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Ropes have an even number of ends

On 13-01-2024 the annual KWG Wintersymposium was held in the Academiegebouw in
Utrecht. The symposium had the theme ‘inzichtelijk abstract’. Thomas Rot gave a lecture
on his favourite theorem from topology. This article is a written account of this lecture.
Audience comprised mostly of high school teachers and that is also the target audience

of this article.

My favourite theorem

| appreciate simple mathematical ideas
which have far-reaching consequences.
My favourite theorem in mathematics is
such an idea.

Theorem 1. Ropes have an even number of
ends.

Here and below we assume that ropes
have finite length. The proof of this the-
orem shows that a single rope is either a
circle or an interval, which both have an
even number of ends. It follows that a finite
number of points is the boundary of some
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Figure 1 An even number of points is the boundary of

some ropes, while an odd number of points is not the
boundary of some ropes.

ropes if and only if the number of points is
even, see Figure 1. The formal statement
is that the boundary of a compact (finite
length) one-dimensional manifold (rope)
has an even number of boundary points
(ends).

To explain why I love this theorem, | will
discuss some of its consequences which
at first glance do not seem to have to do
anything with ropes. We will see that the
theorem can be used to escape a maze,
to understand how often subspaces inter-
sect, to explain why the Klein bottle cannot
be made to fit into R® without self-inter-
sections and why each closed planar curve
contains an inscribed rectangle. | will end
with a brief outlook on cobordism theory
which is the natural home of Theorem 1.

Escaping a maze

How can you determine quickly if you can
escape a maze such as in Figure 2? There
is a trick with which you can answer this
question very quickly: Draw any curve from
the starting point somewhere in the maze
to the outside (any generic curve to be pre-
cise, see Figure 3). Count the number of

Figure 2 How to quickly determine if you can escape a maze as on the left? Draw any curve to the outside and determine if the number of intersections with the maze is even or odd.
If it is even, you can escape, if it is odd you can’t. In the maze above you can escape from the blue point, as the number of intersections is four (even), but you cannot escape from the

turquoise point, as the number of intersections is three (odd).
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Figure 3 Counting intersections should only be done when the curves meet transversely. On the left a transverse in-
tersection is depicted, while on the right a non-transverse intersection is depicted: the two curves are tangent to each
other. A somewhat deep fact in differential topology is that generically curves only have transverse intersections. By an
arbitrary small perturbation of the curve all intersections will be transverse, and transversality is preserved under small
enough perturbations.
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Figure 4 Can we escape this very simple maze on the left? Yes: the curve in blue intersects the maze twice, which is
even. Why is this number even? Imagine deforming the blue curve to the red curve as in the middle picture. The red curve
is an actual escape route. We can keep track of the intersections with the maze during this deformation. This is depicted
on the right: In brown the intersections of all the curves with the maze are drawn. These are ropes, and the ends of these
ropes are the intersections of the original curve with the maze. This shows that the intersection is even if we can escape.
A slightly more complicated argument shows that this condition is also sufficient. To avoid a flood of complaints I need to
be precise: we assume that the maze is a connected closed simple curve.
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Figure 5 The number of intersections of a closed surface and a closed curve in three dimensions is even. The proof is
analogous of the proof described in Figure 4: deform the curve to lie outside the surface and keep track where the family
of curves intersect the surface. This traces out ropes, whose ends are the original intersections, which must therefore be
even. Note that one of the ropes is a closed curve itself, which did not occur in Figure 4.
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Figure 6 Gluing edges of a polygon pairwise is a way to construct surfaces. On the left the torus is constructed, which is
a closed surface (without boundary). The Mdbius strip, does have a boundary. It is also not orientable.

S
(4
lr N
h Y
4

Figure 7 Identifying the square as on the left produces the Klein bottle. The Klein bottle is a closed non-orientable
surface and cannot be put inside three dimensions. The Klein bottle contains a Mdbius strip: The complement of a small
neighborhood of the purple curve is a Mobius strip

intersections of this curve with the maze.
If the number of intersections is even, you
can escape, but if the number of intersec-
tions is odd, you cannot escape. Why this
works is explained in Figure 4.

What we have shown is that the parity
of the number of intersections between a
curve with a closed curve, is constant un-
der deformations which keep the endpoint
of the curve fixed. A similar argument also
shows that any two closed curves in the
plane intersect each otherin an even num-
ber of points. In turn this statement can be
generalized to higher dimensions. Here is
the statement in three dimensions.

Theorem 2. A closed curve and a closed
Surface intersect in an even number of
points in three dimensions.

A surface is called closed if it does not
have a boundary and if it is compact. Com-
pactness intuitively means that the surface
does not extend out to infinity. In Figure 5 a
proof of Theorem 2 is sketched.

Non-orientable surfaces

Compact surfaces can be constructed by
a gluing process: Take a finite number of
polygons, and glue the edges pairwise. If
each edge is glued to another one a closed
surface is constructed, if not all edges are
glued a compact surface with boundary is
made. An interesting example of a com-
pact surface with boundary is the Mébius
strip, see Figure 6.

The M&bius strip is not orientable and
has a boundary. The Klein bottle is an ex-
ample of a closed non-orientable surface,
see Figure 7. Depicting the Klein bottle is
harder than depicting the Mdbius strip. It
is not possible to fit, or embed, the Klein
bottle in three dimensions without self in-
tersections. Let me state this as a theorem.

Theorem 3. The Klein bottle cannot be em-
bedded in R3.

We will follow the wonderful argument
of Samelson [5] to prove this. Imagine,
with a contradiction in mind, that the Klein
Bottle does embed in three dimensions.
Then in Figure 8 it is shown that if the Klein
bottle would embed, that there would also
have to exist a closed curve which inter-
sects the Klein bottle once. But Theorem 2
tells us that this is impossible. Hence the
Klein bottle does not embed in R>. Note



Thomas 0. Rot

Ropes have an even number of ends

NAW 5/25 nr. 2 juni 2024 75

=

Figure 8 In a neighborhood of a Mdbius strip in three
dimensions we can find a loop that intersects the Mobi-
us strip once. This does not contradict Theorem 2 as the
M6bius strip has a boundary and is therefore not closed.
The Klein bottle contains a Mobius strip. If the Klein bot-
tle would embed in three dimensions, we can construct
a blue curve following the Mgbius strip contained in the
embedded Klein bottle. The blue curve can be made not to
intersect the Klein bottle in any other point, as it can be
made arbitrary close to the Mdbius strip. Thus the number
of intersections of the Klein bottle and the curve is odd,
which contradicts Theorem 2. The Klein bottle therefore
cannot be embedded in three dimensions.

that the existence of the curve that inter-
sects the M&bius strip once does not con-
tradict Theorem 2 as the Mobius strip has a
boundary and is therefore not closed.

Any surface that is non-orientable con-
tains a Mobius strip. The argument just giv-
en proves the following theorem.

Theorem 4. A closed non-orientable sur-
face does not embed in R3.

Even though it is possible to embed the
Mobius strip in three dimensions, we can-
not prescribe the behavior of the boundary
of the Moébius strip completely at will. For
example we have the following corollary,
which we will need later.

Corollary1. The Mébius strip cannotbe em-
bedded in three dimensions in such a way
thatthe boundary ofthe Mébius strip is con-
tained in the plane {(z,y,2z)|z = 0} and the
interior of the Mobius strip is contained in
the upper half space {(z,y,z) € R*|z > 0}.

To see that this corollary follows from
Theorem 4 one imagines capping off the
curve with a disc in the lower half-space
{(z,y,2) € R*|2< 0} in a smooth manner.
This produces an embedded non-orient-
able closed surface in three dimensions
which is not possible by Theorem 4. Thus
the Mobius strip cannot be embedded in
this way.

A surprising Mébius strip

A critique topologists often have to answer
to is that they play with toys that they in-
vent themselves. “It is nice that non-ori-
entable surfaces exist, but as they cannot

be found in three dimensions, what is the
point of studying them?” Here | would like
to argue that the Mobius strip is not only
a mathematical curiosity for the sake of it,
but naturally occurs in the world around
us. Imagine a particle constrained on a
closed curve in the plane. Mathematically
we can parametrize this particle by a circle,
and a particle is then just a point on the
circle. What about two particles? If we can
distinguish the particles from each other
the particles can be parametrized by the
product of two circles, which is a torus,
see Figure 9. But if the particles are indis-
tinguishable this is not correct, see Figure
10. We need to make identifications on
the torus, as multiple points on the torus
correspond to the same configuration if
we cannot distinguish the particles. If we
identify these points we obtain a Mdbius
strip! In Figure 11 a graphical proof of this
fact is shown. The Mdbius strip occurs nat-
urally as the configuration space of pairs of
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unordered points on a curve! We will now
use this fact in an unexpected way.

Pegs in curves

We now turn to discuss the proof, due to
Herbert Vaughan, of a curious fact in plane
geometry. The Nieuw Archief has already
paid attention to the history of this result:
Robbert Fokkink gave a beautiful historical
account [2]. | do not have anything to add
to the historical account, but | do want to
give a few more details on the proof as it
fits nicely with the mathematics we have
discussed so far.

A priori this theorem does not have any-
thing to do with ropes and non-orientable
surfaces. The statement that we will prove
is the following:

Theorem 5. Every smooth simple closed
curve in the plane contains four distinct
vertices that form a non-degenerate rect-
angle.

Figure 9 The space of ordered pairs of points on the curve is a torus. The z and y coordinates of a point on the square in
the picture each represent a point on the curve. The torus is obtained by gluing the square as prescribed. In the picture the
configuration of the points on the left is different from the configuration of the points on the right as we can distinguish

which point is red, and which point is blue, see also Figure 10.
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Figure 10 The space of unordered pairs of points on the curve can be visualized similar to the ordered pairs of points on
the curve as in Figure 9. However, the two configurations in the middle figures correspond to the same pair of unordered
points on the curve. We can therefore think of the space of unordered pairs of points on the curve as the picture on the
right, where points are identified if they are mirrored on the diagonal.
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Figure 11 The space of unordered pairs of points on the circle is the Mobius strip. By Figure 10 we can see this space as
the space of two points on the torus ‘mirrored” on the diagonal. To parametrize these points we only need to keep track of
the point in the upper triangle. We do need to keep in mind that the green line now will be identified with the purple line.
Cutting the obtained surface along the blue line, and gluing it back reveals that this space was the Mdbius strip in disguise.
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Figure 12 Greene and Lobb proved that every smooth
simple closed curve in the plane contains uncountably
many rectangles whose vertices lie on the given curve. We
prove the existence of only one.

See Figure 12 for an example of such
a rectangle. We call these rectangles in-
scribed rectangles. Recently there is re-
newed interest in this problem as Greene
and Lobb [3] proved a much stronger re-
sult:

Theorem 6. Every smooth simple closed
curve contains uncountably many in-
scribed rectangles, at least one for each
aspect ratio of the long and short side of
the rectangle.

The proof of this theorem is outside the
scope of this article, but see [2] fora sketch
of the proof (I should remark about a small
typo in the end of [2]. For the contradiction
Greene and Lobb construct a Lagrangian
Klein bottle, not a symplectic one.)

We will prove Theorem 5 now. The only
ingredient missing is a fact from Euclidean
Geometry. To determine if four points form
a rectangle, it suffices to show that pairs
of these points have a common midpoint
and the distance from all points to the mid-
point is the same, see Figure 13. Let O be
the space of pairs of points on the closed
curve. Thus (z,y) € O means that z € R?,

Figure 13 Two pairs of points (the red and blue points)
form a rectangle if and only if the midpoint of the red
points equals the midpoint of the blue points and the dis-
tance to the common midpoint (turquoise) is the same.
This is an exercise in Euclidean geometry.
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Figure 14 Some values of the function f: 0 — R>. The red and blue point are mapped to the point above the midpoint,
with height the distance to the midpoint. Note that this function is invariant under swapping the red and blue point, and
if the red and blue point get closer to each other, the height goes to zero.
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Figure 15 The connected sum of two tori is a genus-two surface. All orientable surfaces are either the two-sphere, the torus

or connected sums of tori. All non-orientable surfaces are either the real projective plane RPZ , or connected sums of those.

y € R? and that z,y both lie on the curve.
This space O is topologically the same as
a torus by the discussion in the previous
section. Define the function f:0 — R? by

fay) =(Fa+y). oyl

The expression +(z+y) € R? is the mid-
point between the two points x and y on
the curve, and 1flz—yl| is the distance
from the points to the midpoint. In Figure 14
some values of the function are depicted.
A nice movie about this function can be
found on the channel 3BlueiBrown of
Grant Sanderson [6]. The function has
three important properties: (i) It satisfies
flz,y) =f(y,x), so we can view f:U—-R
as a function on the space U of unordered
points on the curve. Recall that this space
is topologically a Mobius strip! (i) The
height of the point f(z,y) is always >0
with equality if and only if z=y. (iii) If
flz,y) =f(2'y") then the points z,2’,y,y'
lie on a rectangle, see Figure 13

Summarizing: The map f maps the
M&bius strip U to R?, where the boundary
of the strip is mapped to the curve in the
z—y plane and the interior of the Mdbius
strip has positive z coordinate. If there is
no inscribed rectangle on the curve, the
map f is injective and gives an embedding
of the Mobius strip in a way that contra-
dicts Corollary 1. As this contradicts the
corollary, the hypothesis that f is injec-
tive is false. Thus an inscribed rectangle
must exist!

The cobordism ring and a theorem of Thom
| would like to end by putting my favour-
ite Theorem 1 in a broader mathematical

context. Curves and surfaces are examples
of smooth manifolds: spaces that locally
resemble Euclidean space R", and which
have a notion of differentiability. We also
have manifolds with boundary, which lo-
cally resemble R" X [0,00). Closed mani-
folds, manifolds which are compact and
do not have a boundary, are of particular
interest to topologists.

Classifying closed manifolds up to dif-
feomorphism, the natural notion of same-
ness of manifolds, is very hard. In low di-
mensions we can make progress: A closed
zero-dimensional manifold is a finite num-
ber of points, and two zero-dimensional
manifolds are diffeomorphic if and only
if they have the same number of points.
A connected closed one-dimensional man-
ifold is diffeomorphic to a circle, and one-
dimensional closed manifolds are classi-
fied by the number of connected compo-
nents.

Connected two-dimensional surfaces
come in two families. The first family are
the orientable surfaces. These are the two
dimensional sphere, the torus, and the
genus-g surfaces. The connected sum of
two surfaces is obtained by removing two
small discs and gluing the resulting sur-
faces along the new boundaries together.
The genus-g surfaces can be obtained by
repeatedly taking a connected sum with a
torus, see Figure 15. There is also a fami-
ly of non-orientable surfaces. These are
constructed by connected sums of the
real projective plane RPZ. The real projec-
tive plane is obtained by gluing a square
as in Figure 7 but flipping the orientation
of one of the purple edges. The Klein
bottle is the connected sum of RP? with
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itself. All non-orientable surfaces can be
constructed by taking further connected
sums with RP?.

In three dimensions one also can make
progress in the classification, but this is
much harder. After three, the music stops.
The diversity of four-dimensional mani-
folds is staggeringly vast. It is so big that
one can show that in a precise sense no
reasonable classification of closed four-di-
mensional manifolds is possible.

One way to proceed with a classification
of manifolds is to take a coarser notion of
sameness. If more things are declared the
same, fewer distinct classes remain, and
it might be possible to classify them. For
example we can classify manifolds by their
dimension, but this relation is too coarse
to be really useful in the study of mani-
folds. Thom [7] surprised the mathemati-
cal community in the fifties by classifying
closed manifolds in every dimension up
to cobordism. Two closed manifolds M, N
are cobordant if there exists a compact
manifold with boundary W such that the
boundary oW is the disjoint union of M
and N, see Figure 16. Diffeomorphic mani-
folds are cobordant, so this is indeed a
coarser notion of sameness compared to
diffeomorphism. Using our classification
of low-dimensional manifolds, we also get
a classification of manifolds up to cobord-
ism in low dimensions.

The following is a reformulation of The-
orem 1 from the beginning of this article.

Theorem 7. Every closed zero-dimensional
manifold is either cobordant with the emp-
ty manifold, or with the manifold with one
point. There are two cobordism classes of
zero-dimensional manifolds: the class of
‘even number of points’ and the class of
‘odd number of points’.

Dimension one is boring. Every circle
is the boundary of a disc. Thus the circle
is cobordant with the empty manifold. We
say that the circle is nullbordant. As any
closed one-dimensional manifold is a fi-
nite number of circles we get the following
theorem.
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Much more is known about the cobord-
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The slides (in Dutch), which contain more pic-
tures, are available on www.few.vu.nl/~trt8oo.
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