
Ronald de Wolf 	 Avi Wigderson’s work and influence	 NAW 5/23  nr. 1  maart 2022	 31

tem, and that the conclusion is the claimed
statement. However, deciding whether a
given statement has such a proof or even
finding such a proof may of course be
much more difficult, keeping mathema-
ticians busy in their daily life in creative
ways that are very hard to automate.

The practice of mathematical proofs is
often more complex than the simple “give
me a proof and I’ll verify it” scheme of NP.
Proofs are often interactive: instead of a
static proof that the prover gives to the
verifier, in an interactive proof the verifier
can ask questions, ask the prover to eluci-
date some points, et cetera. This involves
back and forth communication until the
verifier accepts or rejects the statement
that the prover is trying to prove. For in-
stance, this is the situation when a mathe-
matician presents a proof to colleagues on
a whiteboard or during a seminar with an
active audience, or sometimes in the inter-
action with an anonymous referee when a
paper is submitted to a journal. Such inter-
active proofs have been modelled mathe-
matically in the complexity class IP: here
the verifier is required to work efficiently
while interacting with a prover who has un-
bounded computational power. A set L of
strings has an interactive proof system if
the prover can convince the verifier of each
statement in L but of none of the state-

Proofs, with and without knowledge
Mathematics is all about proofs, and be-
cause complexity theorists dislike hard-to-
check proofs, much of their field focuses
on proofs that are efficiently verifiable, i.e.,
checkable in polynomial time. The quintes-
sential incarnation of this is the complexity
class NP, which consists of those decision
problems where the ‘yes-instances’ have a
short and efficiently-verifiable certificate.
Such problems may not always be effi-
ciently solvable (that’s what the famous
P NP! conjecture says), but at least we
can efficiently verify a given solution.

One example of such a computation-
al decision problem, at the very core of
mathematics, is the set of statements that
have a short proof (i.e., a proof with at
most polynomially many derivation steps
starting from the axioms in some fixed for-
mal system). Given a purported proof of
some statement, one can efficiently verify
that the proof is correct by checking that it
starts from the system’s axioms, that each
step follows the derivation rules of the sys-

Avi Wigderson was born in 1956 in Haifa,
Israel, where he studied at the Technion
before going to Princeton to obtain his
PhD in 1983 under Richard Lipton. After
several short-term positions in the US and
a long period on the faculty of the Hebrew
University in Jerusalem, in 1999 he joined
the School of Mathematics of the Institute
for Advanced Studies (IAS) in Princeton.
There, despite being the only tenured com-
puter scientist, he has created a thriving
research environment for theoretical com-
puter science and its interplay with math-
ematics and other areas. He is famous for
his openness to everything interesting, his
willingness to collaborate widely, and his
ability to mentor young researchers.

Wigderson already received the 1994
Nevanlinna Prize for work on complexity
theory, the 2009 Gödel Prize for work on
graph products, and the 2019 Knuth Prize
for his overall contributions to the founda-
tions of computer science, but this year’s
well-deserved Abel Prize is arguably an
even more prestigious honour.

Event  Abel Prize 2021

Avi Wigderson’s work and
influence

The 2021 Abel Prize was awarded to Lászlo Lovász and Avi Wigderson “For their founda-
tional contributions to theoretical computer science and discrete mathematics, and their
leading role in shaping them into central fields of modern mathematics.” While Lovász is
a mathematician whose work affects computer science, Wigderson is a computer scientist
whose work affects mathematics. In this article Ronald de Wolf gives a brief overview of
some highlights of Wigderson’s wide-ranging work and influence.

Ronald de Wolf
CWI, Amsterdam, and
ILLC, University of Amsterdam
rdewolf@cwi.nl

32	 NAW 5/23  nr. 1  maart 2022	 Avi Wigderson’s work and influence	 Ronald de Wolf

been found between the communication
complexity of f and mathematical proper-
ties of Mf, for instance combinatorial prop-
erties like the minimal number of ‘mono-
chromatic rectangles’ (submatrices of Mf
on which f is constant) needed to partition
or to cover Mf, and algebraic properties
such as various types of rank of Mf. A rich
array of mathematical techniques can thus
be deployed to analyze the communication
complexity of a given function. Wigderson
contributed much to this in a number of pa-
pers together with Noam Nisan [15, 20, 22].

Apart from being a basic model of
distributed computation, communication
complexity is also one of our main sourc-
es of lower bounds in many other models,
ranging from area-time tradeoffs in chips to
decision trees to data structures. One very
surprising connection is due to Karchmer
and Wigderson [16], who gave a very clean
characterization of the minimal Boolean
circuit depth of a given function in terms of
the communication complexity of a related
problem. In principle this allows us to prove
lower bounds on circuit depth via commu-
nication complexity, and such circuit lower
bounds could eventually lead to separa-
tion of complexity classes like P and NP.
Unfortunately the resulting communication
complexity problems are still quite hard to
analyze, and this approach has not yet led
to super-logarithmic lower bounds on cir-
cuit depth. It has, however, led to the first
super-logarithmic lower bounds on circuit
depth of monotone Boolean circuits for
certain graph problems [16, 23].

Pseudorandomness and derandomization
Another important strand in Wigderson’s
research is the role of randomness in com-
putation.

Computers, in Turing’s definition, in ac-
tual hardware, and in the general public’s
perception, are supposed to be determinis-
tic machines: one computational operation
follows the previous one with perfect pre-
dictability. If anything makes the comput-
er deviate from that one path, then that’s
called noise or a ‘bug’ (sometimes literally).
However, since the 1970s randomized algo-
rithms have become ubiquitous in theory
and in some parts of practice (for instance
in cryptography and in Monte Carlo simula-
tions). Randomized algorithms are allowed
to let their computational path depend on
coin flips or other sources of randomness,
and are typically allowed to have a small

it believed to be among the hardest prob-
lems in NP: it is unlikely to be NP-hard.
Rather amazingly, Wigderson and co-au-
thors proved in [7, 11] that there is an ef-
ficient zero-knowledge proof system for
every problem in NP. In particular, there
is a way for a prover to convince a verifier
that a certain statement in a formal system
is provable without revealing any infor-
mation about that proof beyond the fact
that it exists. What does the latter mean,
exactly? It means that the verifier can him-
self, without help from the prover, simulate
the whole conversation if the statement is
true. For example, in the earlier protocol
for non-isomorphism of two graphs, the
verifier already knows in advance what
the prover will reply in the non-isomorphic
case: the prover will just tell the verifier
what b is — which the verifier already knew,
since he chose b himself!

These results about zero-knowledge
proofs and their further development are
among the many ways in which Wigder-
son has impacted the closely related areas
of computational complexity, proof theory,
and cryptography.

Communication complexity
The area of communication complexity was
introduced by Yao [29]. It studies a bare-
bones version of distributed computing,
where the only resource we care about is
the amount of communication, while all lo-
cal computation is for free. In its most ba-
sic two-party setting, Alice and Bob receive
inputs x and y, respectively, and want to
compute some function (,)f x y that de-
pends on both of their inputs. The function
f is known to both players, but x is known
only to Alice and y is known only to Bob,
so they will have to communicate at least
something if they want to compute (,)f x y .
Of course, Alice could just send x to Bob or
Bob could send y to Alice, but these may
be long strings, and for many functions
much more clever and communication-ef-
ficient ways of computing (,)f x y exist. The
goal here is to analyze the minimal number
of bits of communication needed, on the
worst-case input x, y.

The function f corresponds to a matrix
Mf, with rows indexed by the possible
x’s, columns indexed by the possibly y’s,
and entries (,)f x y . Since Mf is a complete
description of f, its properties determine
the communication complexity of f. Which
properties exactly? Many connections have

ments outside of L. A fundamental result in
complexity theory says that IP PSPACE=
[19, 26, 27]: a set L has an interactive proof
system iff there is a deterministic algorithm
that uses polynomial space (and possibly
much more time) for deciding if a given
string is in L.

Of course, a proof of a statement, no
matter whether interactive or not, typical-
ly gives us a lot of knowledge about why
the statement is true. If P NP! (as most
researchers expect) then presumably it
would have taken the verifier a lot of time
to find that knowledge without the help
of the prover. Rather amazingly, there are
also proof systems that give no knowledge
beyond the validity of the proved state-
ment. These are known as zero-knowledge
proofs.

An illustrative example is the problem
of deciding whether two given n-vertex
graphs, G0 and G1, are isomorphic or not.
This problem is clearly in NP: the proof
is the isomorphism (easy to verify, though
maybe hard to find). On the other hand, it’s
hard to think of a succinct proof that two
graphs are not isomorphic, and we do not
even know whether such succinct proofs
exist (i.e., whether the graph non-isomor-
phism problem is in NP). However, here
is a simple zero-knowledge proof system
for checking with high confidence that G0
and G1 are not isomorphic: the verifier flips
a random coin { , }b 0 1! , sends the prov-
er a random permutation of the graph Gb,
and asks if it came from G0 or G1. In oth-
er words, the prover has to guess what b
was. If the two graphs are non-isomorphic,
then the prover can (in exponential time)
determine whether the graph he received
came from G0 or G1 and tell the verifier
what b was. If, on the other hand, G0 and
G1 were isomorphic then the prover just
sees a random graph isomorphic to both
G0 and G1, and his best bet at guessing b
is a random coin flip — which will be wrong
half the time. Repeating this a few times,
with the verifier choosing a new random
bit b each time, the prover can correctly
guess these bits b every time if G0 and G1
are not isomorphic, but he’s very likely to
guess wrong at least once if G0 and G1 are
isomorphic.

Can we find zero-knowledge proof sys-
tems for other, more difficult problems
than non-GI? We do not know an efficient
algorithm for non-GI (the best is Babai’s
fairly recent algorithm [4] ) but neither is

Ronald de Wolf 	 Avi Wigderson’s work and influence	 NAW 5/23  nr. 1  maart 2022	 33

and algorithmics. These connections work
both ways: results from algebra and graph
theory help design algorithms, and much
of the work in algorithms and complexity
leads to new insights in algebra and graph
theory.

For example, Wigderson and co-au-
thors developed efficient algorithms for
graph-theoretic problems such as match-
ing [17], whose analysis uses algebra. They
also designed algorithms for algebraic
problems such as matrix scaling [2, 18] and
operator scaling [8, 10], where the analysis
involves graph theory. Often the connec-
tion is through algebraic graph theory: the
algebraic properties of a graph’s adjacency
matrix give crucial information about the
graph, while conversely every n n# matrix
can be viewed as the adjacency matrix of a
weighted n-vertex graph.

Another example of such connections
are the many uses of expander graphs.
These are constant-degree graphs that
are like a ‘poor man’s version’ of the com-
plete graph. On the one hand an expander
shares many desirable properties with the
complete graph, such as having short dis-
tances between any two vertices, and rap-
id mixing of random walks. On the other
hand, because the graph has constant de-
gree (degree 3 already suffices!) the num-
ber of required edges is only linear in the
number of vertices instead of quadratic as
in the complete graph. Such graphs have
two equivalent definitions: a graph-theo-
retic one where we require every set of at
most half the vertices to ‘expand’ (i.e., to
be connected to many new vertices), and
an algebraic one where we require the ad-
jacency matrix’s second eigenvalue to be
somewhat smaller than the first. The inter-
play between these graph-theoretic and al-
gebraic perspectives has been very fruitful.
Wigderson has been instrumental in de-
veloping constructions and applications of
such expander graphs, as well as of their
cousins such as extractor and disperser
graphs, which have their applications in
derandomization and even in pure graph
theory such as the construction of explicit
Ramsey graphs [5]. See his beautiful sur-
vey [12] for much more.

The ‘zig-zag product’ of graphs of Rein-
gold, Vadhan and Wigderson [25] deserves
to be mentioned here. This is a way to
combine a large graph with a small graph
to get an even larger graph that inherits the
expansion properties of the small graph. It

(, ,)p x xn1 f over some field, represented
as an arithmetic circuit — i.e., a circuit act-
ing on n inputs, whose internal nodes are
addition and multiplication operations —,
decide if p is identically equal to 0 or not.
By the Schwartz–Zippel lemma, the value
of the polynomial on a uniformly random
input will be non-zero with reasonably high
probability, unless the polynomial was
identically equal to 0. This gives an effi-
cient randomized algorithm for PIT: evalu-
ate the arithmetic circuit on a random in-
put, and see if you get value 0. Challenge:
find an efficient deterministic algorithm ...)

Turning this expectation around, a se-
quence of so-called derandomization pa-
pers in the 1990s, first by Nisan and Wig-
derson [21] and then by Impagliazzo and
Wigderson [13, 14] showed that P and BPP
are actually equal (meaning efficient ran-
domized algorithms can be replaced by
efficient deterministic ones) under quite
plausible hardness assumptions, such as
that there are problems solvable in deter-
ministic time 2 ()O n that require Boolean
circuits of size 2 ()nX . The magic of this
approach is that the truth-table of such a
hard function can be used to construct a
pseudorandom generator g that efficiently
stretches an ()logO n -bit uniformly random
seed s to a polynomial-length ‘pseudo-
random’ string g(s). ‘Pseudorandom’ here
means that an efficient algorithm cannot
‘see’ the difference between a truly random
string and an equally-long pseudorandom
string g(s) that is generated from a small
uniformly random seed s. Accordingly, the
success probability of a randomized algo-
rithm wouldn’t change significantly if we
fed it a pseudorandom string rather than
the truly random string that it expects. But
then the strategy to make a given random-
ized algorithm deterministic is obvious: a
deterministic algorithm can, in polynomial
time, go over all n2 () ()logO n O 1= seeds s,
run the no-longer-randomized algorithm on
the string g(s), and see which output value
occurs most often among those polynomi-
ally-many runs. The upshot here is that,
surprisingly and in contrast to the situation
in communication complexity, randomness
does not seem to confer much additional
power in computational complexity.

Graphs, algebra and algorithms
The last broad area of Wigderson’s re-
search that I’d like to highlight here is
research combining graph theory, algebra

error probability on each input. Usually
that error probability can be reduced very
efficiently to something extremely small by
repeating the algorithm a few times and
taking the majority output among those
runs. So for most practical purposes, an
efficient randomized algorithm is as good
as an efficient deterministic one.

Here is a simple example from com-
munication complexity where randomiza-
tion really helps: suppose Alice and Bob
have n-bit integers x and y, respectively,
and they want to compute the ‘equality’
function, i.e., decide if x y= or not. One
can show that deterministic communica-
tion protocols need to send n bits across
for this. In contrast, if Alice can flip a coin
then she can do the following: she choos-
es a random prime number p of ()logO n
bits, and sends both p and modx p to Bob.
That’s just ()logO n bits of communication.
Bob receives these, computes mody p, and
compares it with modx p. Clearly, if x y=
then the same is true modp. But if x y!
then x and y will be different modp with
high probability!

The above example shows that random-
ness can yield provable exponential sav-
ings in terms of communication: allowing
the parties to flip coins and to have a tiny
error probability reduces the communica-
tion complexity of the equality function
from n to ()logO n bits. Randomness also
helps to hide things from an adversary in
cryptographic situations, as we saw for in-
stance for zero-knowledge proofs. In fact,
without the ability to use randomness to
choose secret private keys, there would be
no cryptography.

What about the power of randomness
for the core concept of complexity theory:
algorithmic runtime? Can randomization
lead to an exponential speed-up com-
pared to deterministic algorithms for some
computational problems? After a wave of
efficient randomized algorithms that we
didn’t (and in some cases still don’t) know
how to replace by an efficient determinis-
tic algorithm, it seemed for a while quite
plausible that the answer is ‘ yes’. In com-
plexity-theoretic terms, this would mean
that the class BPP of problems efficiently
solvable by randomized algorithms would
be strictly larger than the class P of prob-
lems efficiently solvable by deterministic
algorithms. (Consider the following ‘poly-
nomial identity testing’ (PIT) problem. Giv-
en a low-degree multivariate polynomial

34	 NAW 5/23  nr. 1  maart 2022	 Avi Wigderson’s work and influence	 Ronald de Wolf

ever, TCS also has growing relevance for
and impact on other areas such as physics
(quantum computing and quantum infor-
mation theory, threshold phenomena in
statistical physics, ...), biology (biocomput-
ing, the view of DNA as an information-car-
rier, ...), economics (design and analysis of
auctions, the complexity of finding Nash
equilibria, ...), cognitive science (learning
theory, neural networks, ...) and many oth-
er areas. A synthesis of this broad perspec-
tive is Wigderson’s recent book Mathemat-
ics and Computation [28], which is warmly
recommended for anyone interested in the-
oretical computer science, both for its own
sake and as a lens on mathematics and
other sciences.	 s

Acknowledgments
Thanks to Robbert Fokkink for some helpful
feedback.

in complexity theory: the algebraic tech-
nique of writing functions as low-degree
multivariate polynomials, which has been
crucial for results like the aforementioned
IP PSPACE= , by itself will not be enough
to prove long-hoped-for results like P NP! .

TCS as a lens on other areas
In addition to the strands of research high-
lighted above, Wigderson has also worked
on parallel computing, data structures,
quantum computing, pure graph theory,
and many other areas. He has a very broad
perspective on the theory of computing,
with a keen eye for how it can learn from,
interact with, and illuminate other parts of
science.

The fact that there are many links be-
tween TCS and mathematics, some obvi-
ous and some very surprising, is by now
well-known, in part through Wigderson’s
many able and Abel contributions. How-

was instrumental in two subsequent break-
throughs: Reingold’s proof that deciding
whether two vertices are connected on a
given graph can be solved deterministical-
ly using only logarithmic space [24], and
Dinur’s new proof of the PCP theorem via
gap-amplification [9]. (The PCP theorem [3]
says that proofs for NP-problems can al-
ways be written in such a way that a ran-
domized verifier can check them by look-
ing at only a constant number of the bits
of the proof! This is a deep and very sur-
prising result about proof checking, which
also has many applications for showing
hardness of approximation problems.)

The zig-zag product has also led to
progress in graph theory itself, including
explicit constructions of almost-Ramanujan
graphs [6] (i.e., nearly optimal expanders).

Together with Scott Aaronson, Wigder
son [1] also proved some strong limitations
on what algebraic methods can achieve

1	 S. Aaronson and A. Wigderson, Algebriza-
tion: A new barrier in complexity theory,
ACM Transactions on Computation Theory
1(1) (2009), 2:1–2:54. Earlier version in
STOC’08.

2	 Z. Allen-Zhu, Y. Li, R. Oliveira and A. Wig-
derson, Much faster algorithms for matrix
scaling, in Proceedings of 58th IEEE FOCS,
2017, pp. 890–901.

3	 S. Arora, C. Lund, R. Motwani, M. Sudan and
M. Szegedy, Proof verification and the hard-
ness of approximation problems, Journal of
the ACM 45(3) (1998), 501–555. Earlier ver-
sion in FOCS’92.

4	 L. Babai, Graph isomorphism in quasipoly-
nomial time, in Proceedings of 48th ACM
STOC, 2016, pp. 684–697.

5	 B. Barak, A. Rao, R. Shaltiel and A. Wigder-
son, 2-source dispersers for n ()o 1 entropy,
and Ramsey graphs beating the Frankl–
Wilson construction, Annals of Mathematics
176 (2012), 1483–1543. Earlier version in
STOC’08.

6	 A. Ben-Aroya and A. Ta-Shma, A combinatori-
al construction of almost-Ramanujan graphs
using the zig-zag product, SIAM Journal on
Computing 40(2) (2011), 267–290. Earlier
version in STOC’08.

7	 M. Ben-Or, S. Goldwasser, J. Kilian and A.
Wigderson, Multi-prover interactive proofs:
How to remove intractability assumptions,
in Proceedings of 20th ACM STOC, 1988, pp.
113–131.

8	 P. Bürgisser, C. Franks, A. Garg, R. Oliveira,
M. Walter and A. Wigderson, Efficient algo-
rithms for tensor scaling, quantum margin-
als, and moment polytopes, in Proceedings
of 59th IEEE FOCS, 2018, pp. 883–897.

9	 I. Dinur, The PCP theorem by gap amplifica-
tion, Journal of the ACM 54(3) (2007), 12.
Earlier version in STOC’06.

References
10	 A. Garg, L. Gurvits, R. Oliveira and A. Wig-

derson, Operator scaling: theory and ap-
plications, Foundations of Computational
Mathematics 20(2) (2020), 223–290.

11	 O. Goldreich, S. Micali and A. Wigderson,
Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge
proof systems, Journal of the ACM, 38(3)
(1991), 691–729. Earlier version in FOCS’86.

12	 S. Hoory, N. Linial and A. Wigderson, Ex-
pander graphs and their applications, Bul-
letin of the AMS 43 (2006), 439–561.

13	 R. Impagliazzo and A. Wigderson, P BPP=
if E requires exponential circuits: Deran-
domizing the XOR lemma, in Proceedings of
29th ACM STOC, 1997, pp. 220–229.

14	 R. Impagliazzo and A. Wigderson, Random-
ness vs time: Derandomization under a uni-
form assumption, Journal of Computer and
System Sciences 63(4) (2001), 672–688.
Earlier version in FOCS’98.

15	 M. Karchmer, I. Newman, M. Saks and A.
Wigderson, Non-deterministic communica-
tion complexity with few witnesses, Journal
of Computer and System Sciences, 49(2)
(1994), 247–257. Earlier version in Struc-
tures’92.

16	 M. Karchmer and A. Wigderson, Monotone
circuits for connectivity require super-log-
arithmic depth, SIAM Journal on Discrete
Mathematics 3(2) (1990), 255–265. Earlier
version in STOC’88.

17	 R. Karp, E. Upfal and A. Wigderson, Con-
structing a perfect matching is in random
NC, Combinatorica 6(1) (1986), 35–48. Earli-
er version in STOC’85.

18	 N. Linial, A. Samorodnitsky and A. Wigder-
son, A deterministic strongly polynomial al-
gorithm for matrix scaling and approximate
permanents, Combinatorica 20(4) (2000),
545–568. Earlier version in STOC’98.

19	 C. Lund, L. Fortnow, H. Karloff and N. Ni-
san, Algebraic methods for interactive proof
systems, Journal of the ACM 39(4) (1992),
859–868. Earlier version in FOCS’90.

20	 N. Nisan and A. Wigderson, Rounds in com-
munication complexity revisited, SIAM Jour-
nal on Computing 22(1) (1993), 211–219.
Earlier version in STOC’91.

21	 N. Nisan and A. Wigderson, Hardness vs.
randomness, Journal of Computer and Sys-
tem Sciences 49(2) (1994), 561–570. Earlier
version in FOCS’88.

22	 N. Nisan and A. Wigderson, On rank vs. com-
munication complexity, Combinatorica 15(4)
(1995), 557–565. Earlier version in FOCS’94.

23	 R. Raz and A. Wigderson, Monotone circuits
for matching require linear depth, Journal of
the ACM 39(3) (1992), 736–744. Earlier ver-
sion in STOC’90.

24	 O. Reingold, Undirected connectivity in log-
space, Journal of the ACM 55(4) (2008),
17:1–17:24. Earlier version in STOC’05.

25	 O. Reingold, S. Vadhan and A. Wigderson,
Entropy waves, the zig-zag graph product,
and new constant-degree expanders and ex-
tractors, in Proceedings of 41st IEEE FOCS,
2000, pp. 3–13.

26	 A. Shamir, IP PSPACE= , Journal of the
ACM 39(4) (1992), 869–877. Earlier version
in FOCS’90.

27	 A. Shen, IP PSPACE= : Simplified proof,
Journal of the ACM 39(4) (1992), 878–880.

28	 A. Wigderson, Mathematics and Computation
A Theory Revolutionizing Technology and
Science, Princeton University Press, 2019.

29	 A. C.-C. Yao, Some complexity questions re-
lated to distributive computing, in Proceed-
ings of 11th ACM STOC, 1979, pp. 209–213.

