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es to a binary quadratic form a quantity 
that is invariant under the action of ( )SL Z2 : 
the discriminant of a binary quadratic form 
ax bxy cy2 2+ +  is defined to be the quan-
tity b ac42 - . A straightforward calculation 
shows that equivalent forms have the same 
discriminant. For example the two forms 
from the previous paragraph both have 
discriminant 4- . If we are given two forms 
that have different discriminants, then we 
can save ourselves the hat-rummaging and 
can immediately conclude that they are 
not equivalent. Unfortunately (or perhaps 
fortunately), the converse is false, in gen-
eral: there exist inequivalent forms with 
the same discriminant. However, we have 
the following foundational result.

Theorem.  For every integer d, the number 
of equivalence classes of binary quadratic 
forms of discriminant d is finite.

This finite number is called the class 
number of d, traditionally denoted by ( )h d . 
Table 1 shows class numbers for the first 
few negative so-called fundamental dis-
criminants. For our purposes it does not 
matter what exactly a fundamental discri-
minant is, you may just replace that term 
by ‘square-free integer’ without erring too 
badly.

These class numbers all appear to be 
small, but this is an optical illusion, an 
instance of the ‘law of small numbers’. 
Gauss computed thousands of class num-
bers. How he did that is a separate beauti-
ful story, for which we have no time on our 
purposeful journey to the Cohen–Lenstra 
heuristics. Based on those computations 

has determinant 1, so that its inverse also 
has integer coefficients, we can apply the 
above argument with the matrix replaced 
by its inverse to show the converse: when-
ever ax cy+  and bx dy+  are integers, so 
are x and y. Thus, for example, everything 
we know about the integers represented by 
the binary quadratic form ( , )f x y x y2 2= +  
translates into knowledge about the quad-
ratic form ( , )g x y x xy y2 22 2= + + , because 
we have g f1

0
1
1

= f p .
The set of 2 2#  integer matrices with 

determinant 1 forms a group under multi-
plication, denoted by ( )SL Z2 . Gauss de-
fines two forms to be equivalent if one can 
be obtained from the other by applying a 
suitable matrix in ( )SL Z2  as above. This 
is clearly an equivalence relation, and as 
we have just remarked, the set of integers 
that a quadratic form represents is really a 
property of the equivalence class of that 
form. This raises the next question: how 
can we tell whether two given binary quad-
ratic forms are equivalent? In the above 
example of the two forms f x y2 2= +  and 
g x xy y2 22 2= + + , I convinced you of their 
equivalence by producing a suitable matrix 
out of my magician’s hat. What if they had 
not been equivalent? How much patience 
would I have had to rummage in that hat of 
mine before giving up?

Of course (dis)proof by hat-rummaging 
is not Gauss’s style. Instead Gauss attach-

Class groups of quadratic number fields
Let us first set the stage, and we could do 
worse than begin our story with Carl Frie-
drich Gauss. In his famous treaties Dis-
quisitiones Arithmeticae, which appeared 
in print in 1801, he developed a theory 
for treating the following question. Let 

( , )f x y ax bxy cy2 2= + + , where a, b, c are 
integers. Such a homogeneous degree 2 
polynomial in two variables is called a 
binary quadratic form over the integers. 
Then which integers n are represented by f, 
meaning are values of ( , )f x y  as x, y runs 
through the integers? For example if we 
have a c 1= =  and b 0= , then the ques-
tion is asking which integers are sums of 
two squares. This special case had already 
been investigated by Fermat. Other spe-
cial cases had been considered by Fermat, 
Legendre, Lagrange, and others, but it was 
Gauss who, at the age of 21, consolidated 
that progress into one coherent theory.

Gauss notes that if ( , )f x y  is a binary 
quadratic form as above, then for every 
2 2#  matrix a

c
b
d

f p  with integer coefficients 
and with determinant 1, the binary quad-
ratic form ( , )f x ya

c
b
d

f p  defined by

( , ) ( , )
a
c

b
d

f x y f ax cy bx dy= + +f p

represents the exact same integers as f. 
Indeed, if x and y are integers, then so are 
ax cy+  and bx dy+ ; and since the matrix 
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lian groups of order a power of 3: for every 
r Z 1! $ , there is exactly one isomorphism 
class of cyclic groups of order 3r , while the 
total number of isomorphism classes of 
abelian groups of that order is the partition 
number of r, which grows faster than any 
polynomial in r.

The major insight of Cohen and Lenstra 
was that the above statistical phenomena, 
far from pointing to some hidden number 
theoretic structure, actually mirror what 
one would observe if the p-Sylow sub-
groups of the class groups, for odd primes 
p, were entirely random! But what does a 
random abelian group look like? 

The idea of Cohen and Lenstra was this: 
first suppose that you fix the order O of 
your group in advance, and you construct 
a random group of order O by filling in an 
O O#  multiplication table at random — 
throw away your attempt and just try again 
if your multiplication table happens to not 
describe a group. Then, once you have 
obtained one realisation of a particular 
group, a simultaneous permutation of the 
rows and columns, which simply amounts 
to a relabelling of the elements, results 
in an isomorphic group. Thus, you would 
expect every group to be realised by !O  
different multiplication tables. However, 
this is not quite right, since if a group has 
symmetries, i.e. automorphisms, then cer-
tain permutations of the rows and columns 
of its multiplication table will result in an 
identical multiplication table, rather than 
a different table describing an isomorphic 
group. More precisely, if one group, G1  say, 
has t times more automorphisms than an-
other, G2  say, then there are t times fewer 
distinct multiplication tables realising a 
group isomorphic to G1  than one isomor-
phic to G2 . At this point Cohen and Lenstra 
made a leap of imagination: one can try to 
apply the same probabilistic reasoning to 
groups of varying orders. Let Aut G  denote 
the group of automorphisms of a group G. 
If we fix a prime number p, then it turns out 
that the sum /#Aut A1A

/  over a full set of 
representatives A of isomorphism classes 
of finite abelian p-groups (meaning abelian 
groups of order a power of p) converges, 
to cp , say. Therefore one can define a 
probability distribution on that set of iso-
morphism class representatives. Such a 
random abelian p-group is isomorphic to a 
given group A with probability /#Autc Ap

1- . 
This is an instance of what I refer to in the 
title as the Cohen–Lenstra principle.

size of their p-torsion subgroups [ ]Cl pd , 
i.e. of the subgroups consisting of all ele-
ments I such that one has pI 0= ? Do those 
orders also tend to infinity? Of course such 
an average might fail to exist even if the 
orders do not tend to infinity. In a simi-
lar vein, each Cld , being a finite abelian 
group, is a direct product over the distinct 
prime numbers p of subgroups [ ]Cl pd

3  of 
order a power of p, the so-called p-Sylow 
subgroups of Cld . Thus, if one knows the 
isomorphism class of [ ]Cl pd

3  for all prime 
numbers p, then one knows the isomor-
phism class of Cld . An example of a natural 
question is: how often are the p-Sylow sub-
groups of Cld , for a given prime number p, 
cyclic?

Already Gauss determined the order of 
the 2-torsion subgroup of Cld  as a simple 
function of d. This is a beautiful theory in its 
own right, so-called genus theory, which 
has continued to inspire number theorists 
to this day. Rather deeper and much more 
recent is the following theorem [7], which 
is really where the modern strand of our 
story begins.

Theorem (Davenport and Heilbronn [7]).  As 
X " 3, the limit of

# [ ]Cl

1

3

X d

d
X d

0

0

< <

< <

-

-

/

/

exists and is equal to 2, where both sums 
run over negative fundamental discrimi-
nants.

To date, no such theorem is known 
where 3 is replaced by any other odd prime 
number. As for the question how often 
the Sylow subgroups of class groups of 
negative discriminants are cyclic, we do 
not know the answer, but numerically it 
seems like they are so very often. For ex-
ample the 3-Sylow subgroups appear to be 
cyclic about 0.98 of the time — an obser-
vation that must have appeared absolute-
ly baffling to mathematicians prior to the 
Cohen–Lenstra heuristic, for there seems 
to be no number theoretic reason for this 
preponderance. After all, it stands in sharp 
contrast to the paucity of cyclic groups 
among all isomorphism classes of abe-

Gauss conjectured that as d tends to 3-  
through fundamental discriminants, the 
class numbers ( )h d  tend to infinity. Moreo-
ver he conjectured a complete list of nega-
tive fundamental discriminants d for which 
one has ( )h d 1= . This conjecture became 
known as one half of Gauss’s class number 
1 problem, and its eventual full resolution 
over the course of the first half of the twen-
tieth century is yet another beautiful and 
dramatic story for which we have no time.

Gauss also computed many class num-
bers of positive fundamental discrimi-
nants, and conjectured that, in sharp con-
trast to the negative ones, infinitely many 
of these class numbers are equal to 1. 
This second half of Gauss’s class number 
1 problem remains one of the great open 
problems of algebraic number theory!

From the modern perspective the most 
important fact about the set of equiva-
lence classes of binary quadratic forms 
of a given discriminant is that it carries 
the structure of an abelian group, the so-
called class group of discriminant d, de-
noted by Cld . Already Gauss defined this 
group operation, the so-called composi-
tion of binary quadratic forms. However, 
today we understand it more conceptually 
in the context of a vast generalisation of 
Gauss’s class groups. To a modern number 
theorist the class group of discriminant d 
is an invariant attached to the quadratic 
field ( ) { : , }d a b d a bQ Q!= + . More 
generally we attach a finite abelian group, 
the class group, to every number field, 
meaning a field that contains the field Q  
of rational numbers and that has finite di-
mension as a vector space over Q . Gauss’s 
case is but the special case of dimension 2, 
but there are, for every k Z 2! $ , infinitely 
many number fields of dimension k over Q , 
and each one of them has a class group.

Cohen–Lenstra–Martinet heuristics
To recapitulate: as d runs through negative 
fundamental discriminants, we have an 
infinite sequence of finite abelian groups, 
the class groups of the quadratic fields 

( )dQ . The orders of these groups tend to 
infinity, but we could ask much finer statis-
tical questions about them. For example, 
if p is a prime number, what is the average 

d -3 -4 -7 -8 -11 -15 -19 -20

( )h d 1 1 1 1 1 2 1 2 ...

Table 1
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on at the bad primes is among those at the 
frontier of current research on the Cohen–
Lenstra–Martinet heuristics, and we shall 
return to it.

Reformulation of Friedman–Washington
Notice that in our justification of the Co-
hen–Lenstra heuristic via the model of 
random multiplication tables, the fact that 
class groups are always abelian played no 
role. Here is an alternative procedure for 
producing a random abelian group: pick a 
large integer r, start with the free abelian 
group on r generators, and quotient out r 
random relations. In other words, let the 
random group be the cokernel of a random 
element of the group M ( )Zr  of r r#  inte-
ger matrices. Actually, this does not work 
so well, because the group M ( )Zr  is not 
compact, and carries no suitable proba-
bility distribution, so instead one replaces 
Z  with the ring Zp  of p-adic integers for a 
chosen prime p. We do not expect any fa-
miliarity with p-adic integers: the reader is 
welcome to think of M ( )Zr , but imagine 
that we are only picking out the p-part of 
the cokernel. The cokernel of an element of 
M ( )Zr p  is always a pro-p group — just think 
‘made up of finite p-groups’. Moreover, the 
group M ( )Zr p  has a Haar measure, and the 
cokernel of a Haar-random matrix is finite 
with probability 1. This procedure defines 
a discrete probability distribution Pr  on 
the class of isomorphism classes of finite 
abelian p-groups. Of course for any fixed r, 
most finite abelian p-groups cannot be cok-
ernels or such a matrix, only those that can 
be generated by r elements can occur. How-
ever Friedman and Washington [10], guid-
ed by an analogy between number fields 
and function fields over finite fields, have 
discovered that as r " 3, the sequence Pr  
converges in distribution, and the limiting 
distribution is the Cohen–Lenstra distri-
bution! Even more surprisingly, Matchett 
Wood showed in [18] that instead of Haar 
measure, one could take almost any distri-
bution in which the entries of the matrices 
are independent of each other, as long as 
one avoids an obviously bad situation of 
these entries falling into fixed congruence 
classes modulo p too often.

A sloppy but easily memorisable way 
of summarising these findings is that ran-
dom abelian groups obtained from random 
multiplication tables also look like groups 
with many commuting generators subject 
to equally many random relations.

not just to us), that conjecture departs from 
what we have been calling the Cohen– 
Lenstra principle, and assigns to a finite 
abelian p-group A the probability weight 

/(#Aut # )A A1 $ .
In [6] the Cohen–Lenstra heuristic was 

generalised by Cohen–Martinet from quad-
ratic fields to very general families of num-
ber fields. We will not state the Cohen–
Martinet heuristic, but will instead make 
some remarks. Firstly, if F is a number 
field, then the group of its automorphisms 
acts on the class group ClF , and Cohen 
and Martinet realised that one should 
model the class group not just as a mere 
group, but a group together with those 
specific symmetries, i.e. as a module over 
a suitable ring. Accordingly, one should ex-
pect the probability weights to involve not 
all group automorphisms but only those re-
specting the special symmetries. However, 
the actual weights in the Cohen–Martinet 
heuristic are not merely inversely propor-
tional to sizes of symmetry-respecting au-
tomorphism groups of the class groups, 
but are even more complicated than in 
the positive d case of the original Cohen– 
Lenstra heuristic. A second additional is-
sue that arises in this generalisation is the 
question how to order families of general 
number fields, since they are no longer just 
parametrised by square-free integers d. 
Cohen and Martinet enumerated their 
fields by absolute value of the discrimi-
nant, the by-far most often used invariant 
for enumerating number fields for over a 
century. In fact, their heuristic also gener-
alises the Cohen–Lenstra heuristic in a dif-
ferent direction: in place of the base field 
Q  they take an arbitrary number field, and 
predict the behaviour of so-called relative 
class groups in families of extensions of 
that number field. Finally, the observant 
reader will have noticed that we said very 
little about the 2-Sylow subgroups of the 
class groups of quadratic fields. There 
are multiple reasons for this, the most 
straight forward being that already Gauss 
knew that the 2-torsion subgroups of class 
groups of quadratic fields do not ‘look ran-
dom’. We shall return to this point later. 
Analogously, Cohen and Martinet also 
exclude the p-Sylow subgroup for certain 
‘bad’ primes p from their heuristic. Exactly 
which primes p are bad and which ones are 
good in any given family of number fields 
was already a subject of some speculation 
in [6]. Today the question of what is going 

Heuristic (The Cohen–Lenstra principle). If 
a concrete instance of an algebraic object 
is constructed at random, then it will be 
isomorphic to a given object X with proba-
bility inversely proportional to #Aut X .

A visually intuitive example of this 
principle, which I urge the reader to work 
through, is that of random graphs: start 
with three vertices, and for each pair of 
vertices flip a coin to determine whether 
or not to draw an edge between them. Now 
compute the probability of obtaining the 
complete graph, and compare it with the 
probability of obtaining a graph with exact-
ly one edge. Explain the difference in the 
terms just outlined.

Cohen and Lenstra conjectured [5] that 
for odd primes p, the p-Sylow subgroups 
Cl [ ]pd

3  of the class groups for d 0<  ‘look 
random’ in the above sense.

Conjecture (Cohen and Lenstra [5]). Let p be 
an odd prime number, and let A be a finite 
abelian p-group. Then the limit

(Cl [ ] )

lim

p A

1

1

X
X d

d
X d

0

0

< <

< <
,

"3

3

-

-

/

/

exists and is equal to /#Autc Ap
1- , where 

both sums run over the negative funda-
mental discriminants and 1 denotes the 
characteristic function, which takes value 
1 if the condition is satisfied and 0 other-
wise.

In fact, Cohen and Lenstra made a sim-
ilar prediction not just for characteristic 
functions, but for any ‘reasonable’ C-val-
ued function on the class of isomorphism 
classes of finite abelian p-groups: the aver-
age of such a function over the set Cl [ ]pd

3  
with d running over the negative fundamen-
tal discriminants should be equal to its ex-
pected value with respect to the probabili-
ty distribution we have just discussed. The 
meaning of the word ‘reasonable’ was not 
further specified in the original paper. This 
indeterminacy is the reason why the term 
‘Cohen–Lenstra heuristic’ is usually used, 
rather than ‘conjecture’. See [3], however, 
for several proposals of what ‘reasonable 
function’ might mean.

In the same paper Cohen and Lenstra 
formulated a conjecture for class groups 
of positive fundamental discriminants. 
Somewhat distressingly (to the authors, 



Alex Bartel	 The Cohen–Lenstra principle	 NAW 5/25  nr. 3  september 2024	 187

ality on the relevant pieces of the class 
groups, accounted for by roots of unity in 
the base field, formulated a model for a 
random piece of data consisting of a group 
with this additional duality structure, and 
proved a result towards their conjecture 
in the function field setting, employing 
the Ellenberg–Venkatesh–Westerland ma-
chine. More recently, Matchett Wood and 
Sawin formulated a comprehensive con-
jecture in great generality [15]. Like Malle, 
they did not offer a heuristic model, but 
instead the conjecture is suggested by a 
theorem in the function field setting: using 
work of Liu, Matchett Wood and Zureick- 
Brown [13] on a non-abelian generalisation 
of the Cohen–Lenstra heuristic, in which 
once again the Hurwitz spaces method 
played a crucial role, Matchett Wood and 
Sawin computed the so-called moments 
of a probability distribution that occurs in 
the function field setting, proved that these 
moments determine a unique distribution, 
and conjectured that that distribution also 
governs class groups of number fields in 
the presence of roots of unity in the base 
field. Thus, in the span of only a few years 
our understanding of this particular type of 
‘bad prime’ has made enormous leaps, but 
is still not complete: we are still lacking a 
model, generalising the Lipnowski–Sawin–
Tsimerman model from the case of quad-
ratic extensions, that would explain the 
Matchett Wood–Sawin probability weights.

So far we have focussed on conjectures 
in the Cohen–Lenstra–Martinet setting of 
class groups of number fields, and have al-
luded to theorems in the function field set-
ting. But what do we actually know about 
the statistical properties of class groups of 
number fields?

We have mentioned Gauss’s genus 
theory results on the 2-torsion of class 
groups of quadratic fields and the Dav-
enport–Heilbronn theorem on the 3-tor-
sion of quadratic fields. Both have been 
generalised in various directions, the 
outcome usually being the determination 
of the average of some ‘reasonable’ func-
tion on the class of isomorphism classes 
of abelian groups, when evaluated on a 
natural sequence of class groups of num-
ber fields. All these generalisations only 
see the n-torsion of class groups for some 
fixed n. Most notably, the geometry-of- 
numbers technique used by Davenport 
and Heilbronn has seen a huge revival 
and extension thanks to the Fields Medal 

is a prime number, then ‘everything apart 
from the genus piece’ behaves according 
to the Cohen–Lenstra heuristic. To incorpo-
rate genus theory into the Cohen–Lenstra 
heuristic for general number fields is still 
an open problem.

In [8] Ellenberg, Venkatesh, and Wester
land pioneered an ingenious topological 
method, hinging on a homological stabil-
ity result for so-called Hurwitz spaces, for 
proving theorems on class groups of func-
tion fields over finite fields. This general 
method has since then been successfully 
applied for proving more results in the 
area, some of which we will mention below.

Malle, pursuing a suggestion of Lenstra, 
noticed [14] through extensive numerical 
experimentation that if a prime number 
p divides the order of the group of roots 
of unity in the base field, then the behav-
iour of the p-Sylow subgroups of the class 
groups of the extensions of that base field 
seems to deviate from the Cohen–Lenstra– 
Martinet predictions. He conjectured that 
this is not a mere artifact of unreliable nu-
merical data, but rather that the model 
needs to be adjusted in those cases. Malle 
did not offer a heuristic, but proposed al-
ternative formulae in some situations, 
which exhibited much better agreement 
with the data. It then became an urgent 
problem to formulate a general conjecture, 
beyond the special cases treated by Malle, 
and ideally also one that would explain 
the deviation in a structural manner, rath-
er than just quantify it. This was achieved 
by Lipnowski, Sawin, and Tsimerman [12] 
in the case of quadratic extensions: they 
identified a very subtle additional du-

One can even recover the more compli-
cated Cohen–Lenstra distribution for pos-
itive discriminants in this random matrix 
model: those groups look like groups with 
many commuting generators subject to 
‘many 1+ ’ random relations.

The analogy between number fields and 
function fields is extremely fruitful in the 
area of arithmetic statistics, and we shall 
return to it.

Subsequent developments
The Cohen–Lenstra–Martinet heuristics 
have spawned so much exciting activity 
that it will be impossible to mention, let 
alone describe all of it, and I apologise to 
anyone whose work could have been men-
tioned here but has been omitted.

Already in 1987, several years before the 
Cohen–Martinet extension of the Cohen– 
Lenstra heuristic, Gerth III attacked the 
problem of bad primes [11]. In the case of 
quadratic fields the prime 2 is bad, because 
thanks to Gauss’s genus theory we under-
stand a part of Cl [ ]2d

3 , namely Cl [ ]2d  (the 
reader may object that this is an idiosyn-
cratic understanding of the word ‘bad’). 
Gerth III consequently conjectured, based 
on an actual theorem that we will not state 
here, that the groups Cl [ ]/Cl [ ]2 2d d

3  do be-
have like Cohen–Lenstra–random groups.

There is a generalisation of genus the-
ory to arbitrary number fields, which ex-
plains a certain ‘piece’ of the class group 
as being not random looking. The prime 
numbers that this phenomenon makes 
bad are those dividing the Q -dimension 
of the so-called Galois closure of the field. 
Gerth conjectured that if that dimension 

Hendrik Lenstra and Henri Cohen in 2005 at the Oberwolfach workshop on ‘Explicit Methods in Number Theory’
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class group is the wrong object to apply it 
to! Lenstra and I showed in [3] that if one 
instead considers the so-called Arakelov 
class group PicF

0  of a number field F, a 
more complicated invariant that ‘knows’ 
everything about the class group, then 
the postulate that PicF

0  is isomorphic to a 
suitable object X with probability inverse-
ly proportional to #Aut X  in fact implies 
the Cohen–Lenstra–Martinet heuristics, 
in particular recovering the otherwise 
mysterious looking probability weights for 
the class groups. The big caveat is that Ar-
akelov class groups of number fields typi-
cally have infinitely many automorphisms, 
so quite a bit of work [2] goes into turning 
the previous sentence from non-sense into 
rigorous mathematics.

The scope of this article has only al-
lowed us to give a very cursory overview 
of the huge amount of activity around the 
Cohen–Lenstra heuristic and its generali-
sations. We have not said much about the 
rich connections to elliptic curves, the par-
allels with low-dimensional manifolds and 
their fundamental groups, nor about the 
fascinating non-abelian generalisations, 
which are, I would say, enough to elevate 
the Friedman–Washington result on coker-
nels of random matrices to a general prin-
ciple, a sibling of the Cohen–Lenstra prin-
ciple. But I hope that what we did say has 
been enough to convince the reader of the 
current verility of the discipline that Cohen 
and Lenstra birthed and of the exciting 
future that awaits it. 	 ←

in finite time. Apart from Smith’s result, this 
was the first instance of infinitely many rea-
sonable functions for which we knew the 
average on class groups to exist. However, 
rather than confirming the Cohen–Lenstra– 
Martinet conjectures this way, we exhibit-
ed a specific function whose average is not 
equal to the predicted expected value, thus 
disproving the conjectures! It turns out that 
the discriminant, despite being by the far 
the most common invariant for enumerat-
ing number fields, is deficient in a particu-
lar way. We proposed a correction to the 
heuristics, which amounts to enumerating 
number fields in certain alternative ways. 
In the same work, however, we found a 
second, entirely unrelated problem with 
the heuristics. We have mentioned above 
that for general number fields F the class 
group should be understood not merely as 
a group, but as a group together with an 
action of Aut F . Lenstra and I showed that 
this structure is quite subtle, and that cer-
tain such modules, despite having positive 
probability in the Cohen–Lenstra–Martinet 
model, can actually never occur as class 
groups. Finding a satisfactory correction 
to this defect was harder than to the first 
one just mentioned, and we proposed one 
together with Johnston in [1].

To bring this story full circle, recall that 
as we observed above, the Cohen–Lenstra 
principle does not seem to apply to class 
groups in any situation other than that of 
quadratic fields with negative discrimi-
nant. It turns out that this is because the 

winning work of Bhargava, who deter-
mined, for example, the average size of 
2-torsion of class groups of cubic fields 
[4], but also applied those techniques to 
counting number fields themselves and, 
most famously, to bounding average ranks 
of elliptic curves. The school that Bhargava 
built up took those techniques further still, 
and has considered many beautiful gener-
alisations of the original Cohen–Lenstra–
Martinet question, which would merit their 
own survey. Meanwhile, Fouvry and Klüners 
confirmed in [9] Gerth’s modification of the 
Cohen–Lenstra heuristic for the 4-torsion 
of class groups of quadratic fields.

Then in 2017 Alexander Smith, at the 
time a PhD student at Harvard, in a pre-
print that has since then been substantial-
ly revised and extended [16, 17], made a 
gigantic leap forward: he determined the 
full distribution of the 2-Sylow subgroups 
of class groups of quadratic fields, thus 
confirming Gerth’s modification for the 
entire 2-Sylow subgroups of those class 
groups! In the process he introduced a 
host of new ideas that have since been 
extended to other settings, and will, no 
doubt, remain of central importance in the 
area for the foreseeable future.

In the meantime, in [3] Lenstra and I 
showed that there are infinitely many fam-
ilies of number fields and infinitely many 
reasonable functions such that the func-
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