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Freek Witteveen, currently a postdoctoral researcher at the Univer-
sity of Copenhagen, won the Stieltjes Prize for the academic year
2021-2022 with his dissertation Quantum Information Theory and
Many-Body Physics. In this work, which he conducted at the CWI
under the supervision of Michael Walter and Eric Opdam, he ex-
plored how representation theory of tensor networks can be used
to shed light on the newly emerging field of quantum information
theory. In this article, he explains what this field is about and how
his research has contributed to it.

Many-body physics broadly concerns physical systems which are
made up of a large number of subsystems. While the fundamental
laws and principles of quantum mechanics are well known and can
be formulated in compact equations, understanding quantum many-
body physics and the emergent phenomena related to it gives rise
to a whole new set of challenges. One approach to understanding
large and complex physical system is by simulating them with the
help of a computer. As scientists have been advancing the usage of
computer simulations, they realized that the theory of computation
aswellasthe closelyrelated field of information theory are very use-
fulto obtain a qualitative understanding of these complex systems.
I will give an overview of the usage quantum information science
in many-body physics, as developed over the last two decades. We
will also see the notion of a tensor network, which is a convenient
mathematical language for describing many-body quantum states.
This article is partially based on the introduction of my thesis [11].

Quantum many-body physics

At small scales, our best fundamental theories of reality are quan-
tum mechanical. What is quantum mechanics? Let us have a look
at the simplest nontrivial quantum mechanical system: the qubit.
A gquantum mechanical system consists of a complex Hilbert space.
In the case of the qubit this Hilbert space is C? with the standard
inner product. The state of the system is a normalized vector in the
Hilbert space H . Itis common to use so-called bra-ket notation for
vectors. A ‘ket’ [¢) is simply a vector in the Hilbert space, and the
‘bra’ (Y| is the dual vector, which is such that {¢|y') is precisely
the inner product between the vectors |¢) and |¢). For the stan-

dard basis we write
1 0

so an arbitrary state can be written as |[¥)=a|0)+A |1) where
the normalization condition means that | |2+ 8|?=1.To get a
sense of what this means physically you can think of a tiny magnet,
which can either point upwards (state 0) or downwards (state 1). In
this interpretation, the qubit is often called a spin particle which
can be in state up [1)=1]0) or down ||)=]1). Another possibility
is that there is a particle (say an electron) which is either present
(state 1) or absent (state 0); or in general any two-level physical
system. The quantum mechanical state |¢) allows ‘superpositions’
of these two states. This is similar (but different in a subtle way)
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to a system which is in state 0 with probability py =]« | 2 and in
state 1 with probability p; =| £ | 2 which would be a classical bit.

If one measures the system to see whether it is in state 0 or 1,
one finds outcomes 0 and 1 precisely with probabilities py and p; .
What makes the quantum state |¢) different from a probability
distribution over outcomes 0 and 1 is that the measurement de-
pends on a choice of basis. This basis does not need to be the
standard basis, but one could also express |¢) in a different basis.
This would give a different measurement procedure, with different
outcomes. For this reason, a collection of qubits exhibits different
behavior than a collection of classical bits.

Now that we have introduced the basic structure of quantum me-
chanics, we turn to more interesting systems than a single qubit.
Most real quantum mechanical systems do not consist of a single
particle with two states, but rather of many particles. In chemistry,
amolecule has multiple electrons, each of which can be in different
states. Similarly, in a solid we have a crystal structure with many
electrons. In general, multiple particles (or systems) are modeled
by the tensor product. To make this concrete, let us assume that
we have N qubits. Then the Hilbert space of these N qubits is giv-
en by (C?)® . The standard basis consists of tensor products of a
choice of [0) or [1) for each tensor factor. In bra-ket notation we
omit tensor product symbols and write |¢)® |y )= |$)|¥) or even
|¢¥ ). This gives basis vectors

liy) - li )= iy --in) for (iy,...,ix) € {0,1} .

In other words, a basis for V qubits is given by bitstrings of length
N, which means that the Hilbert space has dimension 2N An arbi-
trary state can be expanded in this basis as

W)= 20 Wiy lir-in).
Uy IN

The physics of a quantum mechanical system is described by
a Hamiltonian. The Hamiltonian describes the interactions be-
tween different particles (or with external fields). In general, it is
a self-adjoint linear operator H acting on the Hilbert space. Since
H is self-adjoint, it has real eigenvalues with orthogonal eigen-
vectors. The eigenvalues are the energies Fyg<FE; <F,<-.-- of
the system, and the corresponding eigenvectors |y, ) are states
with energy E.. At zero temperature, the system will be in the
ground state |y) with ground state energy E,. The ground state
energy could be degenerate (but in the following we assume for
convenience that it is unique). The difference A= E;—E is the
ground state energy gap. We say that a family of Hamiltonians
of increasing system sizes is gapped if A is lower bounded by a
constant. In many situations for electronic structure in chemistry
and solids, the energy gap A to the first excited state is relatively
large, compared to the temperature. This means that the behavior
even at for instance room temperature is captured by ground state
physics. For this reason, it makes sense to restrict our attention
to ground state physics, even if we care about processes at finite
temperature.

The precise form of the Hamiltonian is determined by the de-
tails of the physical system, but a common characteristic is that
it arises from local interactions. This means that the Hamiltonian
can be written as

H=) Hy
X

where the sum runs over some subsets X C {1,...,N} of the qubits
and Hy acts as the identity on all qubits except the ones in X. An
even stronger constraint is spatial locality. Here we assume that
the qubits are ordered in a lattice structure, and that interactions
are only between nearby particles. For example, the sum only runs
over pairs of nearest neighbors in the lattice.

To make this concrete, we can have a look at a simple model for
magnetic interactions for a lattice of qubits (or spins). A basic ex-
ample is the one-dimensional Ising model, which acts on a chain
of qubits n=1,...,N. We let

01 1 0

o) 7o 5
be the Pauli matrices, and write X,, and Z, for the operator which
acts as X or Z on qubit » and as the identity on all other qubits.
A term like —Z,7,+1 is such that it has minimal energy if qubits
n and n+1 are aligned (so they are in state [00) or |11)), model-
ling a magnetic interaction. We may also add an external field in a
transverse direction to get the Ising Hamiltonian

N
H=-J ZZanL+1 +hX,, €]
n=1

where h and J are real parameters and where we can take periodic
boundaries. Since the operators X and Z do not commute, it is not
obvious what the eigenvectors and thereby energies of this Ham-
iltonian are. The details of this model are not very important for
the remainder of this article; | only introduce it here as a concrete
example of what a many-body Hamiltonian may look like.

Ground state physics and computation
If a Hamiltonian is local, this means that it has an ‘efficient’ de-
scription: instead of an arbitrary 2N x o self-adjoint matrix (with
an exponential number of parameters) one only has to prescribe
the (polynomially many) local terms. This leads to the formulation
of one of the main computational problems in quantum many-body
physics: given a local Hamiltonian H, what is the ground state en-
ergy of H? Certain Hamiltonians have ‘easy’ solutions that can be
calculated exactly (this is, for example, the case for the one-di-
mensional Ising model). These are valuable for analytical under-
standing of the relevant physics and are good approximations in
many instances. However, in other instances this approach does
not suffice. Because the different local terms Hy in the Hamiltoni-
an do not need to commute, it is not clear how to diagonalize the
full Hamiltonian H. How would one go about (numerically) com-
puting ground state energies? An immediate obstruction is that if
the system consists of N qubits, the Hilbert space has dimension
2V While the Hamiltonian is local and has an efficient descrip-
tion, the ground state needs an exponential number of parameters
to describe it! Even for modest N this means that one runs out of
memory to store the full state on a computer. This barrier is one of
the original motivations [4] for the development of quantum com-
puters which perform computations on registers of qubits rather
than bitstrings. A quantum computer with NV qubits can, by defi-
nition, store the state of an NV qubit quantum system, so quantum
computers can at least store ground states of (local) Hamiltonians.
This is a good first step, but one still needs to find the ground
state. It turns out this is a hard problem! It is known that deter-
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mining the ground state energy of an arbitrary local Hamiltonian
is @ QMA-complete problem. QMA is a complexity class which
is the quantum equivalent of the class NP, and it is strongly be-
lieved that there are no efficient (polynomial time) quantum al-
gorithms for QMA-complete problems. While this may seem like
bad news for the use of quantum computers for ground state
physics, it does not mean that the problems one encounters in
practice are necessarily intractable: perhaps certain subclasses of
instances of the local Hamiltonian that occur in electronic struc-
ture computations in existing molecules are not computational-
ly hard? There is in fact a powerful class of quantum algorithms
for ground state problems, based on quantum phase estimation.
These use the fact that a quantum computer is able to efficiently
transform the state of the quantum computer by (an approxima-
tion of) the unitary operator U = exp (iH). Quantum phase esti-
mation is an algorithm which computes the eigenvalues of the
unitary U, in this case given by exp(iE;). Of course, there is an
exponential number of such eigenvalues. Which ones you find,
will depend on the choice of initial state. To obtain Ej, one is re-
quired to prepare an initial state |¢) on the quantum computer
which is such that the overlap with the ground state [{($|y()| is
not too small (the runtime of the algorithm scales with the inverse
of this number). Since the full Hilbert space has exponential size,
arandom guess |¢) will have exponentially small overlap, leading
to an inefficient algorithm. Nevertheless, in many cases one can
use classical methods to obtain reasonable initial states. Given
such a good initial state, the resulting algorithm is polynomial
in the system size N and the required precision of the approxi-
mation of Ej. The precise practical usefulness of such methods,
compared to the best classical approaches, is still subject of
a lively debate [8].

Quantum information theory

The mathematical theory of information was developed by Shan-
non in his landmark 1948 paper [10]. Shannon proposed that
information is quantified by the entropy of a source. A source is
modeled to be a probability distribution p(x) with outcomes in an
alphabet z € X. The Shannon entropy of the probability distribu-
tion is given by

S(p) =—2.p(z)logp(z).

Since we want to measure in terms of bits, the logarithm is to base
2. The Shannon entropy S(p) takes its maximum value log|X|
when the distribution is uniform, and equals zero for a determinis-
tic source. Shannon showed that when we are given independent
samples from a source with distribution p, the outcomes can be
compressed at a rate of S(p) bits per outcome. This gives an oper-
ational meaning to S(p) as the amount of information (measured
in bits) of the source.

It was only much later that a fully quantum mechanical theory
of information was pursued. Quantum mechanics allows a type of
correlations which are fundamentally different from classical prob-
ability theory. Roughly speaking, going from probability theory to
quantum theory one replaces probability distributions by normal-
ized complex vectors

piz0,2pi=1=y;€C Xly;[*=1.
2 2

The difference becomes relevant when we study correlations be-
tween two parties. We consider a state |y 45) shared by Alice and
Bob, who hold quantum systems A and B. This means that [ 45) is
avector in the tensor product Hilbert space ‘H, ® Hp. By a singu-
lar value decomposition (known as the Schmidt decomposition in
this context) we may write

Yap)= ‘leilafi>|bi> (2

where |a;) and |b;) form collections of orthonormal vectors in
H, and Hp respectively, and the s; are positive numbers such
that s%-i— +sf =1. The numbers s; capture all the correlation
between Alice and Bob. Such quantum correlations are known
as entanglement. If =1 and s; =1 the state is a product state
[ 45)=la; )by ) and there are no correlations. On the other hand,
if r is the minimum of the dimensions of the two Hilbert spaces
and the s; are uniformly equal to sl:fm the state is called
maximally entangled. A special case is a pair of maximally entan-
gled qubits

|wAB>:%<|oo>+\n>>.

The maximally entangled pair of qubits is one of the fundamental
units in quantum information theory.

As an analog to Shannon’s noiseless coding theorem we would
like to measure the entanglement in an arbitrary state [¥45) in
terms of maximally entangled qubits. The answer is given by the

entropy of the probability distribution with probabilities p; = s?,

T
H(A)¢ =— Zs?logs?.
i=1

This is known as the entanglement entropy. It equals zero if and
only if the state is a product state, and equals the maximal value
log (dim (Hy)) is the state is maximally entangled. As an analog
to the noiseless coding theorem the entanglement entropy is the
optimal rate at which we can convert maximally entangled qubits
to and from copies of a bipartite pure state. This corresponds to a
scenario where we are given a large number of copies NV of [/ 45).
How many maximally entangled qubits can we distill using only lo-
cal operations and classical communication? Conversely, suppose
that we would like to create N copies of | 45) using only local op-
erations and classical communication with some initial maximal-
ly entangled qubits. How many maximally entangled qubits do
we need? For both questions we would like to know the optimal
rate: as NV goes to infinity, what is the optimal number of maximally
entangled qubits per copy of |¥45)? The answer to both of these
questions is that the optimal rate is the entanglement entropy
H(A)w. This sets the entanglement entropy as the operationally
correct measure for entanglement.

This is only the beginning of the story: we restricted the dis-
cussion to ‘pure’ quantum states, but one can also model ‘mixed’
quantum states (which are a probabilistic mixture of pure quan-
tum states). In this case the theory of entanglement becomes
much more subtle. Quantum information theory studies many sce-
narios beyond entanglement. Important further topics are deter-
mining the possible rates of communication over noisy quantum
channels and measuring the cryptographic properties of quantum
states [9].
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Ground state physics and entanglement

The entanglement entropy is a measure of entanglement in quan-
tum states. What does the entanglement of ground states in ma-
ny-body physics look like? We take a lattice of qubits, and we let A
be a subregion of the lattice containing at most half of the sites of
the full lattice

If we pick a random state (by taking a uniformly random point in
the unit sphere of the Hilbert space), the state will be close to
maximally entangled with high probability. That is, we have entan-
glement entropy H(A) =~ | A/, which equals log(dim (#,)). More
generally, if the entanglement entropy scales with the size of the
region |A |, this is known as volume-law entanglement.

Ground states of spatially local Hamiltonians behave in a fun-
damentally different way! An important feature of the Hamiltonian
is its locality: the Hamiltonian is a sum of terms, each of which
acts only on a few particles. One might expect that this carries over
the ground state, and the ground state also has a ‘local’ nature. To
some extent this is true, and the correlations in ground states are
of a local nature. This is captured by the so-called area law. A quan-
tum state on a lattice in D spatial dimensions satisfies an area law
if the scaling of the entanglement entropy of any subregion is with
the size of the boundary of the subregion, rather than the volume
of the subregion. If we take a (large) region A in the lattice then this
would mean that the entropy H (4) is proportional to |94 |, the size
of the boundary of A.

A closely related fact is that we expect exponentially decaying
correlations between different sites. It is known that all local lat-
tice Hamiltonians which are gapped have exponential decay of
correlations [6]. Exponential decay of correlations is (at least on
an intuitive level) closely related to area laws: if we have exponen-
tial decay of correlations one may expect that sites far away from
the boundary of a region A do not contribute to the entanglement.
However, exponential decay of correlations does not directly imply
an area law, and the area law is only rigorously known to hold in
special cases (for example, in one spatial dimension [5]), and it
can be violated under certain circumstances.

Tensor network states

The area law captures the fact that in ground states of local Hamil-
tonians correlations are of a local nature. A next question is wheth-
eritis possible to represent the ground state itself in a local way.
Suppose we have a quantum state |) on a tensor product Hilbert
space H=H, ® H, ® --- ® H,,, where H, = C%. We may expand
[\ ) in a product basis:

W)= {Z}ww--% [1)®iy) ® -+ By ).

The collection of numbers ¥; ;, ; defines a tensor. Of course, in
general, the size of this collection is exponential in n. Tensor net-
works provide a method to parametrize a relevant subset of ten-
sors efficiently, by ‘breaking up ¥ into smaller tensors.” We may
represent a tensor graphically as

J

‘ T= Z T i>Ipl>
kM
k

Given two tensors S'and T'with coefficients S; ;,  , and Ty ;. ;.
we may for instance contract.S and T along the first indices (provid-
ed the corresponding dimensions are equal) to get a tensor with

coefficients
ZSil-i2=--~,irlﬂl-J'2 <<<<< Jm*
7

Graphically this simply corresponds to connecting the two tensors

—C(—)
T, ZST

".\
If the two tensors are 2-tensors, this simply corresponds to matrix
multiplication.

Now, if we are given a collection of tensors, then we may con-
tract indices along a graph which is defined by letting the tensors
correspond to vertices with a number of dangling half-edges corre-
sponding to the numberof indices the tensor has; we then indicate
which indices are contracted by connecting half-edges to form an
edge in the graph. The resulting tensor has uncontracted indices

on all unconnected half-edges

The dimensions along the contracted edges are called bond di-
mensions, while the dimensions along the uncontracted edges are
the physical dimensions.

The decomposition in equation (2) is a special case of a tensor
network decomposition:

_ v
B 2

where the two tensors are connected by a an edge with bond di-
mension 7. One way to think of tensor network states is that they
are tensor decompositions which are a generalization of the singu-
lar value decomposition, and where the bond dimensions general-
ize the rank of the decomposition.
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A different perspective on tensor network states is that one
starts with a collection of maximally entangled states along the
edges of the graph, and then applies linear maps at each of the
vertices. For this reason, tensor network states are also known as
Projected Entangled Pair States (PEPS). This means that tensor
network states are quantum states where the entanglement is of
a local nature, with respect to some given graph. For a state on a
lattice, itis natural to take a tensor network that corresponds to the
lattice geometry

The dangling edges correspond to the physical degrees of free-
dom, which for example are two-dimensional (qubits), whereas
the contracted vertical and horizontal edges have a bond dimen-
sion D. Typically, one takes this bond dimension D to be system
size independent. This gives a huge reduction in the number of
parameters: each tensor has one edge of dimension 2, and four (or
fewer on the boundary of the lattice) of dimension D, giving 2D4
complex parameters. This leads to a state with at most 2ND* pa-
rameters instead of the 2"V parameters required for arbitrary states
of N qubits. Tensor network states by construction satisfy con-
straints on their entanglement entropy: if A is a subsystem and B
is its complement, then the rank r of the state | 45) as in equation
(2) is bounded by the product of the bond dimensions of any set
of edges one has to cut to separate A from its complement. If the
graph one starts with is based on a lattice, this directly imposes
an area law, since in that case we cut a number of bonds propor-
tional to the boundary 94, each with bond dimension D. This gives
H(A) < log(r) <| 94| log(D).

To make the tensor network approach more concrete, we start
with matrix product states (MPS), which are tensor networks in one
spatial dimension. In this case we consider a one-dimensional
chain of N qubits and for convenience we take periodic bound-
ary conditions and make the state translation invariant. We fix a
bond dimension D. Then an MPS state is defined by a tensor of size
2 X DX D, which we write as MEQ and j,k=0,...,D—1. Instead of
considering a 2 X D X D tensor, we may also think of M as a pair
of DX D matrices, and we denote by M the Dx D matrix with
entries {M&Q}j,k.

Then the associated MPS state is a state of N qubits, defined by
the following product of matrices

)= Dt [MWu? M) iy iy 3)

ie{0,1}V

Graphically, this corresponds to

a:fD d:l)

/V\(]_jZ

- —

N

For MPS, if we let A be an interval, then the entanglement entropy
H(4)y is upper bounded by 2log(D) (since we only need to cut
two edges to separate A from its complement):

AT

This again is consistent with an area law, since A has a constant
size boundary, no matter the length of the interval! The total num-
ber of parameters in the description of the MPS state |) is only
2ND?. For fixed D this number of parameters is linear in the sys-
tem size rather than exponential, so this is a huge reduction in
parameter space. Additionally, from equation (3) we can efficiently
compute the coefficients of the state. If one increases the bond
dimension D to a size exponential in N one can write any quantum
state as an MPS (but one is usually interested in the regime where
Dis constant or polynomial in IV).

For one-dimensional spin systems, the space of ground states
of gapped Hamiltonians is well understood. If H is gapped, it is
known that the ground state satisfies both an area law and expo-
nential decay of correlations. One can approximate the ground
state to precision € by an MPS state with bond dimension
D= O (poly(N,1)) [s]. Moreover, such an approximation can be
found in O(poly (N,1)) by a classical computer [7]. Historically,
the development of tensor networks started with the density ma-
trix renormalization group (DMRG) algorithm which, in hindsight,

— r:hjsi:al odimension
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is an algorithm for finding MPS approximations to ground states
and gives excellent results in practice. From this we conclude
that, while in general the problem of finding ground states of local
Hamiltonians is QMA-hard, when we restrict to one-dimensional
gapped Hamiltonians the problem can be solved in polynomial
time on a classical computer.

Moreover, the fact that ground states of local gapped Hamil-
tonians can be approximated by MPS gives us a wealth of infor-
mation about the structure of such ground states. An important
tool to leverage this structure is a fact about the algebraic struc-
ture of MPS. Any MPS has a gauge symmetry, where one can
change the individual tensors without changing the resulting
MPS state. It is easy to see that if we replace M® — gh?g7! for
1=0,1 and for a D X D invertible matrix g this does not change
the resulting state in equation (3) since each g cancels against
its inverse:

ca.ncel

—9)—/’\—
'IOM ()’
J

In other words, there is an action by the group GL (D) on the tensor
which keeps the contracted state |y ) invariant. The Fundamental
Theorem of MPS states that this is (essentially) the only redundan-
cy in the description. One way to formulate this is that one can
always bring the tensor into a canonical form by (limits of) invert-
ible transformations g, such that the only remaining symmetries
are unitary D X D matrices. If we have two different tensors giving
rise to the same MPS state for all system sizes, they can be brought
in the same canonical form. There are various canonical forms, one
may for example impose the condition

C >

(M(O))‘M(O) + (M(l))lM(l) =1d

which (if we think of a 3-tensor of size 2 X D X D again, instead of
a pair of matrices) we can write graphically as

C=LL

where we use the convention that rotating the tensor corresponds
to complex conjugation. This is important for numerics: ignoring
the gauge symmetry can lead to matrix computations with large
condition numbers. It is also important for variational optimization
algorithms (for approximating ground states) to fix redundancies
in the description.

As a theoretical application of the Fundamental Theorem, one
can study states which have a symmetry. Consider an MPS state
l¥) on N sites with single site tensor M which is invariant under
unitaries U;(?N, where h — U, is a unitary representation of a group
G. For example, on a spin chain we could consider states which are

invariant under exchanging |0 ) and |1 ). This is a representation of
7./27 where the generator is mapped to the Pauli operator X. The
Ising model is an example of a system which has this symmetry.
Any such symmetry also gives rise to an action of G on the tensor
M, mapping the tensor to a different tensor U, - M. By the Funda-
mental Theorem and the invariance of the state, we can deduce
that M and U,,-M must be related by the action of some DX D
unitary gy:

(D— 00— =
W W ® W

il

It turns out that the g;, form a projective representation of G, and
one can classify equivalence classes of states with symmetry group
G under continuous deformations (‘symmetry protected topologi-
cal phases’) by the second cohomology group H?(G,U(1)). This
example illustrates the fact that global properties of the quantum
many-body state are encoded in the local tensors.

In higher spatial dimensions tensor networks (which here often
go under the name PEPS) can also be used to approximate ground
states of lattice Hamiltonians. While the theory of MPS is relatively
well understood, the general theory of PEPS is much more com-
plicated. Similarly, numerical methods using PEPS are much more
challenging.

The fact that numerical methods are more challenging is cor-
roborated by results in complexity theory, which state that tensor
network contraction (a necessary ingredient in any tensor network
algorithms) is #P-hard on two-dimensional lattices. This is closely
related to the fact that the algebraic structure of PEPS is more in-
tricate, and the involved multilinear algebra is more complicated.
In relation to many-body physics, there are no rigorous approxima-
tion results available as in the case of MPS: there are no guaran-
tees for approximation of ground states of local Hamiltonians by
PEPS (even though one would expect this to be the case in most
situations).

Given all these hurdles, why would one care about PEPS? A first
motivation is given by numerical evidence: even though simula-
tions are computationally challenging, they give good results for
strongly interacting and complicated systems. Secondly, while
we do not have rigorous guarantees, it is widely believed that in
practice ground states of gapped Hamiltonians should have PEPS
representations. This means that PEPS is a useful abstraction to
reason about general ground states. Another good reason is that
for many paradigmatic models there are exact PEPS ground states
with a known description. These models provide important in-
tuition for many-body physics. Amongst others, one can realize
states with so-called topological order as PEPS. Finally, since PEPS
states can be used as a proxy for ground states, they are useful
in designing and understanding quantum algorithms for preparing
ground states.
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As an example of the application of techniques from multilinear
algebra, one can define a canonical form for PEPS in higher spatial
dimensions, extending the canonical form for MPS. PEPS tensors
have a similar symmetry as MPS tensors. One can show [1] that
one can bring a PEPS tensor into a canonical form according to the
conditions

gt
D@

such that the only remaining freedom is given by the action of uni-
tary matrices. This can be done using ideas from (geometric) invari-
ant theory, which studies group actions (in this case a group action
of GL(D) X GL(D)). It follows that two tensors have the same ca-
nonical form if and only if they give rise to the same state, not only
on every two-dimensional lattice but on any possible contraction
graph:

//j
(/

u

T =

()

2, b ) e
(Ul/)) S

Note that in the special case of one spatial dimension there is only
a single connected graph of size NV according which one can con-
tract the tensor.

Conclusions

| have tried to give an impression of interactions between quantum
information science and quantum many-body physics. We have
seen two perspectives:

— A computational perspective: one can try to classify the compu-
tational hardness of finding ground states of local Hamiltoni-
ans. The problem is computationally hard in general.

— An information theoretic perspective: ground states of spatially
local Hamiltonians have very specific entanglement behavior.
One can use this to decompose a global state into a tensor net-
work, where all information is encoded in local tensors.

Both of these perspectives have been very fruitful over the last two
decades, and many interesting (mathematical) questions remain,
see for example [3]. Amongst these are: rigorous understanding
of ground state approximation properties of PEPS, proving area
laws for higher dimensional systems and obtaining a more gen-
eral understanding of the (symmetry protected) topological or-
der. Besides this, there are other intriguing interactions between
quantum information theory and many-body physics, such as the
intimate relation between quantum error correction and topologi-
cal order, and the role quantum information theory plays in holo-
graphic theories of quantum gravity. If you are interested in learn-
ing more about these topics, | recommend the modern classic [9]
for quantum information theory, the book [12] for an overview of
quantum information theory in quantum many-body physics and
[2] for an up-to-date review of the mathematics of tensor networks

and many-body physics. o
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