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would perhaps think that (1) implies that one can say:

( ) , ,logvar N r n nn 27
10

" 3+

but it could happen that the scaling constant for the central limit 
theorem is asymptotically different from the square root of the ac-
tual variance. I made some frivolous (but — I must say — essentially 
correct) remarks about this in the introduction of my paper, but 
was told that mathematicians in the German–Austrian community 
of stochastic geometers were saying: “Wir glauben es nur wenn 
wir es sehen.” (or something like that, if I remember correctly from 
roughly 30 years ago).

You may wonder where the factors r3
2  and r27

10  come from, not 
to speak of the log n . There are several answers, depending on the 
angle from which one approaches the problem. Christian Buchta 
derives it all in [1] from a (non-trivial) recursive combinatorial rela-
tion between expectations for uniform samples of size n and n 1+ , 
respectively, where the points lie in the interior of a triangle with 
vertices ( , )0 0 , ( , )0 1  and ( , )1 0 .

I recently learned from Geurt Jongbloed that in soccer (British: 
football) training the convex hull of the team is an important indi-
cator of how well the team is playing. This seems a good excuse 
to talk about the research on convex hulls of points in the plane. 
Although with no guarantee that it will be useful for soccer trainers 
(or rather, with the guarantee that it will not be useful for them). 

By the way, there is a ‘Conference on Convex Geometry and 
Geometric Probability’ in Salzburg, 25–29 September 2023, where 
Christian Buchta, who himself made important contributions to the 
field, is one of the main organizers.

In 1988 I proved the following result for the number of vertices 
Nn  of the convex hull of a uniform sample of points from the in-
terior of a convex polygon.

Theorem 1 [7, Corollary 2.5, p. 350]. Let Nn  denote the number of 
vertices of the boundary of the convex hull of a uniform sample 
of n points from the interior of a convex polygon with r ( 3$ ) 
vertices. Then

( , )
log

log

r n

N r n
N 0 1

n

27
10

3
2

D-
(1)

as n " 3 , where 
D

 denotes convergence in distribution and 
( , )N 0 1  is the standard normal distribution.

Christian Buchta says in this connection in his paper from 
2013 [1]: “A classical result by Rényi and Sulanke [16] states that 

( )logN r n O 1E n 3
2= +  as n " 3 . For a quarter of a century, in 

spite of many efforts, cf., e.g., [9, p. 547] and [10, p. 424], essential-
ly no progress has been achieved concerning the variance of the 
distribution of Nn .

This was something I did not know (at the time) that the prob-
lem of the variance of Nn  was an old unsolved problem. One 
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Figure 1  Convex hull of a uniform sample of n 50=  points in the interior of a triangle 
with vertices ( , )0 0 , ( , )0 1  and ( , )1 0 .
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But in this column I mainly want to point attention to the in-
teresting papers of Alexander Nagaev [12] and John Pardon [14, 15]. 
I have the impression that both authors have worked on the prob-
lem as outsiders of the field of stochastic geometry (like myself ).

I only talked once with Alexander Nagaev (and his brother, I be-
lieve) at a conference in Vilnius in 1993, where Alexander explained 
to me what Isakjan Khamdamov and he had been doing in 1991 in 
the preprint [13] with my paper from 1988. But for some reason I 
did (or could) not pay sufficiently close attention to what he was 
saying then (it was at the conference party).

I shall now first try to describe the ideas of my paper [7]. The 
number of vertices of the convex hull is the result of a counting 
process: we walk along the boundary of the convex hull and count 
the number of vertices we meet in this way. At the time I worked 
on the problem martingales and the Doob–Meyer decomposition 
theorem for counting processes and martingales were very ‘hot 
subjects’, because they could be applied in the theory of right-cen-
sored data in statistics. This gave probabilists an argument for 
stating that their study of martingales, et cetera, was useful in 
practice and on the other hand statisticians could say that they 
were applying deep probabilistic tools.

I also ‘went with the wave’ and gave during half a year a semi-
nar on the book Probabilités et Potentiel of Paul-André Meyer [11], 
the original version where Dellacherie was still not co-author) at 
the Mathematical Centre in Amsterdam in 1977 for a small audi-
ence, among whom the statisticians Willem van Zwet, Richard Gill 
and Kobus Oosterhoff (my own PhD supervisor). It was mainly 
useful for the topic of the dissertation of Richard Gill [5] (we were 
sharing a — very small — office at the Mathematical Centre).

So in working on the paper [7], about ten years later, I was cu-
rious to see what this theory could do for us in the context of the 
convex hulls. For example, this result of Rényi and Sulanke for the 
expectation of the number of vertices, couldn’t we very easily get 
this from martingale theory?

Let us zoom in on what happens near the corner at ( , )0 0  in 
Figure 1 and imagine that we can describe the situation there by 
a Poisson process of points in the first quadrant with intensity 1, 
for which we compute the left-lower convex hull. For each a 0>  
we define ( ) ( ( ), ( ))W a U a V a=  as a point of a realization of the 
Poisson point process such that there are no points lying strictly 
to the left of the line x ay c+ =  through ( )W a . 

In fact, we can walk through the left-lower convex hull of our 
Poisson process by lines x ay c+ = , ( , )a 0 3! , where ( )c c a=  is 
chosen so that the line runs through a point ( )W a  of the point 
process of this type. This process has no beginning and no ending, 
but that’s OK. It is even a Markov process! That is, if we consider a 
to be the time parameter, the vertices ( )'W a  we’ll meet for 'a a>  
only depend on ( )W a  and not on values ( )'W a  with 'a a< .

We can define ( , )N a b  as the number of vertices of the convex 
hull that we meet if we vary the parameter 'a  of the supporting 
lines ( )' 'x a y c a+ =  over the interval [ , ]a b . We then get the follow-
ing lemma:

Lemma 1 [7, Lemma 2.6, p. 342]. For each a 0> , the processes

( , ) ( , ) ( ) , ,M a b N a b V c dc b a2
1

a

b

1
2 $= - # (2)

and

( , ) ( , ) { ( , ) } ( ) , ,M a b N a b N a c V c dc b a2
1 2 1

a

b

2
2 2 $= - +#

(3)

are martingales.

In this lemma ( )V c  is the second coordinate of a vertex ( )W c  
of the convex hull of the Poisson point process.

The way we prove a result like this is illustrated in Figure 2 (a 
screenshot of [7, Figure 2.4, p. 337] ). The probability that the num-
ber of points in the counting process will be increased by 1 in the 
time interval [ , ]a a h+  is, as h 0. , equivalent to h times the area 
of the shaded rectangle in Figure 2, which is ( )hy hV a2

1 2
2
1 2= . We 

use here that we are dealing with a Poisson process of intensity 1 
in the first quadrant.

This yields, by elementary martingale theory, that the so-called 
compensator of the counting process (also called predictable pro-
jection) is given by the second term on the right-hand side of (2). 
Since the expectation of ( , )M a b1  does not change if b a$  increas-
es, the expectation is equal to the expectation at time b a= , which 
is zero. So we get:

( , ) ( ) .N a b V c dc2
1

E E
a

b
2= #

A trivial one line computation, given in [7, below (2.32)], using the 
properties of the Poisson process, yields that

( ) ,V c c3
1

E2
1 2 =

with the conclusion that

( , ) ( / ) .logN a b b aE 3
1=

In particular, if we choose /a n1n =  and b nn = , we get:

( , ) , .logN a b n nE n n 3
2

" 3+

Aha! Here we almost have the result in the Rényi and Sulanke 
paper! And with so little effort! If we can show that the convex 
hull of the original sample process near ( , )0 0  behaves in the same 
way as the convex hull of the Poisson process near ( , )0 0  for the 
time parameter between /n1  and n, and that we have a similar Figure 2  Vertex ( )W a  of convex hull of Poisson point process in first quadrant.
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He derives this from the following fundamental theorem in [14].

Theorem 3 [14, Theorem 1.1]. Let U be the standard normal distri-
bution function. As ( )area K " 3 , the following estimates hold for 
the convex hull KP  of a Poisson point process of intensity 1 in the 
interior of a convex set K.

var
( ) ,sup

log
N

N N x x O
N

N
P

E
E

E

x

2
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f p( 2
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var
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log
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A

A
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E
E

E

x

2

R
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!

f p( 2

where N is the number of vertices and A the area of K K=P .

Now I must say that I think that the methods John Pardon uses 
in [14] are rather close to what I was doing 33 years earlier in [7]. 
He indeed refers to my paper at several spots in his exposition and 
also to [2], which gives a central limit theorem for the area. I’ll say 
more about [2] below.

But [14] has some very nice new twists. First of all there is the 
parametrization. He does not make the transition to an unbounded 
Poisson point process, but stays with the Poisson point process 
inside the original bounded convex set. He also walks through the 
vertices via points ( )W i , but the parameter i is now an angle in 

/2R r and not the parameter a of a line x ay c+ = . A typical pic-
ture in his exposition is given in Figure 3.

The ‘cap’ ( , )C pK i  in Figure 3(b) is a region above the line with 
angle i through ( )W i  which does not contain points of the Pois-
son point process, parametrized either by a point p on the line 
segment cut off by the convex set K or parametrized by the area 
of ( , )C pK i .

Instead of letting the parameter m of the Poisson process tend 
to 3 and keeping the convex set fixed, it is more natural in his 
approach to keep the intensity of the Poisson process fixed, for 
example 1m =  (like in the Poisson process considered above) and 
let the area of the convex set grow to 3 . This amounts to the 
same type of asymptotics.

phenomenon for the other vertices (using affine invariance), and 
can asymptotically neglect what happens along the sides, we ac-
tually have the Rényi and Sulanke result, modulo the transition 
from Poisson process to sample process. The latter transition is 
essentially the relation ( / )n e1 n "a+ a , as John Pardon rightly ar-
gues in [15].

Moreover, (3) of Lemma 1 deals with the second moment, and 
if we use (3), we get information about the variance of Nn , which 
remained a mystery for a quarter of a century, according to the 
quote above from Buchta’s paper [1]!

The central limit theorem can be derived from the fact that 
the process { ( , ), }N a b b a$  is strongly mixing, which can also be 
deduced from the martingale characterization of the process. This 
means that the dependence between pieces ( , )N a b  and ( , )' 'N a b
if ' 'a b a b< < <  dies out rather rapidly if the distance between b 
and 'a  increases.

This program was carried out in [7] and yielded Theorem 1. A 
similar program was carried out for a uniform sample in the interior 
of the unit disc. Here we get the following result.

Theorem 2 [7, Theorem 3.4]. Let Nn  denote the number of vertices 
of the boundary of the convex hull of a uniform sample of n points 
from the unit disc. Then

( , )
c n

N c n
N

2

2
0 1

/

/
n

2
1 3

1
1 3

D

r

r-

as n " 3 , .c 0 538461 . , .c 0 131602 .  [3], and where 
D

 de-
notes convergence in distribution and ( , )N 0 1  is the standard nor-
mal distribution.

The constant c2  has to be evaluated numerically. The constant 
c1  had already been evaluated in [16] and can also be written as

( ) ( )c /
1 2

3 1 3
3
5r C= - . The constant c2  has been evaluated in [3], 

using the methods of [7]. It depends on the numerical evaluation 
of certain multiple integrals and corrects the original computation 
in [7].

The boundary of the convex hull of a uniform sample in the 
interior of a circle was studied as a prototype of the situation that 
the convex set from which the sample is taken has a C2  boundary 
with non-vanishing curvature. One sees from Theorem 2 that the 
order of the number of vertices has increased from log n  to n /1 3 , 
going from Theorem 1 to Theorem 2. Also note that in Theorem 2 
the scaling constants for the expectation and variance of Nn  are 
of the same order, just as in Theorem 1.

The papers of Alexander Nagaev and John Pardon
This whole problem of “are the constants used in the scaling in 
Theorem 1 above asymptotically the same as the expectation and 
the square root of the variance of Nn” was definitely solved by 
John Pardon in [15]. Corollary 1.2 in [15] gives this result for all con-
vex sets K of unit area and at the same time gives a central limit 
theorem for the area An  of K Cn= , where Cn  is the convex hull of 
a uniform sample from K.

Corollary 1 [15, Corollary 1.2, p. 824]. Let U be the normal distri-
bution function. As n " 3 , the following estimates for the convex 
hull Cn  hold uniformly over all convex sets K of unit area: Figure 3  John Pardon’s parametrization.

(a) Illustration of ( )W i (b) Illustration of ( , )C pK i
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In 2012 I published the paper [6], discussing [13] and [12], and 
deriving the result of [13] from my own work. But I presently think 
that my paper [6] did not sufficiently reveal the importance of 
Nagaev’s paper [12].

Unlike Pardon, he works with an unbounded convex set A, like 
I was doing in the first section and in [7]. He has the following 
conditions for A:

a.	 A is convex unbounded, with ( )A 3m = .
b.	The point ( , )0 0  lies on its boundary.
c.	 Each straight line {( , ): }Z x y y cc = =  cuts off from A a region 

having finite area for all c 0> , i.e., Zc  intersects the boundary 
of A at two points.

Nagaev considers a doubly infinite sequence of vertices of the convex 
hull of the Poisson process of intensity 1: , , , , , ,w w w w w2 1 0 1 2f f- - , 
with corresponding regions , , , , , ,2 1 0 1 2f fi i i i i- - , where 0i  is 
the region between the horizontal line through w0  and the bound-
ary of A, 1i  the region enclosed by the line through w0  and w1 , 
the horizontal line through w0  and the boundary of A, 1i-  the 
region enclosed by the line through w 1-  and w0 , the horizontal 
line through w0  and the boundary of A, et cetera, see Figure 5, a 
screenshot of Figure 1 in [12].

He then defines the random variables ( )j jp m i= , the Lebesgue 
measure of the region ji , and c--  and c+  as the left and right 
intersections of the horizontal line through w0  with the boundary 
of A.

Furthermore, he defines for j 1$  the points jc  as the inter-
section of the line through wj 1-  and wj  with the right boundary 
of A and for j 1#-  the points jc  as the intersection of the line 
through wj  and wj 1+  with the left boundary of A.

Finally, he defines the length of a line segment with endpoints 
a and b by ( , )a b,  and then

( , )/ ( , ), ,

( , ) / ( , ) , ,
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see Figure 5 (a screenshot of [12, Figure 1] ). With these definitions 
he has the following remarkable theorem.

Theorem 5 [13, Theorem 2.1, p. 23]. The variables ,j kp h , ,j k Z!  
are independent. Furthermore, the jp  are exponential with param-
eter 1 and the jh  are ( , )Uniform 0 1 .

He lets ( , )X a b  be either the number of vertices ( , )N ba  or the 
area ( , )A a b  one gets by varying the angles of the lines of support 
between a and b, where ( , )A a b  is the shaded region in Figure 4 
(screenshot of [14, Figure 1] ).

Then he shows that ( , )X a b  (either number of vertices or area), 
chopping it up into L pieces ( , ), ( , ), , ( , )X X X L1 1 2 1fa a a a a b- , 
corresponds to a strongly mixing process to which he can apply 
the following result.

Theorem 4 [17]. Let X Xi

L

i1= =
/ , where , ,X XL1 f  are random 

variables. Additionally suppose that

–– | | ,X cE i
3

1#

–– , ,X XL1 f  are a-mixing (= strongly mixing) with 
{ | |}expC i j2#a d- - ,

for some 0>d  and ,C C <1 2 3 . Then there exists M 0>  such that

var
( )

(var )

( )
.sup

log
X

X X x x M
X

L L
P

E
/

x
3 2

2

R
# #U

- -
!

( 2

(Note that the exponent in the power of the denominator of 
(10.1) in [14] should be 3/2 instead of -3/2.)

This theorem is very interesting! It is from 1991. Had I known 
this in 1988, this would have spared me the trouble of trying to 
compute the variance! I derived the right type of strong mixing 
and also showed that the moment generating function existed in 
a neighborhood of the origin. Having these results, I could have 
stated the central limit theorem without bothering about comput-
ing the variance!

On the other hand, the variance was this long unsolved prob-
lem (something I did not know), and it served as a reference point 
for Christian Buchta’s finite sample result for the number of verti-
ces of the convex hull of a sample from a convex polygon.

John Pardon derives his central limit result from Theorem 4 also 
by showing the strong mixing property and showing that the mo-
ment generating function exists in a neighborhoood of the origin. 
But he does not use martingales, and gets it straight from the 
properties of the Poisson process.

There are a lot of nice ideas in [14] I could talk about, for exam-
ple the clever use of compactness arguments and the interesting 
idea of introducing an affine invariant measure. But the actual 
purpose of my column is to draw attention to Nagaev’s paper [12], 
which somehow seems to have been neglected.

Alexander Nagaev died tragically in a skiing accident. Tomasz 
Schreiber was so kind to provide me with the preprint [13]; he is 
no longer alive either.

Figure 4  John Pardon’s definition of ( , )A a b .

Figure 5  Nagaev’s construction.
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The proof of the asymptotic normality does not need the strong 
mixing, which was used by both John Pardon and myself, we just 
have sums of independent random variables (see, e.g., [6] ). On 
the other hand, the result of John Pardon is still the most general, 
since it is independent of the type of boundary. Also, in his ap-
proach we do not have to go back from the unbounded Poisson 
point process to the bounded convex figure. Still it seems that 
some synthesis of these different approaches should perhaps be 
possible.

I still have to say something on the paper [2]. Here a central 
limit theorem for the area was derived. Although the method is 
OK, in the derivation of the constants a time inversion argument 
was needed that was not applied correctly. The argument with the 
correct time inversion argument is given in [8]. The matter is also 
discussed in [6].

Isakjan Khamdamov recently came back to his earlier work with 
Alexander Nagaev, see, e.g., [4].	 s

Note that we can apply this result both for convex regions with 
C2  boundaries and for ‘wedges’ like the first quadrant, rotated 
over the angle /4r- . For the latter situation we get the following 
corollary.

Corollary 2 [13, Theorem 1.1]. Let Nn  denote the number of verti-
ces of the boundary of the convex hull of a uniform sample of n 
points from the interior of a convex polygon K with r ( 3$ ) verti-
ces and area equal to 1. Let An  be the area of K Cn= , where Cn  is 
the convex hull of the sample. Then ( , )N An n  satisfies the following 
2-dimensional central limit theorem:

( ) ( , ) ( , ),log log logr n N r n nA r n N 0/
n n27

10 1 2
3
2

3
2 D

R- --

where
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