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tem, and that the conclusion is the claimed 
statement. However, deciding whether a 
given statement has such a proof or even 
finding such a proof may of course be 
much more difficult, keeping mathema-
ticians busy in their daily life in creative 
ways that are very hard to automate. 

The practice of mathematical proofs is 
often more complex than the simple “give 
me a proof and I’ll verify it” scheme of NP. 
Proofs are often interactive: instead of a 
static proof that the prover gives to the 
verifier, in an interactive proof the verifier 
can ask questions, ask the prover to eluci-
date some points, et cetera. This involves 
back and forth communication until the 
verifier accepts or rejects the statement 
that the prover is trying to prove. For in-
stance, this is the situation when a mathe-
matician presents a proof to colleagues on 
a whiteboard or during a seminar with an 
active audience, or sometimes in the inter-
action with an anonymous referee when a 
paper is submitted to a journal. Such inter-
active proofs have been modelled mathe-
matically in the complexity class IP: here 
the verifier is required to work efficiently 
while interacting with a prover who has un-
bounded computational power. A set L of 
strings has an interactive proof system if 
the prover can convince the verifier of each 
statement in L but of none of the state-

Proofs, with and without knowledge
Mathematics is all about proofs, and be-
cause complexity theorists dislike hard-to-
check proofs, much of their field focuses 
on proofs that are efficiently verifiable, i.e., 
checkable in polynomial time. The quintes-
sential incarnation of this is the complexity 
class NP, which consists of those decision 
problems where the ‘yes-instances’ have a 
short and efficiently-verifiable certificate. 
Such problems may not always be effi-
ciently solvable (that’s what the famous
P NP!  conjecture says), but at least we 
can efficiently verify a given solution.

One example of such a computation-
al decision problem, at the very core of 
mathematics, is the set of statements that 
have a short proof (i.e., a proof with at 
most polynomially many derivation steps 
starting from the axioms in some fixed for-
mal system). Given a purported proof of 
some statement, one can efficiently verify 
that the proof is correct by checking that it 
starts from the system’s axioms, that each 
step follows the derivation rules of the sys-
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been found between the communication 
complexity of f and mathematical proper-
ties of Mf, for instance combinatorial prop-
erties like the minimal number of ‘mono-
chromatic rectangles’ (submatrices of Mf 
on which f is constant) needed to partition 
or to cover Mf, and algebraic properties 
such as various types of rank of Mf. A rich 
array of mathematical techniques can thus 
be deployed to analyze the communication 
complexity of a given function. Wigderson 
contributed much to this in a number of pa-
pers together with Noam Nisan [15, 20, 22].

Apart from being a basic model of 
distributed computation, communication 
complexity is also one of our main sourc-
es of lower bounds in many other models, 
ranging from area-time tradeoffs in chips to 
decision trees to data structures. One very 
surprising connection is due to Karchmer 
and Wigderson [16], who gave a very clean 
characterization of the minimal Boolean 
circuit depth of a given function in terms of 
the communication complexity of a related 
problem. In principle this allows us to prove 
lower bounds on circuit depth via commu-
nication complexity, and such circuit lower 
bounds could eventually lead to separa-
tion of complexity classes like P and NP. 
Unfortunately the resulting communication 
complexity problems are still quite hard to 
analyze, and this approach has not yet led 
to super-logarithmic lower bounds on cir-
cuit depth. It has, however, led to the first 
super-logarithmic lower bounds on circuit 
depth of monotone Boolean circuits for 
certain graph problems [16, 23].

Pseudorandomness and derandomization
Another important strand in Wigderson’s 
research is the role of randomness in com-
putation.

Computers, in Turing’s definition, in ac-
tual hardware, and in the general public’s 
perception, are supposed to be determinis-
tic machines: one computational operation 
follows the previous one with perfect pre-
dictability. If anything makes the comput-
er deviate from that one path, then that’s 
called noise or a ‘bug’ (sometimes literally). 
However, since the 1970s randomized algo-
rithms have become ubiquitous in theory 
and in some parts of practice (for instance 
in cryptography and in Monte Carlo simula-
tions). Randomized algorithms are allowed 
to let their computational path depend on 
coin flips or other sources of randomness, 
and are typically allowed to have a small 

it believed to be among the hardest prob-
lems in NP: it is unlikely to be NP-hard. 
Rather amazingly, Wigderson and co-au-
thors proved in [7, 11] that there is an ef-
ficient zero-knowledge proof system for 
every problem in NP. In particular, there 
is a way for a prover to convince a verifier 
that a certain statement in a formal system 
is provable without revealing any infor-
mation about that proof beyond the fact 
that it exists. What does the latter mean, 
exactly? It means that the verifier can him-
self, without help from the prover, simulate 
the whole conversation if the statement is 
true. For example, in the earlier protocol 
for non-isomorphism of two graphs, the 
verifier already knows in advance what 
the prover will reply in the non-isomorphic 
case: the prover will just tell the verifier 
what b is — which the verifier already knew, 
since he chose b himself!

These results about zero-knowledge 
proofs and their further development are 
among the many ways in which Wigder-
son has impacted the closely related areas 
of computational complexity, proof theory, 
and cryptography.

Communication complexity
The area of communication complexity was 
introduced by Yao [29]. It studies a bare-
bones version of distributed computing, 
where the only resource we care about is 
the amount of communication, while all lo-
cal computation is for free. In its most ba-
sic two-party setting, Alice and Bob receive 
inputs x and y, respectively, and want to 
compute some function ( , )f x y  that de-
pends on both of their inputs. The function 
f is known to both players, but x is known 
only to Alice and y is known only to Bob, 
so they will have to communicate at least 
something if they want to compute ( , )f x y . 
Of course, Alice could just send x to Bob or 
Bob could send y to Alice, but these may 
be long strings, and for many functions 
much more clever and communication-ef-
ficient ways of computing ( , )f x y  exist. The 
goal here is to analyze the minimal number 
of bits of communication needed, on the 
worst-case input x, y.

The function f corresponds to a matrix 
Mf, with rows indexed by the possible 
x’s, columns indexed by the possibly y’s, 
and entries ( , )f x y . Since Mf is a complete 
description of f, its properties determine 
the communication complexity of f. Which 
properties exactly? Many connections have 

ments outside of L. A fundamental result in 
complexity theory says that IP PSPACE=  
[19, 26, 27]: a set L has an interactive proof 
system iff there is a deterministic algorithm 
that uses polynomial space (and possibly 
much more time) for deciding if a given 
string is in L.

Of course, a proof of a statement, no 
matter whether interactive or not, typical-
ly gives us a lot of knowledge about why 
the statement is true. If P NP!  (as most 
researchers expect) then presumably it 
would have taken the verifier a lot of time 
to find that knowledge without the help 
of the prover. Rather amazingly, there are 
also proof systems that give no knowledge 
beyond the validity of the proved state-
ment. These are known as zero-knowledge 
proofs. 

An illustrative example is the problem 
of deciding whether two given n-vertex 
graphs, G0 and G1, are isomorphic or not. 
This problem is clearly in NP: the proof 
is the isomorphism (easy to verify, though 
maybe hard to find). On the other hand, it’s 
hard to think of a succinct proof that two 
graphs are not isomorphic, and we do not 
even know whether such succinct proofs 
exist (i.e., whether the graph non-isomor-
phism problem is in NP). However, here 
is a simple zero-knowledge proof system 
for checking with high confidence that G0 
and G1 are not isomorphic: the verifier flips 
a random coin { , }b 0 1! , sends the prov-
er a random permutation of the graph Gb, 
and asks if it came from G0 or G1. In oth-
er words, the prover has to guess what b 
was. If the two graphs are non-isomorphic, 
then the prover can (in exponential time) 
determine whether the graph he received 
came from G0 or G1 and tell the verifier 
what b was. If, on the other hand, G0 and 
G1 were isomorphic then the prover just 
sees a random graph isomorphic to both 
G0 and G1, and his best bet at guessing b 
is a random coin flip — which will be wrong 
half the time. Repeating this a few times, 
with the verifier choosing a new random 
bit b each time, the prover can correctly 
guess these bits b every time if G0 and G1 
are not isomorphic, but he’s very likely to 
guess wrong at least once if G0 and G1 are 
isomorphic.

Can we find zero-knowledge proof sys-
tems for other, more difficult problems 
than non-GI? We do not know an efficient 
algorithm for non-GI (the best is Babai’s 
fairly recent algorithm [4] ) but neither is 
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and algorithmics. These connections work 
both ways: results from algebra and graph 
theory help design algorithms, and much 
of the work in algorithms and complexity 
leads to new insights in algebra and graph 
theory.

For example, Wigderson and co-au-
thors developed efficient algorithms for 
graph-theoretic problems such as match-
ing [17], whose analysis uses algebra. They 
also designed algorithms for algebraic 
problems such as matrix scaling [2, 18] and 
operator scaling [8, 10], where the analysis 
involves graph theory. Often the connec-
tion is through algebraic graph theory: the 
algebraic properties of a graph’s adjacency 
matrix give crucial information about the 
graph, while conversely every n n#  matrix 
can be viewed as the adjacency matrix of a 
weighted n-vertex graph.

Another example of such connections 
are the many uses of expander graphs. 
These are constant-degree graphs that 
are like a ‘poor man’s version’ of the com-
plete graph. On the one hand an expander 
shares many desirable properties with the 
complete graph, such as having short dis-
tances between any two vertices, and rap-
id mixing of random walks. On the other 
hand, because the graph has constant de-
gree (degree 3 already suffices!) the num-
ber of required edges is only linear in the 
number of vertices instead of quadratic as 
in the complete graph. Such graphs have 
two equivalent definitions: a graph-theo-
retic one where we require every set of at 
most half the vertices to ‘expand’ (i.e., to 
be connected to many new vertices), and 
an algebraic one where we require the ad-
jacency matrix’s second eigenvalue to be 
somewhat smaller than the first. The inter-
play between these graph-theoretic and al-
gebraic perspectives has been very fruitful. 
Wigderson has been instrumental in de-
veloping constructions and applications of 
such expander graphs, as well as of their 
cousins such as extractor and disperser 
graphs, which have their applications in 
derandomization and even in pure graph 
theory such as the construction of explicit 
Ramsey graphs [5]. See his beautiful sur-
vey [12] for much more.

The ‘zig-zag product’ of graphs of Rein-
gold, Vadhan and Wigderson [25] deserves 
to be mentioned here. This is a way to 
combine a large graph with a small graph 
to get an even larger graph that inherits the 
expansion properties of the small graph. It 

( , , )p x xn1 f  over some field, represented 
as an arithmetic circuit — i.e., a circuit act-
ing on n inputs, whose internal nodes are 
addition and multiplication operations —, 
decide if p is identically equal to 0 or not. 
By the Schwartz–Zippel lemma, the value 
of the polynomial on a uniformly random 
input will be non-zero with reasonably high 
probability, unless the polynomial was 
identically equal to 0. This gives an effi-
cient randomized algorithm for PIT: evalu-
ate the arithmetic circuit on a random in-
put, and see if you get value 0. Challenge: 
find an efficient deterministic algorithm ...)

Turning this expectation around, a se-
quence of so-called derandomization pa-
pers in the 1990s, first by Nisan and Wig-
derson [21] and then by Impagliazzo and 
Wigderson [13, 14] showed that P and BPP 
are actually equal (meaning efficient ran-
domized algorithms can be replaced by 
efficient deterministic ones) under quite 
plausible hardness assumptions, such as 
that there are problems solvable in deter-
ministic time 2 ( )O n  that require Boolean 
circuits of size 2 ( )nX . The magic of this 
approach is that the truth-table of such a 
hard function can be used to construct a 
pseudorandom generator g that efficiently 
stretches an ( )logO n -bit uniformly random 
seed s to a polynomial-length ‘pseudo-
random’ string g(s). ‘Pseudorandom’ here 
means that an efficient algorithm cannot 
‘see’ the difference between a truly random 
string and an equally-long pseudorandom 
string g(s) that is generated from a small 
uniformly random seed s. Accordingly, the 
success probability of a randomized algo-
rithm wouldn’t change significantly if we 
fed it a pseudorandom string rather than 
the truly random string that it expects. But 
then the strategy to make a given random-
ized algorithm deterministic is obvious: a 
deterministic algorithm can, in polynomial 
time, go over all n2 ( ) ( )logO n O 1=  seeds s, 
run the no-longer-randomized algorithm on 
the string g(s), and see which output value 
occurs most often among those polynomi-
ally-many runs. The upshot here is that, 
surprisingly and in contrast to the situation 
in communication complexity, randomness 
does not seem to confer much additional 
power in computational complexity.

Graphs, algebra and algorithms
The last broad area of Wigderson’s re-
search that I’d like to highlight here is 
research combining graph theory, algebra 

error probability on each input. Usually 
that error probability can be reduced very 
efficiently to something extremely small by 
repeating the algorithm a few times and 
taking the majority output among those 
runs. So for most practical purposes, an 
efficient randomized algorithm is as good 
as an efficient deterministic one.

Here is a simple example from com-
munication complexity where randomiza-
tion really helps: suppose Alice and Bob 
have n-bit integers x and y, respectively, 
and they want to compute the ‘equality’ 
function, i.e., decide if x y=  or not. One 
can show that deterministic communica-
tion protocols need to send n bits across 
for this. In contrast, if Alice can flip a coin 
then she can do the following: she choos-
es a random prime number p of ( )logO n  
bits, and sends both p and modx p to Bob. 
That’s just ( )logO n  bits of communication. 
Bob receives these, computes mody p, and 
compares it with modx p. Clearly, if x y=  
then the same is true modp. But if x y!  
then x and y will be different modp with 
high probability!

The above example shows that random-
ness can yield provable exponential sav-
ings in terms of communication: allowing 
the parties to flip coins and to have a tiny 
error probability reduces the communica-
tion complexity of the equality function 
from n to ( )logO n  bits. Randomness also 
helps to hide things from an adversary in 
cryptographic situations, as we saw for in-
stance for zero-knowledge proofs. In fact, 
without the ability to use randomness to 
choose secret private keys, there would be 
no cryptography.

What about the power of randomness 
for the core concept of complexity theory: 
algorithmic runtime? Can randomization 
lead to an exponential speed-up com-
pared to deterministic algorithms for some 
computational problems? After a wave of 
efficient randomized algorithms that we 
didn’t (and in some cases still don’t) know 
how to replace by an efficient determinis-
tic algorithm, it seemed for a while quite 
plausible that the answer is ‘ yes’. In com-
plexity-theoretic terms, this would mean 
that the class BPP of problems efficiently 
solvable by randomized algorithms would 
be strictly larger than the class P of prob-
lems efficiently solvable by deterministic 
algorithms. (Consider the following ‘poly-
nomial identity testing’ (PIT) problem. Giv-
en a low-degree multivariate polynomial 
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ever, TCS also has growing relevance for 
and impact on other areas such as physics 
(quantum computing and quantum infor-
mation theory, threshold phenomena in 
statistical physics, ...), biology (biocomput-
ing, the view of DNA as an information-car-
rier, ...), economics (design and analysis of 
auctions, the complexity of finding Nash 
equilibria, ...), cognitive science (learning 
theory, neural networks, ...) and many oth-
er areas. A synthesis of this broad perspec-
tive is Wigderson’s recent book Mathemat-
ics and Computation [28], which is warmly 
recommended for anyone interested in the-
oretical computer science, both for its own 
sake and as a lens on mathematics and 
other sciences.	 s
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in complexity theory: the algebraic tech-
nique of writing functions as low-degree 
multivariate polynomials, which has been 
crucial for results like the aforementioned 
IP PSPACE= , by itself will not be enough 
to prove long-hoped-for results like P NP! . 

TCS as a lens on other areas
In addition to the strands of research high-
lighted above, Wigderson has also worked 
on parallel computing, data structures, 
quantum computing, pure graph theory, 
and many other areas. He has a very broad 
perspective on the theory of computing, 
with a keen eye for how it can learn from, 
interact with, and illuminate other parts of 
science. 

The fact that there are many links be-
tween TCS and mathematics, some obvi-
ous and some very surprising, is by now 
well-known, in part through Wigderson’s 
many able and Abel contributions. How-

was instrumental in two subsequent break-
throughs: Reingold’s proof that deciding 
whether two vertices are connected on a 
given graph can be solved deterministical-
ly using only logarithmic space [24], and 
Dinur’s new proof of the PCP theorem via 
gap-amplification [9]. (The PCP theorem [3] 
says that proofs for NP-problems can al-
ways be written in such a way that a ran-
domized verifier can check them by look-
ing at only a constant number of the bits 
of the proof! This is a deep and very sur-
prising result about proof checking, which 
also has many applications for showing 
hardness of approximation problems.)

The zig-zag product has also led to  
progress in graph theory itself, including 
explicit constructions of almost-Ramanujan 
graphs [6] (i.e., nearly optimal expanders).

Together with Scott Aaronson, Wigder
son [1] also proved some strong limitations 
on what algebraic methods can achieve 
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