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ed Weierstrass’s to Jacobi’s approach, the 
latter based on the surprising theta-func-
tions (which Gauss has discovered first, see 
[15, Section 7]). A second avenue starts from 
Cauchy’s integral theorem and Liouville’s 
elegant theorem, stating that a bounded 
analytic function without singularities (e.g. 
poles) in the complex plane is a constant. 
When applying these two theorems to the 
fundamental parallelogram of an elliptic 
functions, many properties are deduced 
(see e.g. [16] ). Yet, I believe that the start 
of Gauss’s path, namely the arithmetic-geo-
metric mean, is worth to explore, essential-
ly due to its amazingly fast convergence.

The arithmetic-geometric mean (AGM)

1. Definition of the arithmetic-geometric 
mean ( , )M a b . The arithmetic mean of two 
numbers a and b is defined by mA

a b
2= +  

and their geometric mean by m abG = . 
We assume that a and b are non-negative 
real numbers, to avoid complications with 
the squareroot in m abG = . An immedi-
ate bound m mA G$ , with equality only if 
a b= , follows from

.a b a b ab0 2
1

2
2

# - = + -_ i (1)

Gauss [8] studies the sequence 
{( , )}a bn n n 0$ , where 3

a b a bandn
a b

n n n2 1 1
n n1 1= =+

- -
- - (2)

starting from ( , ) ( , )a b a b0 0 = , which he al-
ready knew at the age of 14 years old [4]. 
Explicitly, the arithmetic-geometric mean 
(AGM) algorithm (2), written in two col-
umns, is

in is the easiest, because it is sufficiently 
well explained. That first part also shows 
Gauss’s trajectory towards his first funda-
mental result (8) via elegant Taylor series 
expansions. The second part [9] in German 
is challenging and difficult, because Gauss 
has merely left sketches or just a list of for-
mulae without any clue nor derivation. Of 
course, we cannot blame Gauss: he never 
found the time to publish his work on AGM 
in his near to perfect style, based on his 
adagium 2 “pauca, sed matura”. After Gauss 
has seen the work of Abel and Jacobi, who 
found independently parts of his own dis-
coveries about thirty years later, Gauss 
seemed to have been content that Abel and 
Jacobi had relieved him from publishing his 
work on elliptic functions.

Gauss’s path towards the valley of elliptic 
functions, starting with the AGM algorithm, 
is extremely hard; a narrow, steep route 
through high and icy mountains, which to-
day is abandoned, because only the most 
experienced alpinists may succeed. The val-
ley of elliptic functions, which are doubly 
periodic functions in the complex plane, 
is now approached by two avenues. First, 
elliptic functions are beautifully introduced 
by Tannery and Molk [12, last chapter], who 
started from Weierstrass’s great work on 
entire functions. Entire functions do not 
contain singularities in the finite complex 
plane, but an essential singularity at infin-
ity, and can be regarded as generalizations 
of polynomials. Tannery and Molk [13] relat-

Carl Friedrich Gauss (1777–1855) was a titan 
of science [5]. Words fall short to describe 
his phenomenal mathematical creations: 
just as paintings and musical pieces by the 
greatest artists 1, his mathematics fills an 
impressive gallery of the finest art. The only 
difference between music and paintings 
compared to mathematical art is that the 
latter requires more effort to understand, 
before its penetrating light embraces hu-
man emotions. After all, just as in music 
and paintings, it requires much technical 
skills, before creations and art occur. Art 
is all about emotion. The most beautiful 
mathematical art shines by its simplicity, 
which often shields its depth. It may sounds 
odd that I speak about mathematical art, 
while most people associate mathematics 
with a cool and logical system, void of any 
human emotion. And, yet, there is an ocean 
of beauty in which the logical pieces are 
built towards a magnificent castle.

The sequel here is devoted to one type of 
painting, one style of Gaussian symphony. 
In [15], I have tried to unravel his unpub-
lished work, posthumously collected in his 
Nachlass (in Gauss Werke, Band 3), about 
the arithmetic-geometric mean (AGM). This 
article is a summary of [15] and I will refer 
to it for details. While the AGM algorithm, 
explained in formula (2) in the next section, 
is rather basic and before Gauss discovered 
by another genius Langrange, it was Gauss, 
who created an astonishing piece of art. 
The first part in the Nachlass [8] in Lat-
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while

, , , .M a a a M a 0 0= =_ _i i
Since any pair ( , )a bn n  in the sequence 
{( , )}a bn n n 0$  converges to the same limit, 
we also conclude that

( , ) ( , ) ( , ) .M a b M a b M a bn n1 1 g g= = = =
(6)

3. Scaling of ( , )M a b . If we multiply both 
an  and bn  by a positive real number b, 
then the AGM recursion (2) shows that also 
an 1+  and bn 1+  are multiplied by b. Hence, 

( , )lim a M a bn nb b="3  and

( , ) ( , ) .M a b M a bb b b= (7)

Taking a
1b =  and subsequently b

1b =  in 
(7) yields ( , ) ( , ) ( , )M a b aM bM1 1a

b
b
a= = . 

The scaling (7) means that the study of 
( , )M a b  can be reduced to ( , )M x1 , where 

x0 1# # , because we assume as Gauss 
that a b> . However, interchanging a and 
b in the iterative algorithm (2) does not 
impact the limit, i.e. ( , ) ( , )M a b M b a= . 
Thus, alternatively ( , )M a b  can be reduced 
to ( , )M x 1 , where x 1$ . Figure 1 draws 

( , )M x 1  together with its upper bound 
x

2
1 +  and lower bound x  on a lin-lin and 
log-log scale.

because ( ) (a b a bn n n n1 1
4

1 1+ = +- - - -    
) ( )a b a b2 >n n n n1 1

2
1 1

2+ +- - - -  for a > 
b 0> . Iterated p times,
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leads, after choosing p n= ,

.a b
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n n
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+
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+
-b l (4)

Since ( )a a b2n n n1 = ++  and a a<n n1+ , we 
find that ( )a b a2<n n a b

a b
1

2n
- +

- , which 
tends to zero considerably faster than a b

2n
-  

in (3) for n n> 0 , where n0  is a threshold 
value. The AGM algorithm (2) converges 
quadratically or the convergence of the se-
quence {( )}a bn n n 0- $  is of second order. 
A convergence of second order means that 
each iteration in the AGM algorithm (2) for 
positive a and b approximately doubles the 
number of correct decimal digits.

In summary, the difference a bn n-  in 
the sequence {( , )}a bn n n 0$  tends to zero 
with n " 3 . In other words, the sequenc-
es { }an n 0$  and { }bn n 0$  converge to the 
same limit ( , )M a b , which Gauss calls the 
arithmetic-geometric mean (AGM),

( , ) .lim limM a b a bn n
n n

= =
" "3 3

(5)

For a b 0> > , the above analysis shows 

( )
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Invoking the inequality m mA G$  to (2) il-
lustrates that a bn n$  for any integer n 1$ . 
In other words, for n 1$ , the left column 
with { }an n 1$  will contain numbers that 
are always larger than the right column 
with { }bn n 1$ , if we exclude the uninterest-
ing case that a b= , for which a b an n= =  
and nothing changes with n. If n 0= , we 
obviously have that a b<0 0  if a b< , but 
for n 1$ , it holds that a bn n$ . In the 
sequel, therefore, we assume that a b> , 
so that the inequality a b>n n  holds for 
any integer n 0$ . Combining a b>n n  with 
the arithmetic mean a a<n

a b
n2 1

n n1 1= +
-

- -  
then shows, for any integer n 1$ , that 
a a<n n 1- , while the geometric mean bn = 

a b b>n n n1 1 1- - -  shows that b b>n n 1- .

2. Convergence of the AGM algorithm in (2). 
Gauss observes, for a b 0$ $ , that
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where equality only holds if b 0= . Only 
if b 0= , the AGM algorithm (2) reduces 
to b 0n =  and a an n2

1
1= -  with solution 

an
a
2n=  for n 0$ . Hence, for a b 0> > , 

Gauss obtains the inequality a b <n n-  
( )a bn n2

1
1 1-- - , which after iteration on 

n 0$  shows that

( ) .a b a b
2
1<n n n- -

(3)
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Figure 1  The three means of x and 1: the arithmetic mean ( )/x1 2+ , Gauss’s AGM ( , )M x 1  and the geometric mean x , 
both on lin-lin and log-log scale (inset).
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rent mathematicians. The Borwein brothers 
and Bailey [3] overview the history of the 
computing r. We will only discuss here Ar-
chimedes’ algorithm, Leibniz’ and Euler’s 
series and the application of Gauss’s AGM 
algorithm.

4. Archimedes’ computation of r. Surpris-
ingly similar to Gauss’s AGM recursion (2), 
the Borwein brothers [2] (see also [6, pp. 
31–35] mention Archimedes’ recursion

A
A B

B A B2 andn
n n

n n n
1

1 1=
+

=-
- - (10)

where A
1

n
 is the area of the circumscribed 

regular 2n -gon and B
1

n
 denotes the area 

of an inscribed regular 2n -gon around a 
circle with radius 1. The recursion of Archi-
medes (ca. 287–212 BC) in (10) seems due 
to Gauss’s teacher Pfaff [3, p. 205] and is 
derived in [15]. Comparing with the circle, 
we find the inequalities < <B A

1 1
n n

r  and 
the recursion (10), starting at n 2=  with 
B2 2

1=  and A2 4
1= , converges to r. Table 1 

computes Archimedes’ recursion (10) for r 
up to n 15= .

5. Leibniz’s series. Perhaps the simplest or 
most classic series to compute r are de-
rived from inverse trigonometric functions. 
We confine ourselves to series for arctan z , 
whose Taylor series around z 0=  is

( )
,arctan z k z z2 1

1
1for <

k
k

k

2 1

0
e e= +

-3
+

=
/ (11)

which converges for z 1= , because Leib-
niz’ series

( )
lim k4 2 1

1

1 3
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r = +
-

= - + - + - + - +

"3 =
/

(12)
is an alternating sum with decreasing 
terms. Most likely, Leibniz’ series (12) is 
one of the simplest, but also slowest con-

Gauss knew the theory of lemniscate, in-
vented by Jacob Bernoulli in 1694, and re-
alized that the total length Ll  of the lem-
niscate equals

( , )
.L

M 2 1
2

l
r=

Consequently, a basic result in Gauss’s 
investigations [4, p. 280–283] relates the 
total length of the lemniscate to the arith-
metic-geometric mean
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( )

( )
. .

M 2 1
2

2 1 19814
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y
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1
4 -s=
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#  to 

emphasize the importance of L
( , )l M 2 1
2= r  

which is then

( , ) .M 2 1 r
s=

(9)

Since the integral 
y

dyx

1 4-0
#  resembles 

( )arcsin x
y

dyx

1 2 =
-0

# , Gauss studied the 
inverse function of 

y

dyx

1 4-0
# , because the 

properties of ( )sin x  are much more elegant 
than those of its inverse function ( )arcsin x . 
Gauss 4 defined the lemniscatic functions 
as

x
sinlem

y

dy
x

1 4-
=

0
f p#

and deduced many beautiful series expan-
sion and theta-function like expansions, 
that were never published by Gauss, only 
in his Nachlass. Gauss’s sinus and cosinus 
lemniscatus are a special case of Jacobi’s 
elliptic amplitudinis functions [10] and dou-
bly-periodic with periods 2s  and i2 s . Cox 
[4, Section 3] demonstrates that Gauss had 
a complete theory of elliptic functions!

Computations of r
The number r has fascinated humans for 
over 4000 years since the Babylonians and 
old-Egyptians and is still captivating cur-

Gauss [8, art. 3] computes four examples 
with different ( , )a b  up to 20 decimal digits (!) 
to illustrate how fast the recursion (2) con-
verges. Numerical computations confirm 
a convergence of second order and that 
the iteration n in (2) has about twice the 
number of correct digits than the iteration 
n 1- , which is numerically an amazingly 
fast convergence. This very fast conver-
gence of the sequence in (2) likely attract-
ed Gauss to explore the properties of the 
arithmetic-geometric mean ( , )M a b .

Highlights of Gauss’s journey
Gauss [8, art. 5] computes several Taylor 
expansions, like ( , )M x h x1 1 k k

k
0

+ =
3

=
/ , 

but each time concludes that the Taylor co-
efficients do not satisfy an interesting law. 
Eventually, he deduces the Taylor series
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which can also be written in terms of 
Gauss’s hypergeometric function as

( , )
( , , ; ) .

M x x
F x

1 1
1 12

1
2
1 2

+ -
=

Gauss wrote a great manuscript [7] on the 
hypergeometric function, which basically 
generalized Newton’s working horse, the 
binomial expansion ( )x x1 k

k 0 k
+ =

3a
=

af p/  
and which derives the theory of the Gam-
ma function most elegantly (that led Wei-
erstrass later to his artful theory of entire 
functions). Hence, Gauss rapidly saw that 
the Taylor expansion can be written as an 
integral,

(8)( , )sin cosa b

d
M a b2

1
2 2 2 2

2 r

i i

i

+
=

r

0
#

called a ‘tour de force’ by McKean and Moll 
[11].

Gauss’s fundamental integral (8) is re-
written in terms of Legendre’s complete 
elliptic integral
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Figure 2  The lemniscate is defined in polar coordinates ( , )r i  as ( )cosr 22 i= .
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6. AGM computation of r. Almkvist and 
Berndt [1, Theorem  5] mention

( , )

c

M

1 2

4 1

n
n

n1
1 2

2
2

1

r =
-

3

=
+/ (15)

where c a bn n n
2 2= - . The entire derivation 

of (15) is in [15]. Borwein and Borwein [1, 
Section 5] present another algorithm for r 
with second order convergence.

Only 10 iterations in (15), with a 1=  
and b

2
1= , lead to an astonishingly small 

error at n 9=  of less than 10 102 5129
.- - , 

as illustrated in Table 2, where 30 decimal 
digits are given.

We again observe that, at each iteration 
in n, the number of decimal digits approx-
imately doubles!!

,arctan arctan16 5
1 4 239

1
r = -b bl l

while Leonhard Euler (1707-1783) started 
from

.arctan arctan20 7
1 8 79

3
r = +b bl l

Euler introduced his famous Euler trans-
form and derived [14] the series in 1755,
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Borwein and Borwein [2] mention that Eu-
ler computed r to 20 decimal places in an 
hour, because powers of 

/z 1 7= 50
1

z

z

1 2

2
=

+
 and 

/z 3 79= 6250
9

z

z

1 2

2
=

+
 are small.

vergent series for r. If K 10m=  terms are 
computed in (12), then about m decimal 
digits are correct. Leibniz did not obtain 
(12) as derived above, but from his general 
method of ‘transmutation’ , which is nicely 
explained by Edwards [6, p. 245–252]. The 
companion series of (12), due to Newton 
and equally slowly converging, is

( )
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lim k k2 2
1 4 1
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b l/

(13)
Newton’s r-series (13) is computed in [15].

Many other variations on arctan z  exists 
[2, p. 352]. John Machin (1680–1752) found 
that

n
A
1

n B
1

n A B
1 1

n n
-

1 4 2 2

2 3.3137084989 2.82842712474 0.485281

3 3.1825978780 3.06146745892 0.12113

4 3.1517249074 3.12144515225 0.0302798

5 3.1441183852 3.13654849054 0.00756989

6 3.1422236299 3.14033115695 0.00189247

7 3.1417503691 3.14127725093 0.000473118

8 3.1416320807 3.14151380114 0.00011828

9 3.1416025102 3.14157294036 0.0000295699

10 3.1415951177 3.14158772527 7.39247 10 - 6

11 3.1415932696 3.14159142151 1.84812 10 - 6

12 3.1415928075 3.14159234557 4.6203 10 - 7

13 3.1415926920 3.14159257658 1.15507 10 - 7

14 3.1415926632 3.14159263433 2.88768 10 - 8

15 3.1415926559 3.14159264877 7.21921 10 - 9

Table 1  Archimedes’ recursion (10) for r up to n 15= .Figure 3  Inscribed and circumscribed 2n -gon of a circle with radius 1.

n an bn c a b2 n n n1 = -+ formula (15)

0 1 0.707106781186547524400844362105 0.29289 4

1 0.853553390593273762200422181052 0.840896415253714543031125476233 0.012656 3.18767264271210862720192997053

2 0.847224902923494152615773828643 0.847201266746891460403631453693 0.000023636 3.14168029329765329391807042456

3 0.847213084835192806509702641168 0.847213084752765366704298051780 8.24274 10 - 11 3.14159265389544649600291475882

4 0.847213084793979086607000346474 0.847213084793979086605997900490 1.00244 10 - 21 3.14159265358979323846636060271

5 0.847213084793979086606499123482 0.847213084793979086606499123482 1.48265 10 - 43 3.14159265358979323846264338328

6 3.24336 10 - 87

7 1.55206 10 - 174

8 3.55415 10 - 349

9 1.86375 10 - 698

Table 2  The 30 decimal digits AGM computation for r in formula (15) up to iteration n 9= .
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b
2

1=  as above, the first four iterations 
of (16) are as shown in Table 3, while for 
n 5=  all 30 digits are correct. The lower 
bound for n 4=  has already 30 decimals 
correct, while the upper bound only has 22 
correct decimals. Hence, we observe that 
Gauss’s upper and lower bounds (16) con-
verge a little faster in n towards r than 
(15), in spite of the computation of the 
logarithm, which is numerically more de-
manding.

Summary
The extremely fast convergence of the AGM 
algorithm (2) is still attractive in times of 
the abundant presence of computers. Ex-
cept for inverse functions computed by 
Newton–Raphson’s method (that is also of 
second order), it is still unknown [2, p. 352] 
whether there are other functions than 
complete elliptic integrals that possess a 
quadratically converging algorithm such as 
Gauss’s AGM algorithm (12).	 s

while
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from which Gauss concludes that
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If n increases in (16), we find lower and up-
per bounds for r where each step in n re-
sults in the famous approximate doubling 
of decimal digits. Choosing a 1=  and 

We add another AGM computation of r  
due to Gauss [9, p. 377], and which did not 
appear in recent literature,
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If a b c2 2= = , then 1
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M a b =  and, 

confining to n 0=  in (16), we have that
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+d n log c
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1 4

n n

n
1- d n

0 3.11916231251975389237754454656 3.46573590279972654708616060729

1 3.14157172949917097506914830630 3.14904153515897666929968289288

2 3.14159265355330856833419360289 3.14159962823802109942254203509

3 3.14159265358979323846242152809 3.14159265360195479517183083648

4 3.14159265358979323846264338328 3.14159265358979323846271733501

Table 3  The first four iterations of formula (16).

1	 Ludwig Van Beethoven (1770–1827), with 
Flemish roots from Mechelen, was a German 
contemporary of Carl Friedrich Gauss.

2	 “Pauca, sed matura” is Latin and means 
“Few, but ripe”. Gauss wrote clearly and 
briefly in a Ciceroan Latin style. He avoid-
ed unnecessary prose, in contrast to the 
then ruling French scientists of the Academy 
Francaise in Paris. Each sentence in his work 
plays a role; it is hard to further condense 

or skip parts without missing the idea. 
When contempories complained to him that 
he shielded the way in which he has found 
his discoveries, Gauss briefly replied: “Have 
you ever seen a beautiful building, to which 
the scaffold is still attached?” ‘Pauca’ does 
not imply that Gauss wrote only few arti-
cles. In fact, he was very productive, but he 
could have published more if his high writ-
ing standard was reduced. His work on AGM 

is an example; he did not publish this pearl.

3	 Gauss writes accents instead of subscripts in 
n; thus 'a a1= , ''a a2= , '''a a3= , et cetera.

4	 Gauss Werke, Band 3, p. 404 on ‘Elegan-
tiores integralis 

x

y

dy

1 4-0
#  proprietatis’, in 

which he defines the sinuslemniscatus and 
derives many of its functional properties, 
much more than the sinus possesses.
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