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The sociologist’s observation can be re-
formulated as the inequality ( , )R 4 4 20# . 
In fact, it is known that ( , )R 4 4  is exactly 
equal to 18, but even determining ( , )R 5 5
is a major open problem in mathematics: 
we only know that ( , )R43 5 5 48# # . Note 
that there are 21128  possible graphs on 48 
vertices, and thus it is impossible to use 
a brute-force approach to prove this upper 
bound. Given the disheartening state of 
affairs, a natural question arises: can we 
at least understand the behaviour of the 
function ( , )R s t  when either s, t, or both, 
tend to infinity? In other words, what are 
the asymptotic properties of the Ramsey 
numbers?

A classic inductive argument of Erdős 
and Szekeres [8] shows that 

( , ) ,R s t
s t

s
2
1

#
+ -
-

f p

where 
! ( ) !
!n

k k n k
n=
-

f p  is the binomial coeffi-
cient. For s t= , we then have:

( , ) .R t t
t

t
2 2
1

4t# #
-
-

f p

For any fixed s, we have:
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where Cs is a constant that only depends 
on s. In other words, the ‘diagonal’ Ram-
sey number ( , )R t t  is at most an exponen-
tial function in t, while the ‘off-diagonal’ 

n for which every graph on n vertices ei-
ther has a clique of size s or an anti-clique 
(commonly referred to as an independent 
set) of size t. Take a look at Figure 1 for a 
five-vertex graph illustrating ( , )R 3 3 5> . 
I also encourage you to prove that ( , )R 3 3  
is equal to 6. You can either just check all 
the
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graphs on 6 vertices, or find a direct argu-
ment without going through so many cases.

Our story takes us back to the 1960s, when 
a Hungarian sociologist named Sándor 
Szalai made an intriguing observation. 
In every classroom with a minimum of 
twenty students, he always found either a 
clique of four students (each of them being 
friends with one another) or an anti-clique 
of four students (none of them being 
friends with each other). After sharing this 
sociological phenomenon with his math-
ematician friends, which included the re-
nowned Paul Erdős, he came to a fascinat-
ing realization: he had stumbled upon the 
already known mathematical concept of 
Ramsey numbers.

The Ramsey number, denoted by ( , )R s t , 
is the smallest n such that any group of n 
people, you’re guaranteed to find either 
a clique of size s (where everyone knows 
everyone) or an anti-clique of size t (where 
nobody knows anyone). We can express 
this concept in the language of graph the-
ory, where we represent people as verti-
ces, and their friendships are illustrated 
by edges connecting these vertices. In this 
framework, ( , )R s t  is the smallest number 

The Solution

Finite geometry paves 
the way for breakthroughs 
in Ramsey theory
This has been a year of breakthroughs in Ramsey theory, with remarkable progress on 
longstanding fundamental research problems. In this article, Anurag Bishnoi will focus on 
one particular work closely aligned with his own research. Drawing on a blend of algebra, 
geometry, and probability theory, Sam Mattheus (VUB, Belgium) and Jacques Verstraete 
(UCSD, USA) have successfully determined the correct asymptotics of a specific Ramsey 
number [10]. Furthermore, they have paved a new path for future developments in the 
area that relies on constructions from finite geometry. 
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Figure 1  A 5-vertex graph with no cliques or indepen-

dent sets of size 3.
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to certain edge distributions in a determin-
istic graph that make it look like a random 
graph, and optimal pseudorandomness 
is about being as close as possible to 
the random graph. Mubayi and Verstraete 
had then reduced the problem on Ramsey 
numbers to a problem on the existence of 
these clique-free optimally pseudorandom 
graphs, which is perhaps more tractable. 
However, the current best-known construc-
tion for those, which is also based on fi-
nite geometry [4], falls short of improving 
the probabilistic bounds on the Ramsey 
numbers.

Luckily, Mubayi and Verstraete also 
proved a much more general result: if an 
n vertex graph has at most mt  indepen-
dent sets of size t, then we can sample a 
set of /n m  vertices on which there is no 
independent set of size t. To be able to use 
this result, Mattheus and Verstraete found 
a construction of graphs with no cliques 
of size 4 and ‘few’ independent sets of 
size t. At the heart of their construction 
lie the so-called Hermitian curves over 
finite fields. These curves naturally emerge 
in various contexts, most notably within 
the realms of algebraic geometry and fi-
nite geometry [3]. The latter is the field of 
expertise for Sam Mattheus, who recently 
finished his PhD at Vrije Universiteit Brus-
sel and then visited Jacques Verstraete as 
a postdoc. In finite geometry, we study 
finite collections of ‘points’ and ‘lines’ that 
satisfy some geometric axioms inspired 
from classical geometry. For example, in 
Figure 2 (created by David Eppstein) you 
can see a collection of 9 points and 12 lines 

abilistic arguments can only show a lower 
bound of the form 
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which is far away from the best-known up-
per bound of
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The lower bound is widely believed to be 
the best one can hope for by purely prob-
abilistic techniques. Given the decades 
long absence of any alternate techniques, 
some mathematicians started believing 
that the true value of ( , )R t4  must be clos-
er to the lower bound. World renowned 
mathematician and field medalist Timothy 
Gowers has openly admitted to working on 
improving the upper bound on ( , )R t4  (see 
his tweet https://twitter.com/wtgowers/
status/1666724170783244288). However, 
Sam Mattheus and Jacques Verstraet [10] 
have shattered any such beliefs by proving
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thus matching the best upper bound up-to 
a factor of log t2  and a constant.

The key insight in this work is to aban-
don the realm of pure randomness and 
start with a finite geometric construction. 
This idea is from an earlier work of Mubayi 
and Verstraete [11], where they proved 
that finding an ‘optimally pseudorandom’ 
graph with no cliques of size s suffices to 
determine the asymptotics of ( , )R s t . In 
this context pseudorandomness is related 

Ramsey number ( , )R s t  is at most a polyno-
mial function in t of degree s 1- . The chal-
lenge is then to determine how close these 
upper bounds are to the true behaviour 
of these functions. In the diagonal case, 
Erdős introduced a beautiful argument [7] 
to show that ( , )R t t 2> t . He picked 
graphs on these many vertices by tossing 
a fair coin to decide whether each pair of 
vertices is an edge or not. He then showed 
that with positive probability the graph 
will not have any cliques or independent 
sets of size t. This argument paved the way 
for the development of two mathematical 
fields: Probabilistic Combinatorics [2] and 
the theory of Random Graphs [9]. In fact, 
new developments in probabilistic combi-
natorics are often motivated by the prob-
lems on Ramsey numbers. Despite years 
of research, we haven’t been able to im-
prove the base of the exponent in the low-
er bound on ( , )R t t  from 2  to something 
closer to the upper bound which has base 4. 
However, the upper bound has recently 
been improved to .3 99 t  [6], which was the 
other major breakthrough this year.

The situation in the off-diagonal case 
is somewhat more promising. Through the 
development of intricate probabilistic ar-
guments over several decades [1, 5, 13] it 
has been shown that
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Therefore, we know this Ramsey number 
up-to a factor of ( )o4 1+ , where ( )o 1  is a 
function whose limit is 0 when t approach-
es infinity. However, for s 4= , these prob-

Figure 2  A finite affine plane. Figure 3  Four lines in general position with six intersection points.

https://twitter.com/wtgowers/status/1666724170783244288
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Verstraete managed to obtain a new graph 
'G  on approximately q4  vertices (sine that 

is roughly the total number of lines in the 
finite plane) by deleting some edges such  
that 'G  has no cliques of size 4 and only a 
few independent sets of size slightly larger 
than q. Subsequently, they took a random 
subgraph of 'G  on about q3  vertices, by de-
leting each vertex with a certain probabili-
ty, to destroy all independent sets of size

logt q q2. . They concluded that with pos-
itive probability this gives rise to a graph 
required for their lower bound on ( , )R t4 .

This breakthrough has given a fresh 
perspective to Ramsey theory. For in-
stance, one can now explore other alge-
braic curves or finite-geometric objects to 
asymptotically determine the off-diago-
nal Ramsey numbers ( , )R s t  for any fixed 
s 5$ . The work of Mattheus and Verstraete 
have shown us that perhaps the key to 
solving such Ramsey problems lies in finite 
geometry.	 ←

(no three concurrent) whose pairwise in-
tersection points all lie on the Hermitian 
curve (see Figure 3). While this result has 
been well-known in the finite geometry 
community for years, nobody imagined 
that it could be useful for Ramsey theory! 
In fact, this property of Hermitian curves, 
along with the fact that they have about q3

points, turn out to be the key properties 
that we need to lower bound the Ramsey 
number ( , )R t4 .

Mattheus and Verstraete studied the 
graph G defined on the lines in the plane 
with two lines adjacent in G if their inter-
section point does lie on the Hermitian 
curve. The result of O’Nan shows that the 
only cliques of size 4 in G are three lines 
passing through a fixed point of the curve 
along with a fourth line meeting all of 
these lines inside the curve, or four lines 
passing through a fixed point (see Fig-
ure 4). By cleverly tweaking the graph G 
through a random process, Mattheus and 

(both the straight and the curved lines in 
the picture). Each line contains exactly 
three points on it, and through each point 
there are exactly four lines. Moreover, 
these points and lines satisfy the following 
properties:

1.	 Through any two points there is a 
unique line.

2.	 For any line l and a point P outside l, 
there is a unique line l’ through P that is 
completely disjoint from the l.

Both of these properties are inspired from 
the incidence axioms of the real Euclidean 
plane R2 , and this finite geometrical struc-
ture is an example of an affine plane.

In their affine formulation, Hermitian 
curves can be defined as the set of all 
points {( , ) : }x y x y yFq

q q12! = ++ , where q 
is a prime power and Fq2  is the finite field 
of size q2 . In a paper on unital groups from 
1972, O’Nan showed [12] that it is impos-
sible to find four lines in general position 

Figure 4  The two kinds of cliques of size 4.
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