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Lucas Slot ontving op het Nederlands Mathematisch Congres
2024 de Stieltjesprijs voor zijn proefschrift “Asymptotic Analysis
of Semi-definite Bounds for Polynomial Optimization and Inde-
pendent Sets in Geometric Hypergraphs”, verdedigd in 2022 aan
de Universiteit van Tilburg. In dit artikel legt hij uit waar zijn proef-
schrift over ging.

Het doel van wiskundige optimalisatie is het minimaliseren (of
maximaliseren) van een gegeven doelfunctie onder een set voor-
waarden. Denk bijvoorbeeld aan het ontwerpen van een dienstre-
geling die de gemiddelde reistijd voor passagiers minimaliseert,
maar binnen een voorgeschreven budget blijft. Formeel gespro-
ken krijgen we een functie f:R" — R (de doelfunctie) en functies
91,99, ---gm: R" — R (de voorwaarden), en moeten we het minimum
van f berekenen over de verzameling

X={reR"g ) =>0,..,9,(@) =0}

van punten die aan de voorwaarden voldoen. Met andere woor-
den, we moeten de waarde bepalen van

opt = xl»Iele f(x) ®

Omdat optimalisatieproblemen in het algemeen te complex zijn
om met de hand op te lossen, zijn we geinteresseerd in het ontwik-
kelen van efficiénte algoritmen waarmee het optimum met behulp
van een computer kan worden berekend.

Polynomiale optimalisatie

In mijn proefschrift [8] bestudeer ik zogenaamde polynomiale opti-
malisatieproblemen (POPs), waarin de doelfunctie en de voorwaar-
den polynomen zijn. Deze optimalisatieproblemen hebben brede
toepassingen, zowel binnen als buiten de wiskunde. Daar staat te-
genover dat het moeilijk (NP-hard) is om ze exact op te lossen. Dit
motiveert de zoektocht naar efficiénte benaderingsmethoden, die
het optimum berekenen met een (hopelijk) kleine foutmarge. De

meest succevolle aanpak is gebasseerd op een link tussen polyno-
miale optimalisatie en algebraische meetkunde. Om deze link te
kunnen leggen, hebben we eerst een alternatieve formulatie nodig
van het probleem (1). We zeggen dat een polynoom p niet-nega-
tiefis op X wanneer p(z) > 0 voor alle z € X. We schrijven dan
p € P(X). Nu geldt dat

opt = inf, ¢ xf(z) = supprep{Nf—A € P(X)}. )

Dat wil zeggen, het minimum van f op X is gelijk aan het grootste
getal A zodanig dat f— A niet-negatief is op X. Deze observatie
laat zien dat het oplossen van polynomiale optimalisatieproble-
men in feite equivalent is aan het bepalen van niet-negativiteit van
polynomen.

Sommen van kwadraten
Hoe bepalen we of een polynoom niet-negatief is? Neem bijvoor-
beeld

Figuur 1 Het Motzkin-polynoom p(z,z,) = =il +zfas —3zl23+1 is
niet-negatief op geheel R? (als gevolg van de AM-GM-ongelijk-
heid). Het is echter geen som van kwadraten.
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p(21,29) = 20 — 20023 + af — dwywy + 29 + 423

Aan de hand van de definitie is het niet onmiddelijk duidelijk of
p negatieve waardes aan kan nemen. Een korte berekening leert
echter dat p kan worden geschreven als een som van kwadraten,
namelijk

p(21,35) = (2 — 219)* + (2 — 23)%.

Dit laat meteen zien dat p(x,25) = 0 voor alle z;,25 € R.

Definitie
Een polynoom p is een som van kwadraten (svk) wanneer het ge-
schreven kan worden als

p(@) =p (@) +py () +..p(2)? (i € Rlal).

We zeggen dan dat p € Z, en merken op dat £ € P (R").

We kunnen sommen van kwadraten ook toepassen om niet-nega-
tiviteit op X € R" te bepalen. Stel dat een polynoom p geschreven
kan worden als

p(@) =060(@) +0,(@) g @) + ... +6,, () g (), G

waar elk van de 6; € £ een som van kwadraten is. Dan volgt di-
rect dat p(z) =0 voor alle z € X. (Immers, per definitie geldt
gi(x) =0 voor alle z € X.) We noemen de representatie (3) een
certificaat van niet-negativiteit voor p op X. De verzameling van
alle polynomen met zulk een certificaat heet het kwadratische mo-
duul Q(X) van X. Er geldt dus dat Q(X) € P(X). Met het oog
op formulatie (2) geeft deze inclusie ons een ondergrens voor het
optimalisatieprobleem (3), namelijk

svk:=suprcp{Nf—A € Q(X))} < opt. (4)

Immers, we nemen het supremum hierboven over een kleinere ver-
zameling dan in (2).

Hilbert, Artin en Positivstellensitze

Is de ondergens svk < opt in het algemeen scherp? Anders ge-
zegd, heeft elk niet-negatief polynoom een som-van-kwadra-
ten-certificaat? Deze vraag werd al in de late 19e eeuw gesteld
door Hilbert. Hij liet zien dat dit niet het geval is: voor n > 2 is
de inclusie £ ¢ P (R") strict, en bijgevolg bestaan er polynomiale
optimalisatieproblemen (met X =R") waar svk <opt. Hilbert’s
bewijs is niet constructief, en het eerste expliciete voorbeeld van
een polynoom pe P(R™)\Z werd pas in 1957 gevonden door
Motzkin, zie Figuur 1.

Gelukkig verbetert de situatie wanneer we voorwaarden toevoe-
gen: Putinar [7] bewees in 1993 dat, wanneer X compact is, elk
positief polynoom op X een som-van-kwadraten certificaat heeft.

Stelling (Putinar’s Positivstellensatz)
Neem aan dat X € R" compact [10] is. Laat % ((X) de verzame-
ling van (strikt) positieve polynomen op X. Dan geldt dat

Poo(X) S Q(X).

Hieruit volgt dat svk = opt voor polynomiale optimalisatieproble-

men over X.

Stellingen van dit type worden Positivstellensdtze genoemd,
een verwijzing naar Hilbert’s bekende Nullstellensatz. Ze laten net
als de Nullstellensatz een correspondentie zien tussen een meet-
kundige eigenschap van polynomen (positiviteit) en een alge-
braisch object (het kwadratisch moduul). Overigens bewees Artin
[1] in 1927 al dat elk niet-negatieve polynoom op R" geschreven
kan worden als som van rationale kwadraten, dat wil zeggen

Do (I)2
q (I)2 .

)= p(2)” | py(z)?

Q ($)2 Q@ (37)2

Hiermee loste hij destijds het 17e van Hilbert’s lijst van 23 proble-
men op. De Positivstellensatz van Krivine [4] en Stengle [9] ver-
algemeniseert dit resultaat naar niet-negatieve polynomen over
verzamelingen X € R". Rationale certificaten zijn echter compu-
tationeel lastig om mee te werken, en leiden derhalve niet tot effi-
ciénte algoritmen. We laten ze daarom verder buiten beschouwing.

Efficiénte benaderingsalgoritmen

We hebben gezien dat polynomiale optimalisatie over compacte
verzamelingen X kan worden gereduceerd naar de optimalisatie
van een eenvoudige (lineare) functie over het kwadratisch moduul
Q(X), bestaande uit polynomen met een som-van-kwadraten cer-
tificaat (3). Op zichzelfis nu nog niet duidelijk hoe dit tot efficiénte
algoritmen zou leiden. Het is namelijk niet duidelijk of eenvoudig
kan worden gecontroleerd of een gegeven polynoom p zo’n certi-
ficaat heeft. Sterker nog, het is zeer onwaarschijnlijk dat efficiént
kan worden nagegaan of p € Q(X)! We hebben een laatste inzicht
nodig van Lasserre [5] en van Parrilo [6]. Voor » € N beschouwen
zij het begrensde kwadratisch moduul Q(X), € Q(X) dat bestaat
uit polynomen met een som-van-kwadraten certificaat van graad
ten hoogste r. Hiermee wordt bedoeld dat elk van de factoren
69,61, ...,0,, € L in het certificaat (3) graad ten hoogste r heeft. Nu
blijkt dat, voor vaste r, efficiént kan worden bepaald of p € Q(X),
middels het oplossen van een zogenaamd semidefiniet program-
ma. De benodigde rekenkracht om dit programma op te lossen
hangt onder meer afvan de gekozen graad r. De conclusie van Las-
serre en Parrilo is dat, wederom voor vaste r, de parameter

svk,:= supper{Af—A € Q(X),}
efficiént kan worden berekend. Tevens geldt dat

svky < svky < svksy < ... < opt.

Tot slot vertelt Putinar’s Positivstellensatz ons dat

lim svk, = svk = opt

T — 00

De rij svky,svky,... vormt daarmee een convergente hiérarchie
van ondergrenzen op het optimum opt, waarvan iedere individu-
ele term efficiént kan worden berekend. Deze ondergrenzen staan
bekend als de som-van-kwadraten-hiérarchie (of ook Lassere’s hi-
erarchie).

Foutmarges en quantitatieve Positivstellensdtze

De vraag die centraal staat in mijn proefschrift is: Hoe snel conver-
geert de som-van-kwadraten-hiérarchie naar het ware optimum?
Deze vraag kan zowelvanuit het perspectiefvan de optimalisatie of
van de algebraische meetkunde worden geformuleerd: Binnen de
optimalisatie is men geinteresseerd in de relatie tussen de graad »
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van de certificaten (en daarmee de benodigde rekenkracht), en de
foutmarge opt —svk, van de resulterende ondergrenzen. Binnen
de algebraische meetkunde probeert men quantitatieve versies
te bewijzen van Positivstellensdtze, waarin de benodigde graad
van certificaten wordt uitgedrukt in ‘de mate van positiviteit’ van
een polynoom. In de afgelopen twee decennia zijn vanuit beide
gemeenschappen tal van publicaties verschenen die deze vragen
(gedeeltelijk) beantwoorden.

Een raamwerk voor snelle convergentie

In mijn proefschrift bewijs ik nieuwe stellingen over de conver-
gentiesnelheid van Lasserre’s hiérarchie voor optimalisatie over
verzamelingen X met bepaalde symmetrie. Hieronder vallen de
eenheidsbol, de standaardsimplex A", de kubus [-1,1]" en de
Booleaanse kubus {—1,1}". Deze betrekkelijk eenvoudige domei-
nen omvatten desalniettemin veel van de fundamentele proble-
men die polynomiale optimalisatie motiveren. In deze bijzondere
gevallen is het mogelijk sterke convergentiesnelheden te garande-
ren. Een voorbeeld:

Stelling (Slot 2022)
Voor optimalisatie over de eenheidsbol geldt dat

opt —svk, = 0(1/7"2) (r - o0).

Wanneer we het best beschikbare resultaat [2] voor algemene do-
meinen X direct op de eenheidsbolzouden toepassen, garandeert
dit slechts een foutmarge in O(1/1%/r) (een factor 20 verschil in
de exponent). De belangrijkste bijdrage van mijn proefschrift is
het ontwikkelen van een theoretisch raamwerk waarbinnen con-
vergentiesnelheden voor elk van de bovengenoemde domeinen
kunnen worden bewezen. Dit bouwt voort op eerder werk van Fang
en Fawzi [3], die het geval X =5""! bestudeerden. Ter conclusie
beschrijven we dit raamwerk (in zeer grove lijnen).

1. We definiéren een klasse K van lineare operatoren op R|z]
met de eigenschap dat, voor elke K € K,

K(P(X))cQ(X),.

Dat wil zeggen, operatoren K € K beelden niet-negatieve poly-
nomen af op het (begrensde) kwadratisch moduul. Deze klasse
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bestaat uit bijzondere convolutieoperatoren, van de vorm

K:p— K p, waar
(K+p) (@)= [ pW)K(w,9)dy.

Hier refereert K abusievelijk zowel naar een lineare operator,
als naar een functie R" x R" — R.

2.Binnen de klasse K gaan we op zoek naar een operator K die
zich (bijna) gedraagt als de identiteit, dat wil zeggen K»p =~ p.
Als we zo een operator kunnen vinden, stelt ons dit in staat een
certificaat voor K +p uit de vorige stap om te vormen tot een
certificaat voor p+ e betrekkelijk klein. Dit laat (ruwweg) zien
dat de foutmarge van Lasserre’s ondergrens svk, ten hoogste
€ is.

3. Om onze zoektocht te vereenvoudigen, maken we gebruik
van de symmetrie van X om de speciale klasse van operatoren
te karakteriseren. Kort gezegd kan de hele klasse worden gevat
in termen van polynomen van één variabele. Deze beschrijving
is het mooistin het geval van de eenheidssfeer. Daar bestaat de
klasse uit alle operatoren van de vorm

(K+p)(z) = sz p(y)q(z-y)dy,

waar g een som van kwadraten in één variabele is.

4. Tot slot laten we zien dat ‘de beste’ operator K € K gevon-
den kan worden door een relatief eenvoudig optimalisatie-
probleem op te lossen over de ruimte van polynomen in één
variabele. Door de juiste orthogonale basis voor deze ruimte
te kiezen, kan dit probleem met de hand worden opgelost. Dit
leidt dan uiteindelijk tot een convergentiesnelheid voor Lasser-
re’s hiérarchie.

Stelling (Slot 2022)
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