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The Cohen-Lenstra principle

In this article Alex Bartel reviews the revolutionary insights of Henri Cohen and Hendrik
Lenstra from the 1980s, which spawned an entire ‘industry’, the work of Manjul Bhargava,
which earned him the Fields Medal in 2014, some of the beautiful subsequent work of
his school, and finally the recent spectacular breakthroughs of Alexander Smith, which

began when he was a PhD student.

Class groups of quadratic number fields
Let us first set the stage, and we could do
worse than begin our story with Carl Frie-
drich Gauss. In his famous treaties Dis-
quisitiones Arithmeticae, which appeared
in print in 1801, he developed a theory
for treating the following question. Let
f(z,y) = az®+ bxy +cy?, where a, b, ¢ are
integers. Such a homogeneous degree 2
polynomial in two variables is called a
binary quadratic form over the integers.
Then which integers n are represented by f,
meaning are values of f(z,y) as =, y runs
through the integers? For example if we
have a =c=1 and b=0, then the ques-
tion is asking which integers are sums of
two squares. This special case had already
been investigated by Fermat. Other spe-
cial cases had been considered by Fermat,
Legendre, Lagrange, and others, but it was
Gauss who, at the age of 21, consolidated
that progress into one coherent theory.

Gauss notes that if f(z,y) is a binary
quadratic form as above, then for every
2 X 2 matrix (‘; 3) with integer coefficients
and with determinant 1, the binary quad-
ratic form (2 I')f(x,y) defined by

d

(z Z)f(x,y) = flaz + cy, bz + dy)

represents the exact same integers as f.
Indeed, if z and y are integers, then so are
ax+cy and br+dy; and since the matrix

has determinant 1, so that its inverse also
has integer coefficients, we can apply the
above argument with the matrix replaced
by its inverse to show the converse: when-
ever ar+cy and br+dy are integers, so
are x and y. Thus, for example, everything
we know about the integers represented by
the binary quadratic form f(z,y) = 2% + 4>
translates into knowledge about the quad-
ratic form g (z,y) = 22% + 2zy +4°, because
we have gI((l) -

The set of 2 X2 integer matrices with
determinant 1 forms a group under multi-
plication, denoted by SL,(Z). Gauss de-
fines two forms to be equivalent if one can
be obtained from the other by applying a
suitable matrix in SLy(Z) as above. This
is clearly an equivalence relation, and as
we have just remarked, the set of integers
that a quadratic form represents is really a
property of the equivalence class of that
form. This raises the next question: how
can we tell whether two given binary quad-
ratic forms are equivalent? In the above
example of the two forms f=x2+y2 and
g= 222+ 2zy+y2, | convinced you of their
equivalence by producing a suitable matrix
out of my magician’s hat. What if they had
not been equivalent? How much patience
would | have had to rummage in that hat of
mine before giving up?

Of course (dis)proof by hat-rummaging
is not Gauss’s style. Instead Gauss attach-

es to a binary quadratic form a quantity
thatisinvariantunderthe action of SLy (Z):
the discriminant of a binary quadratic form
az’ +bay +cy? is defined to be the quan-
tity b® — 4ac. A straightforward calculation
shows that equivalent forms have the same
discriminant. For example the two forms
from the previous paragraph both have
discriminant —4. If we are given two forms
that have different discriminants, then we
can save ourselves the hat-rummaging and
can immediately conclude that they are
not equivalent. Unfortunately (or perhaps
fortunately), the converse is false, in gen-
eral: there exist inequivalent forms with
the same discriminant. However, we have
the following foundational result.

Theorem. For every integer d, the number
of equivalence classes of binary quadratic
forms of discriminant d is finite.

This finite number is called the class
number of d, traditionally denoted by % (d).
Table 1 shows class numbers for the first
few negative so-called fundamental dis-
criminants. For our purposes it does not
matter what exactly a fundamental discri-
minant is, you may just replace that term
by ‘square-free integer’ without erring too
badly.

These class numbers all appear to be
small, but this is an optical illusion, an
instance of the ‘law of small numbers’.
Gauss computed thousands of class num-
bers. How he did that is a separate beauti-
ful story, for which we have no time on our
purposeful journey to the Cohen-Lenstra
heuristics. Based on those computations
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Gauss conjectured that as d tends to —oo
through fundamental discriminants, the
class numbers & (d) tend to infinity. Moreo-
ver he conjectured a complete list of nega-
tive fundamental discriminants d for which
one has h(d) = 1. This conjecture became
known as one half of Gauss’s class number
1 problem, and its eventual full resolution
over the course of the first half of the twen-
tieth century is yet another beautiful and
dramatic story for which we have no time.
Gauss also computed many class num-
bers of positive fundamental discrimi-
nants, and conjectured that, in sharp con-
trast to the negative ones, infinitely many
of these class numbers are equal to 1.
This second half of Gauss’s class number
1 problem remains one of the great open
problems of algebraic number theory!
From the modern perspective the most
important fact about the set of equiva-
lence classes of binary quadratic forms
of a given discriminant is that it carries
the structure of an abelian group, the so-
called class group of discriminant d, de-
noted by Cl,. Already Gauss defined this
group operation, the so-called composi-
tion of binary quadratic forms. However,
today we understand it more conceptually
in the context of a vast generalisation of
Gauss’s class groups. To a modern number
theorist the class group of discriminant d
is an invariant attached to the quadratic
field Q(/d) ={a+bVd:a,b e Q}. More
generally we attach a finite abelian group,
the class group, to every number field,
meaning a field that contains the field Q
of rational numbers and that has finite di-
mension as a vector space over Q. Gauss’s
case is but the special case of dimension 2,
but there are, for every k € Z> 5, infinitely
many number fields of dimension k over Q,
and each one of them has a class group.

Cohen-Lenstra-Martinet heuristics

To recapitulate: as d runs through negative
fundamental discriminants, we have an
infinite sequence of finite abelian groups,
the class groups of the quadratic fields
Q(/d). The orders of these groups tend to
infinity, but we could ask much finer statis-
tical questions about them. For example,
if pis a prime number, what is the average

size of their p-torsion subgroups Cl,[p],
i.e. of the subgroups consisting of all ele-
ments I such thatone has pI = 0?7 Do those
orders also tend to infinity? Of course such
an average might fail to exist even if the
orders do not tend to infinity. In a simi-
lar vein, each Cl,, being a finite abelian
group, is a direct product over the distinct
prime numbers p of subgroups Cl;[p™] of
order a power of p, the so-called p-Sylow
subgroups of Cl,;. Thus, if one knows the
isomorphism class of Cly[p™] for all prime
numbers p, then one knows the isomor-
phism class of Cl;. An example of a natural
question is: how often are the p-Sylow sub-
groups of Clg, for a given prime number p,
cyclic?

Already Gauss determined the order of
the 2-torsion subgroup of Cl; as a simple
function of d. This is a beautiful theory inits
own right, so-called genus theory, which
has continued to inspire number theorists
to this day. Rather deeper and much more
recent is the following theorem [7], which
is really where the modern strand of our
story begins.

Theorem (Davenport and Heilbronn [7]). As
X — oo, the limit of

2 #Cly[3]
—X<d<0

>

-X<d<0
exists and is equal to 2, where both sums
run over negative fundamental discrimi-
nants.

To date, no such theorem is known
where 3 is replaced by any other odd prime
number. As for the question how often
the Sylow subgroups of class groups of
negative discriminants are cyclic, we do
not know the answer, but numerically it
seems like they are so very often. For ex-
ample the 3-Sylow subgroups appear to be
cyclic about 0.98 of the time — an obser-
vation that must have appeared absolute-
ly baffling to mathematicians prior to the
Cohen-Lenstra heuristic, for there seems
to be no number theoretic reason for this
preponderance. After all, it stands in sharp
contrast to the paucity of cyclic groups
among all isomorphism classes of abe-

abelian groups of that order is the partition
number of r, which grows faster than any
polynomial in r.

The major insight of Cohen and Lenstra
was that the above statistical phenomena,
far from pointing to some hidden number
theoretic structure, actually mirror what
one would observe if the p-Sylow sub-
groups of the class groups, for odd primes
p, were entirely random! But what does a
random abelian group look like?

The idea of Cohen and Lenstra was this:
first suppose that you fix the order O of
your group in advance, and you construct
a random group of order O by filling in an
O X O multiplication table at random —
throw away your attempt and just try again
if your multiplication table happens to not
describe a group. Then, once you have
obtained one realisation of a particular
group, a simultaneous permutation of the
rows and columns, which simply amounts
to a relabelling of the elements, results
in an isomorphic group. Thus, you would
expect every group to be realised by O!
different multiplication tables. However,
this is not quite right, since if a group has
symmetries, i.e. automorphisms, then cer-
tain permutations of the rows and columns
of its multiplication table will result in an
identical multiplication table, rather than
a different table describing an isomorphic
group. More precisely, if one group, G, say,
has ¢ times more automorphisms than an-
other, Gy say, then there are ¢ times fewer
distinct multiplication tables realising a
group isomorphic to G; than one isomor-
phicto Gy. At this point Cohen and Lenstra
made a leap of imagination: one can try to
apply the same probabilistic reasoning to
groups of varying orders. Let AutG denote
the group of automorphisms of a group G.
If we fix a prime number p, then it turns out
that the sum ZAl/#AutA over a full set of
representatives A of isomorphism classes
of finite abelian p-groups (meaning abelian
groups of order a power of p) converges,
to c,, say. Therefore one can define a
probability distribution on that set of iso-
morphism class representatives. Such a
random abelian p-group is isomorphic to a
given group A with probability c;l/#AutA.
This is an instance of what | refer to in the
title as the Cohen—Lenstra principle.
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Heuristic (The Cohen—-Lenstra principle). If
a concrete instance of an algebraic object
is constructed at random, then it will be
isomorphic to a given object X with proba-
bility inversely proportional to #Aut X .

A visually intuitive example of this
principle, which | urge the reader to work
through, is that of random graphs: start
with three vertices, and for each pair of
vertices flip a coin to determine whether
or not to draw an edge between them. Now
compute the probability of obtaining the
complete graph, and compare it with the
probability of obtaining a graph with exact-
ly one edge. Explain the difference in the
terms just outlined.

Cohen and Lenstra conjectured [5] that
for odd primes p, the p-Sylow subgroups
Cl,[p™] of the class groups for d <0 ‘look
random’ in the above sense.

Conjecture (Cohen and Lenstra [5]). Letp be
an odd prime number, and let A be a finite
abelian p-group. Then the limit

2 1(ClLyp™ = A)

. —X<d<0
lim

X~ >l

—X<d<0

exists and is equal to c;l J#Aut A, where
both sums run over the negative funda-
mental discriminants and 1 denotes the
characteristic function, which takes value
1 if the condition is satisfied and 0 other-
wise.

In fact, Cohen and Lenstra made a sim-
ilar prediction not just for characteristic
functions, but for any ‘reasonable’ C-val-
ued function on the class of isomorphism
classes of finite abelian p-groups: the aver-
age of such a function over the set Cl,[p™]
with d running overthe negative fundamen-
tal discriminants should be equal to its ex-
pected value with respect to the probabili-
ty distribution we have just discussed. The
meaning of the word ‘reasonable’ was not
further specified in the original paper. This
indeterminacy is the reason why the term
‘Cohen-Lenstra heuristic’ is usually used,
rather than ‘conjecture’. See [3], however,
for several proposals of what ‘reasonable
function’ might mean.

In the same paper Cohen and Lenstra
formulated a conjecture for class groups
of positive fundamental discriminants.
Somewhat distressingly (to the authors,

notjustto us), that conjecture departs from
what we have been calling the Cohen-—
Lenstra principle, and assigns to a finite
abelian p-group A the probability weight
1/ (#AutA-#A4).

In [6] the Cohen—Lenstra heuristic was
generalised by Cohen—Martinet from quad-
ratic fields to very general families of num-
ber fields. We will not state the Cohen-
Martinet heuristic, but will instead make
some remarks. Firstly, if F' is a number
field, then the group of its automorphisms
acts on the class group Clp, and Cohen
and Martinet realised that one should
model the class group not just as a mere
group, but a group together with those
specific symmetries, i.e. as a module over
a suitable ring. Accordingly, one should ex-
pect the probability weights to involve not
all group automorphisms but only those re-
specting the special symmetries. However,
the actual weights in the Cohen—Martinet
heuristic are not merely inversely propor-
tional to sizes of symmetry-respecting au-
tomorphism groups of the class groups,
but are even more complicated than in
the positive d case of the original Cohen—
Lenstra heuristic. A second additional is-
sue that arises in this generalisation is the
question how to order families of general
number fields, since they are no longer just
parametrised by square-free integers d.
Cohen and Martinet enumerated their
fields by absolute value of the discrimi-
nant, the by-far most often used invariant
for enumerating number fields for over a
century. In fact, their heuristic also gener-
alises the Cohen—Lenstra heuristic in a dif-
ferent direction: in place of the base field
Q they take an arbitrary number field, and
predict the behaviour of so-called relative
class groups in families of extensions of
that number field. Finally, the observant
reader will have noticed that we said very
little about the 2-Sylow subgroups of the
class groups of quadratic fields. There
are multiple reasons for this, the most
straight forward being that already Gauss
knew that the 2-torsion subgroups of class
groups of quadratic fields do not ‘look ran-
dom’. We shall return to this point later.
Analogously, Cohen and Martinet also
exclude the p-Sylow subgroup for certain
‘bad’ primes p from their heuristic. Exactly
which primes p are bad and which ones are
good in any given family of number fields
was already a subject of some speculation
in [6]. Today the question of what is going

on atthe bad primes is among those at the
frontier of current research on the Cohen—
Lenstra—Martinet heuristics, and we shall
return to it.

Reformulation of Friedman-Washington
Notice that in our justification of the Co-
hen—Lenstra heuristic via the model of
random multiplication tables, the fact that
class groups are always abelian played no
role. Here is an alternative procedure for
producing a random abelian group: pick a
large integer r, start with the free abelian
group on r generators, and quotient out r
random relations. In other words, let the
random group be the cokernel of a random
element of the group M,.(Z) of »Xr inte-
ger matrices. Actually, this does not work
so well, because the group M, (Z) is not
compact, and carries no suitable proba-
bility distribution, so instead one replaces
Z with the ring Z,, of p-adic integers for a
chosen prime p. We do not expect any fa-
miliarity with p-adic integers: the reader is
welcome to think of M, (Z), but imagine
that we are only picking out the p-part of
the cokernel. The cokernel of an element of
M, (Z,) is always a pro-p group — just think
‘made up of finite p-groups’. Moreover, the
group M, (Z,) has a Haar measure, and the
cokernel of a Haar-random matrix is finite
with probability 1. This procedure defines
a discrete probability distribution ¥, on
the class of isomorphism classes of finite
abelian p-groups. Of course for any fixed r,
most finite abelian p-groups cannot be cok-
ernels or such a matrix, only those that can
be generated by r elements can occur. How-
ever Friedman and Washington [10], guid-
ed by an analogy between number fields
and function fields over finite fields, have
discovered thatas r» — o, the sequence P,
converges in distribution, and the limiting
distribution is the Cohen-Lenstra distri-
bution! Even more surprisingly, Matchett
Wood showed in [18] that instead of Haar
measure, one could take almost any distri-
bution in which the entries of the matrices
are independent of each other, as long as
one avoids an obviously bad situation of
these entries falling into fixed congruence
classes modulo p too often.

A sloppy but easily memorisable way
of summarising these findings is that ran-
dom abelian groups obtained from random
multiplication tables also look like groups
with many commuting generators subject
to equally many random relations.
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One can even recover the more compli-
cated Cohen-Lenstra distribution for pos-
itive discriminants in this random matrix
model: those groups look like groups with
many commuting generators subject to
‘many +1’ random relations.

The analogy between number fields and
function fields is extremely fruitful in the
area of arithmetic statistics, and we shall
return to it.

Subsequent developments

The Cohen-Lenstra—Martinet heuristics
have spawned so much exciting activity
that it will be impossible to mention, let
alone describe all of it, and | apologise to
anyone whose work could have been men-
tioned here but has been omitted.

Already in 1987, several years before the
Cohen—Martinet extension of the Cohen-
Lenstra heuristic, Gerth Il attacked the
problem of bad primes [11]. In the case of
quadraticfieldsthe prime 2isbad, because
thanks to Gauss’s genus theory we under-
stand a part of C1;[2*], namely Cl;[2] (the
reader may object that this is an idiosyn-
cratic understanding of the word ‘bad’).
Gerth lll consequently conjectured, based
on an actual theorem that we will not state
here, that the groups C1,(2%]/Cl,[2] do be-
have like Cohen—Lenstra—random groups.

There is a generalisation of genus the-
ory to arbitrary number fields, which ex-
plains a certain ‘piece’ of the class group
as being not random looking. The prime
numbers that this phenomenon makes
bad are those dividing the Q-dimension
of the so-called Galois closure of the field.
Gerth conjectured that if that dimension

is a prime number, then ‘everything apart
from the genus piece’ behaves according
to the Cohen-Lenstra heuristic. To incorpo-
rate genus theory into the Cohen-Lenstra
heuristic for general number fields is still
an open problem.

In [8] Ellenberg, Venkatesh, and Wester-
land pioneered an ingenious topological
method, hinging on a homological stabil-
ity result for so-called Hurwitz spaces, for
proving theorems on class groups of func-
tion fields over finite fields. This general
method has since then been successfully
applied for proving more results in the
area, some of which we will mention below.

Malle, pursuing a suggestion of Lenstra,
noticed [14] through extensive numerical
experimentation that if a prime number
p divides the order of the group of roots
of unity in the base field, then the behav-
iour of the p-Sylow subgroups of the class
groups of the extensions of that base field
seems to deviate from the Cohen-Lenstra—
Martinet predictions. He conjectured that
this is not a mere artifact of unreliable nu-
merical data, but rather that the model
needs to be adjusted in those cases. Malle
did not offer a heuristic, but proposed al-
ternative formulae in some situations,
which exhibited much better agreement
with the data. It then became an urgent
problem to formulate a general conjecture,
beyond the special cases treated by Malle,
and ideally also one that would explain
the deviation in a structural manner, rath-
er than just quantify it. This was achieved
by Lipnowski, Sawin, and Tsimerman [12]
in the case of quadratic extensions: they
identified a very subtle additional du-

t Oberwolfach
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ality on the relevant pieces of the class
groups, accounted for by roots of unity in
the base field, formulated a model for a
random piece of data consisting of a group
with this additional duality structure, and
proved a result towards their conjecture
in the function field setting, employing
the Ellenberg—Venkatesh—Westerland ma-
chine. More recently, Matchett Wood and
Sawin formulated a comprehensive con-
jecture in great generality [15]. Like Malle,
they did not offer a heuristic model, but
instead the conjecture is suggested by a
theorem in the function field setting: using
work of Liu, Matchett Wood and Zureick-
Brown [13] on a non-abelian generalisation
of the Cohen-Lenstra heuristic, in which
once again the Hurwitz spaces method
played a crucial role, Matchett Wood and
Sawin computed the so-called moments
of a probability distribution that occurs in
the function field setting, proved that these
moments determine a unique distribution,
and conjectured that that distribution also
governs class groups of number fields in
the presence of roots of unity in the base
field. Thus, in the span of only a few years
our understanding of this particular type of
‘bad prime’ has made enormous leaps, but
is still not complete: we are still lacking a
model, generalising the Lipnowski—-Sawin—
Tsimerman model from the case of quad-
ratic extensions, that would explain the
Matchett Wood—-Sawin probability weights.

So far we have focussed on conjectures
in the Cohen-Lenstra—Martinet setting of
class groups of number fields, and have al-
luded to theorems in the function field set-
ting. But what do we actually know about
the statistical properties of class groups of
number fields?

We have mentioned Gauss’s genus
theory results on the 2-torsion of class
groups of quadratic fields and the Dav-
enport-Heilbronn theorem on the 3-tor-
sion of quadratic fields. Both have been
generalised in various directions, the
outcome usually being the determination
of the average of some ‘reasonable’ func-
tion on the class of isomorphism classes
of abelian groups, when evaluated on a
natural sequence of class groups of num-
ber fields. All these generalisations only
see the n-torsion of class groups for some
fixed m. Most notably, the geometry-of-
numbers technique used by Davenport
and Heilbronn has seen a huge revival
and extension thanks to the Fields Medal
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winning work of Bhargava, who deter-
mined, for example, the average size of
2-torsion of class groups of cubic fields
[4], but also applied those techniques to
counting number fields themselves and,
most famously, to bounding average ranks
of elliptic curves. The school that Bhargava
built up took those techniques further still,
and has considered many beautiful gener-
alisations of the original Cohen-Lenstra—
Martinet question, which would merit their
own survey. Meanwhile, Fouvry and Kliiners
confirmed in [9] Gerth’s modification of the
Cohen-Lenstra heuristic for the 4-torsion
of class groups of quadratic fields.

Then in 2017 Alexander Smith, at the
time a PhD student at Harvard, in a pre-
print that has since then been substantial-
ly revised and extended [16,17], made a
gigantic leap forward: he determined the
full distribution of the 2-Sylow subgroups
of class groups of quadratic fields, thus
confirming Gerth’s modification for the
entire 2-Sylow subgroups of those class
groups! In the process he introduced a
host of new ideas that have since been
extended to other settings, and will, no
doubt, remain of central importance in the
area for the foreseeable future.

In the meantime, in [3] Lenstra and |
showed that there are infinitely many fam-
ilies of number fields and infinitely many
reasonable functions such that the func-
tion has an average overthe corresponding
family of class groups and that that average
can be computed to any desired precision
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