ren. Een voorbeeld:

Stelling (Slot 2022)
Voor optimalisatie over de eenheidsbol geldt dat

opt svk ( / ) ( ) .O r r1r
2 " 3- =

Wanneer we het best beschikbare resultaat [2] voor algemene do-
meinen X  direct op de eenheidsbol zouden toepassen, garandeert 
dit slechts een foutmarge in ( / )O r1 10  (een factor 20 verschil in 
de exponent). De belangrijkste bijdrage van mijn proefschrift is 
het ontwikkelen van een theoretisch raamwerk waarbinnen con-
vergentiesnelheden voor elk van de bovengenoemde domeinen 
kunnen worden bewezen. Dit bouwt voort op eerder werk van Fang 
en Fawzi [3], die het geval SX n 1= -  bestudeerden. Ter conclusie 
beschrijven we dit raamwerk (in zeer grove lijnen).

1. We definiëren een klasse K  van lineare operatoren op [ ]xR  
met de eigenschap dat, voor elke K K! ,

( ) ( ) .K P X Q X r3_ i

Dat wil zeggen, operatoren K K!  beelden niet-negatieve poly-
nomen af op het (begrensde) kwadratisch moduul. Deze klasse 
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