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To explain why I love this theorem, I will 
discuss some of its consequences which 
at first glance do not seem to have to do 
anything with ropes. We will see that the 
theorem can be used to escape a maze, 
to understand how often subspaces inter-
sect, to explain why the Klein bottle cannot 
be made to fit into R3  without self-inter-
sections and why each closed planar curve 
contains an inscribed rectangle. I will end 
with a brief outlook on cobordism theory 
which is the natural home of Theorem 1.

Escaping a maze
How can you determine quickly if you can 
escape a maze such as in Figure 2? There 
is a trick with which you can answer this 
question very quickly: Draw any curve from 
the starting point somewhere in the maze 
to the outside (any generic curve to be pre-
cise, see Figure 3). Count the number of 

ropes if and only if the number of points is 
even, see Figure 1. The formal statement 
is that the boundary of a compact (finite 
length) one-dimensional manifold (rope) 
has an even number of boundary points 
(ends).

My favourite theorem
I appreciate simple mathematical ideas 
which have far-reaching consequences. 
My favourite theorem in mathematics is 
such an idea.

Theorem 1.  Ropes have an even number of 
ends.

Here and below we assume that ropes 
have finite length. The proof of this the-
orem shows that a single rope is either a 
circle or an interval, which both have an 
even number of ends. It follows that a finite 
number of points is the boundary of some 
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Figure 1  An even number of points is the boundary of 

some ropes, while an odd number of points is not the 

boundary of some ropes.
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Figure 2  How to quickly determine if you can escape a maze as on the left? Draw any curve to the outside and determine if the number of intersections with the maze is even or odd. 

If it is even, you can escape, if it is odd you can’t. In the maze above you can escape from the blue point, as the number of intersections is four (even), but you cannot escape from the 

turquoise point, as the number of intersections is three (odd).
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intersections of this curve with the maze. 
If the number of intersections is even, you 
can escape, but if the number of intersec-
tions is odd, you cannot escape. Why this 
works is explained in Figure 4.

What we have shown is that the parity 
of the number of intersections between a 
curve with a closed curve, is constant un-
der deformations which keep the endpoint 
of the curve fixed. A similar argument also 
shows that any two closed curves in the 
plane intersect each other in an even num-
ber of points. In turn this statement can be 
generalized to higher dimensions. Here is 
the statement in three dimensions.

Theorem 2.  A closed curve and a closed 
surface intersect in an even number of 
points in three dimensions. 

A surface is called closed if it does not 
have a boundary and if it is compact. Com-
pactness intuitively means that the surface 
does not extend out to infinity. In Figure 5 a 
proof of Theorem 2 is sketched.

Non-orientable surfaces
Compact surfaces can be constructed by 
a gluing process: Take a finite number of 
polygons, and glue the edges pairwise. If 
each edge is glued to another one a closed 
surface is constructed, if not all edges are 
glued a compact surface with boundary is 
made. An interesting example of a com-
pact surface with boundary is the Möbius 
strip, see Figure 6. 

The Möbius strip is not orientable and 
has a boundary. The Klein bottle is an ex-
ample of a closed non-orientable surface, 
see Figure 7. Depicting the Klein bottle is 
harder than depicting the Möbius strip. It 
is not possible to fit, or embed, the Klein 
bottle in three dimensions without self in-
tersections. Let me state this as a theorem.

Theorem 3.  The Klein bottle cannot be em-
bedded in R3 .

We will follow the wonderful argument 
of Samelson [5] to prove this. Imagine, 
with a contradiction in mind, that the Klein 
Bottle does embed in three dimensions. 
Then in Figure 8 it is shown that if the Klein 
bottle would embed, that there would also 
have to exist a closed curve which inter-
sects the Klein bottle once. But Theorem 2 
tells us that this is impossible. Hence the 
Klein bottle does not embed in R3 . Note 

Figure 4  Can we escape this very simple maze on the left? Yes: the curve in blue intersects the maze twice, which is 

even. Why is this number even? Imagine deforming the blue curve to the red curve as in the middle picture. The red curve 

is an actual escape route. We can keep track of the intersections with the maze during this deformation. This is depicted 

on the right: In brown the intersections of all the curves with the maze are drawn. These are ropes, and the ends of these 

ropes are the intersections of the original curve with the maze. This shows that the intersection is even if we can escape. 

A slightly more complicated argument shows that this condition is also sufficient. To avoid a flood of complaints I need to 

be precise: we assume that the maze is a connected closed simple curve.
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Figure 5  The number of intersections of a closed surface and a closed curve in three dimensions is even. The proof is 

analogous of the proof described in Figure 4: deform the curve to lie outside the surface and keep track where the family 

of curves intersect the surface. This traces out ropes, whose ends are the original intersections, which must therefore be 

even. Note that one of the ropes is a closed curve itself, which did not occur in Figure 4.

0
Figure 6  Gluing edges of a polygon pairwise is a way to construct surfaces. On the left the torus is constructed, which is 

a closed surface (without boundary). The Möbius strip, does have a boundary. It is also not orientable.
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Figure 7  Identifying the square as on the left produces the Klein bottle. The Klein bottle is a closed non-orientable 

surface and cannot be put inside three dimensions. The Klein bottle contains a Möbius strip: The complement of a small 

neighborhood of the purple curve is a Möbius strip

Hx
Figure 3  Counting intersections should only be done when the curves meet transversely. On the left a transverse in-

tersection is depicted, while on the right a non-transverse intersection is depicted: the two curves are tangent to each 

other. A somewhat deep fact in differential topology is that generically curves only have transverse intersections. By an 

arbitrary small perturbation of the curve all intersections will be transverse, and transversality is preserved under small 

enough perturbations.
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unordered points on a curve! We will now 
use this fact in an unexpected way.

Pegs in curves
We now turn to discuss the proof, due to 
Herbert Vaughan, of a curious fact in plane 
geometry. The Nieuw Archief has already 
paid attention to the history of this result: 
Robbert Fokkink gave a beautiful historical 
account [2]. I do not have anything to add 
to the historical account, but I do want to 
give a few more details on the proof as it 
fits nicely with the mathematics we have 
discussed so far.

A priori this theorem does not have any-
thing to do with ropes and non-orientable 
surfaces. The statement that we will prove 
is the following:

Theorem 5.  Every smooth simple closed 
curve in the plane contains four distinct 
vertices that form a non-degenerate rect-
angle.

be found in three dimensions, what is the 
point of studying them?” Here I would like 
to argue that the Möbius strip is not only 
a mathematical curiosity for the sake of it, 
but naturally occurs in the world around 
us. Imagine a particle constrained on a 
closed curve in the plane. Mathematically 
we can parametrize this particle by a circle, 
and a particle is then just a point on the 
circle. What about two particles? If we can 
distinguish the particles from each other 
the particles can be parametrized by the 
product of two circles, which is a torus, 
see Figure 9. But if the particles are indis-
tinguishable this is not correct, see Figure 
10. We need to make identifications on 
the torus, as multiple points on the torus 
correspond to the same configuration if 
we cannot distinguish the particles. If we 
identify these points we obtain a Möbius 
strip! In Figure 11 a graphical proof of this 
fact is shown. The Möbius strip occurs nat-
urally as the configuration space of pairs of 

that the existence of the curve that inter-
sects the Möbius strip once does not con-
tradict Theorem 2 as the Möbius strip has a 
boundary and is therefore not closed.

Any surface that is non-orientable con-
tains a Möbius strip. The argument just giv-
en proves the following theorem.

Theorem 4.  A closed non-orientable sur-
face does not embed in R3 .

Even though it is possible to embed the 
Möbius strip in three dimensions, we can-
not prescribe the behavior of the boundary 
of the Möbius strip completely at will. For 
example we have the following corollary, 
which we will need later.

Corollary 1.  The Möbius strip cannot be em-
bedded in three dimensions in such a way 
that the boundary of the Möbius strip is con-
tained in the plane {( , , )| }x y z z 0=  and the 
interior of the Möbius strip is contained in 
the upper half space {( , , ) | }x y z z 0>R3! .

To see that this corollary follows from 
Theorem 4 one imagines capping off the 
curve with a disc in the lower half-space 
{( , , ) | }x y z z 0<R3!  in a smooth manner. 
This produces an embedded non-orient-
able closed surface in three dimensions 
which is not possible by Theorem 4. Thus 
the Möbius strip cannot be embedded in 
this way.

A surprising Möbius strip
A critique topologists often have to answer 
to is that they play with toys that they in-
vent themselves. “It is nice that non-ori-
entable surfaces exist, but as they cannot 

Figure 8  In a neighborhood of a Möbius strip in three 

dimensions we can find a loop that intersects the Möbi-

us strip once. This does not contradict Theorem 2 as the 

Möbius strip has a boundary and is therefore not closed. 

The Klein bottle contains a Möbius strip. If the Klein bot-

tle would embed in three dimensions, we can construct 

a blue curve following the Möbius strip contained in the 

embedded Klein bottle. The blue curve can be made not to 

intersect the Klein bottle in any other point, as it can be 

made arbitrary close to the Möbius strip. Thus the number 

of intersections of the Klein bottle and the curve is odd, 

which contradicts Theorem 2. The Klein bottle therefore 

cannot be embedded in three dimensions.

G
Figure 9  The space of ordered pairs of points on the curve is a torus. The x and y coordinates of a point on the square in 

the picture each represent a point on the curve. The torus is obtained by gluing the square as prescribed. In the picture the 

configuration of the points on the left is different from the configuration of the points on the right as we can distinguish 

which point is red, and which point is blue, see also Figure 10.

Figure 10  The space of unordered pairs of points on the curve can be visualized similar to the ordered pairs of points on 

the curve as in Figure 9. However, the two configurations in the middle figures correspond to the same pair of unordered 

points on the curve. We can therefore think of the space of unordered pairs of points on the curve as the picture on the 

right, where points are identified if they are mirrored on the diagonal. 
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Figure 11  The space of unordered pairs of points on the circle is the Möbius strip. By Figure 10 we can see this space as 

the space of two points on the torus ‘mirrored’ on the diagonal. To parametrize these points we only need to keep track of 

the point in the upper triangle. We do need to keep in mind that the green line now will be identified with the purple line. 

Cutting the obtained surface along the blue line, and gluing it back reveals that this space was the Möbius strip in disguise.
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context. Curves and surfaces are examples 
of smooth manifolds: spaces that locally 
resemble Euclidean space Rn , and which 
have a notion of differentiability. We also 
have manifolds with boundary, which lo-
cally resemble [ , )0Rn # 3 . Closed mani-
folds, manifolds which are compact and 
do not have a boundary, are of particular 
interest to topologists.

Classifying closed manifolds up to dif-
feomorphism, the natural notion of same-
ness of manifolds, is very hard. In low di-
mensions we can make progress: A closed 
zero-dimensional manifold is a finite num-
ber of points, and two zero-dimensional 
manifolds are diffeomorphic if and only 
if they have the same number of points. 
A connected closed one-dimensional man-
ifold is diffeomorphic to a circle, and one- 
dimensional closed manifolds are classi-
fied by the number of connected compo-
nents.

Connected two-dimensional surfaces 
come in two families. The first family are 
the orientable surfaces. These are the two 
dimensional sphere, the torus, and the 
genus-g surfaces. The connected sum of 
two surfaces is obtained by removing two 
small discs and gluing the resulting sur-
faces along the new boundaries together. 
The genus-g surfaces can be obtained by 
repeatedly taking a connected sum with a 
torus, see Figure 15. There is also a fami-
ly of non-orientable surfaces. These are 
constructed by connected sums of the 
real projective plane RP2 . The real projec-
tive plane is obtained by gluing a square 
as in Figure 7 but flipping the orientation 
of one of the purple edges. The Klein 
bottle is the connected sum of RP2  with 

y R2!  and that ,x y  both lie on the curve. 
This space O is topologically the same as 
a torus by the discussion in the previous 
section. Define the function :f O R3"  by

( , ) ( ), .f x y x y x y2
1

2
1= + -b l

The expression ( )x y R2
1 2!+  is the mid-

point between the two points x and y on 
the curve, and x y2

1 -  is the distance 
from the points to the midpoint. In Figure 14 
some values of the function are depicted. 
A nice movie about this function can be 
found on the channel 3Blue1Brown of 
Grant Sanderson [6]. The function has 
three important properties: (i) It satisfies 
( , ) ( , )f x y f y x= , so we can view :f U R"  

as a function on the space U of unordered 
points on the curve. Recall that this space 
is topologically a Möbius strip! (ii) The 
height of the point ( , )f x y  is always 0$  
with equality if and only if x y= . (iii) If 
( , ) ( , )' 'f x y f x y=  then the points , , ,' 'x x y y  

lie on a rectangle, see Figure 13
Summarizing: The map f maps the 

Möbius strip U to R3 , where the boundary 
of the strip is mapped to the curve in the 
x y-  plane and the interior of the Möbius 
strip has positive z coordinate. If there is 
no inscribed rectangle on the curve, the 
map f is injective and gives an embedding 
of the Möbius strip in a way that contra-
dicts Corollary 1. As this contradicts the 
corollary, the hypothesis that f is injec-
tive is false. Thus an inscribed rectangle 
must exist!

The cobordism ring and a theorem of Thom
I would like to end by putting my favour-
ite Theorem 1 in a broader mathematical 

See Figure 12 for an example of such 
a rectangle. We call these rectangles in-
scribed rectangles. Recently there is re-
newed interest in this problem as Greene 
and Lobb [3] proved a much stronger re-
sult:

Theorem 6.  Every smooth simple closed 
curve contains uncountably many in-
scribed rectangles, at least one for each 
aspect ratio of the long and short side of 
the rectangle.

The proof of this theorem is outside the 
scope of this article, but see [2] for a sketch 
of the proof (I should remark about a small 
typo in the end of [2]. For the contradiction 
Greene and Lobb construct a Lagrangian 
Klein bottle, not a symplectic one.)

We will prove Theorem 5 now. The only 
ingredient missing is a fact from Euclidean 
Geometry. To determine if four points form 
a rectangle, it suffices to show that pairs 
of these points have a common midpoint 
and the distance from all points to the mid-
point is the same, see Figure 13. Let O be 
the space of pairs of points on the closed 
curve. Thus ( , )x y O!  means that x R2! , 

in n

Figure 15  The connected sum of two tori is a genus-two surface. All orientable surfaces are either the two-sphere, the torus 

or connected sums of tori. All non-orientable surfaces are either the real projective plane RP2 , or connected sums of those.

so

I 11
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Figure 13  Two pairs of points (the red and blue points) 

form a rectangle if and only if the midpoint of the red 

points equals the midpoint of the blue points and the dis-

tance to the common midpoint (turquoise) is the same. 

This is an exercise in Euclidean geometry.

Figure 12  Greene and Lobb proved that every smooth 

simple closed curve in the plane contains uncountably 

many rectangles whose vertices lie on the given curve. We 

prove the existence of only one.

in
Figure 14  Some values of the function :f O R

3
" . The red and blue point are mapped to the point above the midpoint, 

with height the distance to the midpoint. Note that this function is invariant under swapping the red and blue point, and 

if the red and blue point get closer to each other, the height goes to zero.
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Theorem 8.  Every one-dimensional mani-
fold is nullbordant. There is only one cobor-
dism class of one-dimensional manifolds.

Dimension two is interesting. All orient-
able surfaces are nullbordant. To see this 
one can embed the surface in R3  and take 
the inside as a bounding three dimension-
al manifold.

Half of the non-orientable surfaces are 
nullbordant. The Klein bottle for example is 
the boundary of a three-dimensional mani
fold. Imagine the Klein bottle as a family 
of circles parametrized by a circle as in the 
middle picture of Figure 7. Filling in these 
circles with discs produces a three-dimen-
sional compact manifold whose boundary 
is the Klein bottle.

The surface RP2  is not nullbordant, 
which is harder to see. It is possible to use 
my favourite Theorem 1 to prove this (for 
the initiated the Euler characteristic modu-
lo 2 is a cobordism invariant), but it would 
take us too far astray to discuss this fur-
ther. All surfaces are either cobordant with 
the Klein bottle, or with RP2 , which gives:

Theorem 9.  There are two cobordism class-
es of two-dimensional manifolds. Every 
closed two-dimensional manifold is either 
nullbordant, or cobordant with RP2 .

In these three theorems on the cobor-
dism classes we heavily used the classi-

varieteiten

T.it

Figure 16  The red manifold and the blue manifold 

(which has two components) are cobordant. There exists 

a manifold, of one dimension higher, whose boundary is 

the union of the red and blue manifold. Another example 

seen on the left of Figure 1. The zero-dimensional manifold 

with an even number of points is nullbordant (cobordant 

with the empty set). On the right it is shown that an odd 

number of points is not nullbordant..

fication of the manifolds up to diffeomor-
phism. It was Thom’s great insight [7] that 
manifolds of all dimensions can be classi-
fied up to cobordism, even though we can-
not classify the manifolds themselves!

The set of cobordism classes can be 
equipped with a rich algebraic structure. 
We can define an addition operation by 
the disjoint union of manifolds, and a mul-
tiplicative operation by the Cartesian prod-
uct of manifolds. These operations satisfy 
properties like commutativity, associativity 
and distributivity, just like ordinary addi-
tion and multiplication. This turns the set 
N)  of cobordism classes of closed mani-
folds into a (graded) ring. (We listen to the 
advice of Beyoncé. We like it, so we put a 
ring on it [1].) The unit 0 for addition is rep-
resented by the empty manifold, and the 
unit 1 for multiplication is represented by 
a point. An interesting feature of the cob-
ordism ring is that [ ] [ ]M M 0+ =  for all cob-
ordism classes [ ]M , as two disjoint copies 
of a closed manifold M is the boundary of 
the ‘cylinder’ [ , ]M 0 1# . This is similar to 
calculating modulo 2, i.e. in /2Z Z . Thom’s 
theorem is now a computation of the ring 
of cobordism classes of manifolds.

Theorem 10.  The cobordism ring N)  is 
isomorphic to the polynomial algebra 
/ [ , , , , , ]x x x x x2Z Z 2 4 5 6 8 f  with one generator 

xk  in dimension k for each .k 2 1i! -

Much more is known about the cobord-
ism ring and variants of it, but many open 
questions remain. Cobordism theory re-
mains central in algebraic and differential 
topology.	 ←

The slides (in Dutch), which contain more pic-
tures, are available on www.few.vu.nl/~trt800.
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itself. All non-orientable surfaces can be 
constructed by taking further connected 
sums with RP2 .

In three dimensions one also can make 
progress in the classification, but this is 
much harder. After three, the music stops. 
The diversity of four-dimensional mani-
folds is staggeringly vast. It is so big that 
one can show that in a precise sense no 
reasonable classification of closed four-di-
mensional manifolds is possible.

One way to proceed with a classification 
of manifolds is to take a coarser notion of 
sameness. If more things are declared the 
same, fewer distinct classes remain, and 
it might be possible to classify them. For 
example we can classify manifolds by their 
dimension, but this relation is too coarse 
to be really useful in the study of mani-
folds. Thom [7] surprised the mathemati-
cal community in the fifties by classifying 
closed manifolds in every dimension up 
to cobordism. Two closed manifolds M, N 
are cobordant if there exists a compact 
manifold with boundary W such that the 
boundary W2  is the disjoint union of M 
and N, see Figure 16. Diffeomorphic mani
folds are cobordant, so this is indeed a 
coarser notion of sameness compared to 
diffeomorphism. Using our classification 
of low-dimensional manifolds, we also get 
a classification of manifolds up to cobord-
ism in low dimensions.

The following is a reformulation of The-
orem 1 from the beginning of this article.

Theorem 7.  Every closed zero-dimensional 
manifold is either cobordant with the emp-
ty manifold, or with the manifold with one 
point. There are two cobordism classes of 
zero-dimensional manifolds: the class of 
‘even number of points’ and the class of 
‘odd number of points’.

Dimension one is boring. Every circle 
is the boundary of a disc. Thus the circle 
is cobordant with the empty manifold. We 
say that the circle is nullbordant. As any 
closed one-dimensional manifold is a fi-
nite number of circles we get the following 
theorem.
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