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I looked for information on Chernoff’s distribution in Wikipedia 
[11], but was shocked to see my own name three times in the ref-
erences but no mention of Chernoff’s paper [2]! And no, it wasn’t 
me who wrote that entry! My only contributions to Wikipedia are 
about the Supreme Court during the German occupation, where my 
father played a role (see [12] ) and about the statistical arguments 
in the Lucia de Berk court case (see [13] ).

Now, to quote the Wikipedia article [11]: Chernoff’s distribution, 
named after Herman Chernoff, is the probability distribution of the 
random variable
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where W is a two-sided Wiener process (or two-sided Brownian 
motion), satisfying ( )W 0 0= . One of the pleasant properties of 
Brownian motion is that we can always use lots of symmetries; in 
this case one can immediately see that the random variable Z in 
(1) has the same distribution as the random variable. 
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Moreover, further properties of Brownian motion imply that the lo-
cation of the maximum (argmax) and the location of the minimum 
(argmin) are almost surely unique, and we therefore have (almost 
surely) well-defined random variables.

As mentioned in [6], for the model introduced there, the non-
parametric maximum likelihood estimator Fnt  of the distribution 
function of the incubation time distribution function maximizes the 
log likelihood over all (cumulative) distribution functions F such 
that ( )F x 0=  for x 0< :
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for a sample of size n, where Si is the time of becoming symptom-
atic and Ei is the length of the exposure time of the ith person. It 
is proved in [7] that, if F0 is the real distribution function of the in-
cubation time and t is an interior point of the support of its density 
f0, we have, under some conditions on the underlying distributions, 
denoting the convergence in distribution by $

d
, the following result 

for the maximum likelihood estimator (MLE) Fnt :
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where U is given by (2), for a constant c 0> , depending on the 
incubation time distribution and the distribution of the exposure 
times Ei. This means that, after rescaling, the limit distribution of 

Chernoff’s distribution
In 1964 the remarkable paper [2] appeared, where Herman Cher-
noff derived the limit distribution of an estimator of the mode of 
a density. This distribution has become the ‘normal distribution of 
non-standard asymptotics’ in the sense that many estimators in 
the realm of (what is now called) non-standard asymptotics have 
this distribution as limit distribution. To the list of estimators with 
this limit distribution can recently be added the nonparametric 
maximum likelihood estimator of the distribution function of the 
incubation time of Covid-19, as discussed in [6].

The journal in which Herman Chernoff published his paper does 
not rank very highly in the list of journals in mathematical statis-
tics, and I asked Herman Chernoff why he had sent his paper to 
this journal. He answered: “Well, they asked me to write a paper 
for them, and this is what I got.” Which shows again that it is the 
author that counts, and not the prestige of the journal in which 
the author publishes (think of Grigori Perelman who published his 
results on arXiv).
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the maximum likelihood estimator is given by Chernoff’s distribu-
tion (Theorem 4 in [7], where the dependence of the constant c on 
the underlying distributions is explicitly given). 

A similar result was proved for a somewhat related model (the 
interval censoring model) 25 years ago in [3], and for the proof of 
(3) I had to go through similar steps again. The proof is quite com-
plicated and I wish someone would come up with an easier one. 
The latest news on the analytical characterization of Chernoff’s 
distribution is given in [8], where also references to earlier work 
can be found.

Bootstrap confidence intervals
In [6] an estimate of the (cumulative) distribution function of the in-
cubation time of Covid-19 on the basis of data of 88 travelers from 
Wuhan was given by the MLE, but also by the smoothed maximum 
likelihood estimator (SMLE), given by:

( ) (( )/ ) ( ),F t t y h dF yKnh n= -t t# (4)

where h 0>  is the bandwidth, Fnt  the MLE of the distribution func-
tion, and K the integrated kernel
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see (3) in [6]. Here K is a smooth symmetric kernel, symmetric 
around zero, with support [ , ]1 1- , and h a bandwidth (which we 
choose here to be 4, on a scale of days).

So the SMLE is the convolution of the kernel ( ) ( / )hK Kh $ $=
def

 with 
a discrete measure, given by the MLE Fnt .

Now, does the result (3) help us to derive the properties of (4)? 
One could say: a little bit. We do not really need to know that 
the limit distribution is Chernoff’s distribution, because this ‘fine 
behavior’ of the MLE is washed away in the convolution with the 
kernel. On the other hand, once we know that this is the limit 
behaviour of the MLE, we know how to look for upper bounds 
we’ll need in developing theory for the SMLE (4), in particular for 
constructing confidence intervals.

Today the standard method to achieve this is called the boot-
strap. The bootstrap simulates the model we are using from the 
estimates themselves, in this case the MLE Fnt . The name ‘boot-
strap’ comes from a version (American?) of the Baron von Münch-
hausen tales, where the baron pulls himself out of the swamp by 
his ‘bootstrap’ (in the copy I read as a child he pulls himself out 
of the mud by his hair).

However, one always has to prove that this will ‘work’, which 
means that one has to show that this procedure really reproduces 
the random behaviour one wants to simulate. In the present case 
it has for example been proved in [10] that the method does not 
work for the MLE in the analogous model of interval censoring if 
one tries to use the standard method for doing this, which is to 
resample with replacement from the data and to compute the es-
timates for these samples. In fact, the bootstrap has been proved 
to be inconsistent in this case. There is little doubt that the usual 
bootstrap will fail similarly for the MLE in the present model.

But one can in fact reproduce the convergence to Chernoff’s 
distribution in (3) by using a different kind of bootstrap, as is 
suggested in [10]. In this version of the bootstrap one resamples 
from a smoothed version Fn

u  of the MLE, where Fn
u  has the property 

that u R6 ! :
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almost surely at points t in the interior of the support of the 
distribution, where f0 is the density of the underlying incubation 
distribution (assumed to exist). In fact, the smoothed maximum 
likelihood estimator (SMLE) Fnh

u  has the desired property.
Although it is remarkable that we can indeed reproduce the 

‘Chernoffian behavior’ by using this smooth bootstrap, one could 
(rightly) object to this method that if we assume that there exists 
an estimator having the property (5), we can do better and in fact 
use the SMLE F ,n hn

u  as our estimator of the distribution function 
instead of the MLE. We then can prove:
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1 5+ - , for k 0> . That is, we have convergence to a normal 
distribution ( , )N 2n v , with mean n and variance 2v  specified in [7], 
at a faster rate than achieved by the nonparametric MLE in (3).

The construction of the 95% bootstrap confidence intervals in 
Figures 1 and 2 proceeded in the following way.

The (original) sample is ( , ), , ( , ) .E S E Sn n1 1 f

Sample , ,I I* *
n1 f  uniformly from [ , ]E0 1 , , ,E0 nf 6 @, respectively.

Sample , ,U U* *
n1 f  from the SMLE Fnh

u  of the incubation distribution 
function.
Let S I U* * *

i i i= + . Then our bootstrap sample is:

( , ), , ( , ) .E S E S* *
n n1 1 f

Note that we keep the Ei fixed, relieving us from the duty of esti-
mating its distribution.
Compute for each bootstrap sample either the MLE F *nt or the SMLE 
.F *nh

u

For Figure 1 all 1000 values ( ) ( ) ( )F t t y dF yK*
n h n- -t t#  were or-

dered and the percentiles P t.0 025 ^ h and ( )P t.0 975  were determined. 
This gives the bootstrap intervals:

( ) ( ), ( ) ( ) .F t P t F t P t. .n n0 975 0 025- -t t7 A
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Figure 1 Estimate of the distribution function of the incubation time for the data in [1] 
by the MLE, with pointwise 95% bootstrap confidence intervals.
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This means that for each sample of size n 500=  we generated 
random variables , ,V Vn1 f , where each Vi had the Weibull distri-
bution function

( ) { },expx F x x1,

def

7 b= - -a b
a- (6)

for x 0$  (zero otherwise), where , 0>a b . In the simulations we 
took .3 03514a =  and .0 002619b =  (these were values that came 
out of the study of travelers from Wuhan, discussed in [6]) for gen-
erating the samples. We also generated random variables , ,E En1 f  
(exposure times), uniform on [ , ]1 30 , and for each i a variable 

[ , ]U E0i i!  (infection time), uniform on [ , ]E0 i . This means that the 
sample on the basis of which the estimators of the incubation time 
distribution are computed consists of the pairs

( , ) ( , ), , , ,E S E U V i n1i i i i i f= + =

where Si is the time of becoming symptomatic for the ith person, 
letting the exposure time have origin zero.

In the Weibull approach to the problem, we maximize for , 0>a b : 

{ ( ) ( )},log F S F S E, ,i i i
i
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where F ,a b is defined by (6). This gives a maximum likelihood es-
timate F ,a b| t of the distribution function, where ( , )a bt t  maximizes (7) 
over ( , )a b . The estimate of the 95th percentile is then defined by 
( . )F 0 951

,
-
a bt t , where F 1

,
-
a bt t  denotes the inverse function.

In the log-normal approach to the problem, we maximize for 
R!a  and 0>b :
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i

n

1
- -a b a b

=
/ (8)

where G ,a b is defined by 

( ) (( )/ ),logG x x, a bU= -a b (9)

for x 0>  (zero otherwise), where 0>b  and U is the standard 
normal distribution function. The estimate of the percentile is then 
given by ( . )G 0 95,

1-
a bt t , where ,a bt t_ i maximizes (8) over ( , )a b .

In the nonparametric maximum likelihood approach we simply 
maximize 
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over all distribution functions F. This give the nonparametric MLE 
Fnt , from which we compute the SMLE ( ) ( ) ( )F t t y dF yKnh h n= -u t#  
and the estimate of the 95th percentile ( . )F 0 95nh

1-u . The bandwidth 
h was chosen to be h 2=  here.

The results of this simulation for 1000 samples of size n 500=  
are shown in the box plot Figure 4. The box plot is an invention 
of John Tukey, who started his mathematics career as a topologist: 
Tukey’s lemma (“There is a maximal member of each non-void 
family of finite character”) is one of the statements equivalent to 
the axiom of choice and the well-ordering principle listed in the 
famous book on topology [9] He is also known for his work on 
the Fast Fourier Transform (Cooley–Tukey FFT algorithm) and many 
other contributions to science. The box plot gives an image of the 
variability of the data, which in this case consist of the estimates of 
the 95th percentile of the incubation time distribution. The grey col-
ored box (‘interquartile box’) is between the first and third quartile 

For Figure 2 all 1000 values ( ) ( ) ( )F t t y dF yK*
nh h nh- -u u#  were 

ordered and the percentiles ( )P t.0 025
u  and ( )P t.0 975

u  were determined. 
Note that we do not subtract ( )F tnh

u  but instead subtract the convo-
lution of the kernel Kh with dFnh

u . This gives the bootstrap intervals:

( ) ( ), ( ) ( ) .F t P t F t P t. .nh nh0 975 0 025- -u u u u6 @
A similar procedure for the density estimates yields the confidence 
intervals in Figure 3.

A comparison
We now try to throw more light on the difference between the non-
parametric approach and the approach using distributions like the 
Weibul, log-normal, et cetera. for the incubation time distribution. 
We investigated, in a follow-up of a study presented by the med-
ical statistician Ronald Geskus at a session of the Joint Statistical 
Meeting (JSM) August this year, how these methods behave in the 
estimation of the 95th percentile of the distribution. To this end we 
generated 1000 samples of size n 500= , using a Weibull distribu-
tion to generate the incubation time distribution.
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Figure 2 Estimate of the distribution function of the incubation time for the data in [1] 
by the SMLE, with pointwise 95% bootstrap confidence intervals.
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Figure 3 Estimate of the density of the incubation time for the data in [1], with pointwise 
95% bootstrap confidence intervals.
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Some remarks of the statistician Richard Gill on this: One sees 
that the uncertainty about what interest us, is not much larger 
when one only uses the nonparametric SMLE than when one 
assumes that the incubation time distribution is Weibull (which 
is the correct distribution in this simulation setting), but much 
larger when one assumes log-normal. While there is absolute-
ly no scientific (medical) reason to ‘believe’ Weibull, or to ‘be-
lieve’ log-normal. They lead to completely different statistical 
inferences, hence could lead to completely different policy rec-
ommendations. How to choose? We don’t have to. We statisti-
cians have figured out how to do it better, not making these 
assumptions.

Conclusion
In [6] the nonparametric maximum likelihood estimator Fnt  of the 
distribution function of the incubation time for Covid-19 was intro-
duced, as an alternative to the parametric estimates used in this 
case, see, e.g., [1]. At that time it was still unknown what the local 
limit distribution of Fnt  (at a fixed point t) was. In the mean time it 
has been proved in [7] that, after rescaling, the limit distribution 
is Chernoff’s distribution ((3) above), which was not exactly unex-
pected, but rather hard to prove.

It is argued above (and also in [5] ) that one can probably better 
use smoothed nonparametric maximum estimates, of which Figures 
2 and 3 give examples. Moreover, we can produce confidence in-
tervals in a fully automatic way, using the smooth bootstrap, gen-
erating bootstrap samples from the SMLE. The ordinary bootstrap 
fails in producing valid confidence intervals via the MLE itself, as 
can be deduced from results in [10].

The methods discussed here provide an alternative for the para-
metric models which are usually applied in this context, estimating 
the incubation time distribution by, e.g., Weibull, gamma or log-nor-
mal distributions. The latter methods will not be able to catch finer 
aspects of the data, in contrast with, for example, the nonparamet-
ric density estimates. Moreover, they will only perform well if the 
underlying distribution is of the assumed type (Weibull, log-normal, 
et cetera) and otherwise will be inconsistent. On the other hand, 
the nonparametric methods will be consistent, irrespective of the 
underlying distribution.

All programs for generating the pictures in this column were 
written in C++ and are available as R scripts on [4]. s

of these 1000 estimates. The ‘whiskers’ are at a distance equal to 
1.5 times the interquartile range from the boundaries of the inter-
quartile box if there are outliers and otherwise at the smallest or 
largest observation. The outliers are further away than 1.5 times the 
interquartile range from the boundaries of the interquartile box. The 
black line segments in the boxes are at the position of the median. 
Finally, the red line denotes the value of ( . ) .F 0 95 10 17716,

1 .a b
-  

where ( , ) ( . , . )3 03514 0 002619a b =  (the values used to generate the 
Weibull incubation time distribution).

It can be seen that, since the incubation time data were gen-
erated from a Weibull distribution, the estimates of the quantiles 
assuming this distribution have indeed the smallest variation, but 
are slightly biased. But the nonparametric estimates, not making 
the assumption that the distribution is of the Weibull type, are also 
pretty good, whereas the estimates, assuming a log-normal distri-
bution are completely off (in fact, these estimates are inconsistent, 
i.e., will not converge to the right value if the sample size tends 
to 3), and indeed the model is ‘misspecified’ for these estimates. 
But the term ‘misspecified’ does not apply to the computations with 
the SMLE, since that estimate adapts to the underlying distribution 
and provides consistent estimates.
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Figure 4 Box plot of 95th percentile estimates for the nonparametric, Weibull and 
log-normal maximum likelihood estimators for 1000 samples of size n 500= . The incuba-
tion time data are generated from a Weibull distribution.
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