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nomials have integer coefficients and are 
irreducible, and so (3) gives the factoriza-
tion of X 1n -  into irreducibles over the 
rationals. Indeed, many famous mathe-
maticians gave proofs of the irreducibili-
ty of the cyclotomic polynomials (Gauss, 
Kronecker, Eisenstein, Dedekind, Landau, 
Schur, ...). For some of these proofs, see 
Weintraub [48]. The (very short) proof of 
Schur was even set to rhyme! (Cremer [14, 
pp. 39–41] ).

Write
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For ( )j n> {  we put ( ) .a j 0n =  We define 
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and call ( )A n  the height of nU . Note that, 
for example, { } { , , , },A 105 2 1 0 1= - -  see 
Table 1. Our interest is in the possible 
heights ( )A n  and extrema of { }A n  as n 
runs over the integers.

The cyclotomic coefficients ( )a jn  are usu-
ally very small. Indeed, in the nineteenth 
century mathematicians even thought that 
they are always 0 or 1! . The first counter-
example to this claim occurs at n 105= ; 
we have ( ) ( )a a41 7 2105 105= =- . Issai 
Schur in a letter to Edmund Landau proved 
that every negative even number occurs as a 
coefficient of some cyclotomic polynomial. 
Emma Lehmer [29] reproduced Schur’s ar-
gument, which is easily adapted to show 
that every integer is assumed as value of 
a cyclotomic coefficient [44]. For the best 
result to date in this direction see Fintzen 
[17] (found during her Max Planck Institut 
für Mathematik (MPIM) internship).

,jg  with j n1 # #  and ( , ) .gcd j n 1=  There 
are precisely ( )n{  primitive n-th roots of 
unity, where { is the Euler totient function, 
which is defined as 
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An obvious primitive n-th root of unity is 
.e /i n2r

 The n-th cyclotomic polynomial can be 
defined as 
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It thus has precisely the n-th order prim-
itive roots of unity as its simple roots. 
(Note that of all Greek letters U looks the 
most like a cut circle.) The degree of ( )XnU  
is ( )n{  and we have ( )x X ( )

n
n gU = +{ .

By reducing the fractions /m n in (1) 
(e.g., / /4 6 2 3= ), we see that for each divi-
sor d of n there are ( )d{  reduced fractions 
with denominator d. These correspond to 
roots of unity of order d. We thus infer 
from (1) and (2) that 

( ) .X X1
|

n
d

d n
U- = % (3)

Setting n 1=  we get ( ) .X X 11U = -  In case 
n p=  is a prime, we obtain

( ) .X X X X 1p
p p1 2 gU = + + + +- -

It can be shown that all cyclotomic poly-

Cyclotomic polynomials: basics
It is clear that ( )( )X X X1 1 12 - = - + , 

( )( )X X X X1 1 13 2- = - + +  and X 14 - = 
( )( )( ) .X X X1 1 12- + +  Over the rationals 
none of the factors can be factorized fur-
ther and the expressions give the factoriza-
tion into irreducibles. However, it is not so 
obvious how to factorize X 1n -  for an ar-
bitrary integer n 1$  into irreducibles over 
the rationals in a systematic way.

Over the complex numbers the answer 
is easy:

.X X e1n
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1
n
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- = -
=

r_ i% (1)

The roots are the n-th roots of unity and 
these divide the circle into equal parts. The 
word cyclotomy comes from ancient Greek 
and literally means circle-cutting. A root of 
unity g is said to be a primitive n-th root of 
unity if it satisfies ,1ng =  but not 1dg =  for 
any .d n1 <#  For any two integers n and d 
by the Euclidean algorithm we can find in-
tegers a and b such that ( , ),gcdan bd n d+ =  
where gcd is a shorthand for greatest com-
mon divisor. Thus if 1ng =  and ,1dg =  it 
follows that .1( , )gcd n dg =  Therefore, in or-
der to check that g is a primitive n-th root 
of unity, it suffices to check that 1ng =  and 

1d !g  for every proper divisor d of n. By 
a similar argument one deduces that if g 
is a primitive n-th root of unity, then jg  is 
of order / ( , ) .gcdn j n  It follows that all the 
primitive n-th roots of unity are of the form 
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are known, but they turn out to be practi-
cally useless. A famous example is a result 
of Mills, which asserts the existence of a 
real number A 1>  with the property that 
A3n

 rounded down to the nearest integer 
is prime for each natural number n. This 
first ‘defeat’ forces us to take a step back 
and ask less precise questions such as to 
estimate the prime counting function ( ),xr  
which counts the number of primes p not 
exceeding x; that is ( ) .x 1p xr =

#
/  In the 

course of answering this, the stochastic 
nature of the prime numbers will become 
apparent. The notion of an error term will 
also be involved. If | ( ) | ( )f x Bg x# , for some 
positive constant B and all values of ,x 1$  
we write this compactly as ( ) ( ( ))f x O g x= . 
This notation was introduced by Bachmann 
in 1894 and popularized by Landau and is 
generally named Landau’s Big O notation. 
Edmund Landau (1877–1938) was the first 
to put prime number theory as a separate 
field on the mathematical map and wrote 
a bulky standard work [28] on it. Two 
non-Germans mathematicians, who stud-
ied the original German version, were sur-
prised to learn about a very strong math-
ematician called Verfasser they had never 
heard of (‘Verfasser’ means ‘author’ ...).

The first mathematicians to investigate 
the growth of ( )xr  had of course to start 
with collecting data to get some intuition 
for what is going on. They did this by pain-
fully setting up tables of consecutive prime 
numbers. The most famous of these com-
puters was Carl-Friedrich Gauss. In 1791, 
when he was 14 years old, he noticed that 
as one gets to larger and larger numbers 
the primes thin out, but that locally their 
distribution appears to be quite erratic. 
He based himself on a prime number ta-
ble contained in a booklet with tables of 
logarithms he had received as a prize, and 
went on to conjecture that the “probabili-
ty that an arbitrary integer n is actually a 
prime number should equal / log n1 .” Thus 
Gauss conjectured the following approxi-
mations: 

( ) Li( ),logx n x1

n x2
. .r
# #

/

where

Li( ) ,logx t
dt

x

2

= #

denotes the logarithmic integral. By partial 
integration one sees that ( ) / logx x xLi + , 
where by ( ) ( )A x B x+  we mean that 

The rest of the paper discusses the 
progress we made on establishing this 
conjecture. Surprisingly, a big role in this is 
played by deep work done by many num-
ber theorists on the distribution of gaps 
between primes. Last but not least, every-
thing hinges on a construction found by 
Eugenia Roşu [38] during a 2010 MPIM in-
ternship, improving on an earlier construc-
tion due to Yves Gallot and myself [21].

Prime gaps

Elementary material, generalities
For millenia now (some!) humans have 
been fascinated by prime numbers and 
their distribution. Recall that prime num-
bers are numbers 1>  only divisible by 
themselves and 1 (it turns out that it is 
much better to consider 1 itself not as 
a prime number). It is usually attributed 
to Euclid (circa 300 BCE) that he proved 
there are infinitely many primes. Several 
formulas producing infinitely many primes 

Nowadays computations can be ex-
tended enormously far beyond ,n 105=  cf. 
Figure 1. These and analytic number theo-
retical considerations show clearly that the 
complexity of the coefficients is a function 
of the number of distinct odd prime factors 
of n, much rather than the size of n. Com-
plex patterns arise (see Figure 1) and a lot 
of mysteries remain. 

Which maximum coefficients do occur?
The very innocent looking question we 
consider here is the following.

Question 1. Which integers occur as a max-
imum coefficient of some cyclotomic poly-
nomial?

For example, 210U  has 2 as a maximum 
coefficient. We propose the following con-
jecture.

Conjecture 1. Every natural number occurs 
as the maximum coefficient of some cyclo-
tomic polynomial.

n ( )xnU

5 x x x x 14 3 2+ + + +

12 x x 14 2- +

15 x x x x x x 18 7 5 4 3- + - + - +

16 x 18 +

60 x x x x x x 116 14 10 8 6 2+ - - - + +

105 x x x x x x x x2 148 47 46 43 42 41 40 39 g+ + - - - - - + +

210 x x x x x x x x2 148 47 46 43 42 41 40 39 g- + + - + - + + +

240 x x x x x x 164 56 40 32 24 8+ - - - + +

Table 1 Some cyclotomic polynomials.

Figure 1  Coefficients of the n-th cyclotomic polynomial for n 3234846615 3 5 7 11 13 17 19 23 29$ $ $ $ $ $ $ $= = , cf. [2].
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log log terms and are certainly blind to the 
loglog log terms that frequently occur. It 
is there that the log log log devil is in his 
element. The presence of such terms can 
result in the conjecture being false on very 
thin subsequences. A famous example is 
the conjecture that ( ) ( )Lix x<r . It is false, 
but true up to gigantic values of x. Little-
wood proved that ( )xr  and Li(x) carry out 
an eternal dance around each other. This 
is now a classic result, but falls a bit short 
of proving RH (on the suggestion of his tu-
tor Littlewood tried to prove RH during his 
postdoctoral studies!). Further examples 
of log log log devil teases are discussed in 
my article [36].

Large prime gaps
There is a whole range of conjectures on 
gaps between consecutive primes; from 
more careful to high-risk. The most famous 
one is Legendre’s and claims that there is 
a prime in ( ,( ) )m m 12 2+  for every natural 
number m. This is a conjecture that is on 
the safer side, but for example Firooz-
bakht’s conjecture that pn

/n1  is a strictly 
decreasing function of n is ‘trés risqué’. 
It implies that ( )log logd p p 1<n n n

2 - +  
for all n sufficiently large (see Sun [43] ), 
contradicting a heuristic model suggesting 
that, given any ,0>e  there are infinitely 
many n such that ( )( )logd e p2>n n

2e-c- ; 
see Banks, Ford and Tao [4]. Cramér in 
1936 conjectured that (( ) ) .logd O pn n

2=  
Piltz in 1884 conjectured more modestly 
that ( )d O pn n= e  for every 0>e . The first to 
prove that ( )d O pn n= i  for some 1<i  was 
Hoheisel in 1930. He took 1 33000

1i e= - + . 
Well-known to number theorists is Hux-
ley’s [24] result from 1972 showing that 
one can take 12

7i e= + . Baker et al. [3] 
showed that ( ),d O pn n

.0 525=  which is not 
much weaker than what one can prove as-
suming RH. Under RH it is an easy conse-
quence of (3.1) that ( ( ) ) .logd O p pn n n

2=  
Cramér [13] improved on this by showing 
in 1920 that ( )logd O p pn n n=  under RH. 
More explicitly, Carneiro et al. [11] estab-
lished under RH that logd p pn n n25

22#  for 
every p 3>n .

 We will be especially interested in the 
following conjecture, which is in the same 
league as Legendre’s conjecture. 

Conjecture 2 (Andrica’s conjecture). For 
n 1$ , p p p p<n n n n1 1- ++ + , or equiv-
alently p p 1<n n1 -+ , or equivalently 
p p p2 1<n n n1 - ++ . 

finitely many n. There are a lot of interest-
ing things to say further on small gaps and 
some spectacular recent developments to 
report on, see, e.g., the recent book by 
Broughan [10]. However, since this topic 
is dealt with in the companion article by 
Lola Thompson [46], we will not discuss it 
further here.

Our focus will be on large prime gaps. 
One does not need the PNT to see that 
there are arbitrarily large prime gaps, i.e. 
arbitrarily large stretches of composite inte-
gers. Namely, for every N 1>  there exists a 
string of at least N consecutive composite 
integers. An example is given by the string 
( ) ! , ( ) ! , , ( ) ! .N N N N1 2 1 3 1 1f+ + + + + + +  
Experimentally gaps of size N have been 
found between numbers much smaller 
than ( ) !N N1 1+ + + . Rankin [40] proved 
in 1938 that there exists a positive con-
stant c such that, for infinitely many n, we 
have

( )

( )( )
.log

log log log

log log log log log log

p p

c p
p

p p
n n

n
n

n n

1

2$

-+

This improved on work of Westzynthius 
(1931) who showed that the sequence 
( )/ logp p pn n n1 -+  is unbounded. In his 
final paper on this topic Rankin showed 
that one can take c to be any number 
smaller than ,ec  where ,0 5772156649fc =  
is Euler’s constant. This had been shown 
already in 1935 by Pál Erdős [16]. Indeed, 
Erdős who had the habit of offering prizes 
for solving various open problems, offered 
10 000 dollar to anyone who could prove 
that c can be replaced by any arbitrarily 
large constant. In 2016, twenty years af-
ter Erdős passed away, this conjecture was 
independently established by Ford, Green, 
Konyagin and Tao [18] and Maynard [33]. 
The group of four authors and Maynard re-
ceived each 5000 dollar from Ron Graham, 
a close friend of Erdős.

The function log log x walks off to in-
finity in such a gentle way that one does 
not notice it. For example, the reciprocal 
prime sum /p1p x#

/  behaves in that way. 
It comes perhaps as a surprise (or shock!) 
to the reader that if we sum the recipro-
cals of all different primes any human eye 
has ever looked at, the number comes to 
be out less than ... 4! The fact that mak-
ing conjectures in analytic prime number 
theory is a notoriously dangerous endeav-
our is related to this. The danger lies in 
the fact that computers can barely spot 

( )/ ( ) .lim A x B x 1x ="3  Thus Gauss’s heu-
ristic leads to the conjecture that

( ) .logx x
x

+r

This was proved much later, in 1896, by 
Hadamard and independently by de La 
Vallée Poussin and is now called the Prime 
Number Theorem (PNT). Both of them were 
divinely rewarded for doing so and became 
immortal. Well, almost — they lived to be 
near centenarians ...

If the Riemann Hypothesis (RH) were 
true, it would imply that 

( ) Li( ) ( ) .logx x O x xr = + (5)

The RH is one of the Millennium Problems 
and will not be discussed further here. Its 
intimate connection with the distribution 
of prime numbers is discussed in an intro-
ductory way in [37].

Prime number questions fall into two 
main categories: global problems and lo-
cal problems. The former concerns asymp-
totic formulae, sums, estimations and the 
like of ( )xr  and related functions (of which 
the PNT is an example), while local prob-
lems involve questions dealing with the in-
dividual primes. Our focus here will be on 
large differences between primes (a local 
property) and their applications. 

We let pn denote the n-th prime number 
and put d p pn n n1|= -+ . For example, the 
first few prime numbers are p 21 = , p 32 = , 
p 53 = , p 74 =  which means that the first few 
prime gaps are d 11 = , d 22 = , and d 23 = . 
Note that ( )p p p 2k

n
k k n1 1 1- = -= + +/ . By 

an equivalent form of the PNT the n-th 
prime number pn asymptotically grows 
as logn n. (This is plausible as by the 
PNT the number of primes not exceed-
ing logn n is asymptotically equal to 

/( ( ),log log logn n n n  that is to n.) Thus on 
average the prime gap is log n, which be-
haves as log pn. A natural question is then 
how often dn is behaving far from average. 
E.g., looking at the dn one might suspect 
that infinitely often .d 2n =  This happens 
when both pn and pn 1+  are primes (they 
then form a twin prime pair) and the Twin 
Prime Conjecture states that there are in-
finitely many twin prime pairs. Similarly it 
is suspected that, given any even number 
2k, infinitely often .d k2n =  Proving results 
in this direction is extremely hard. If one 
focuses on rather bigger gaps, life is a 
bit easier. For example, Helmut Maier [31] 
showed that ( )/logp p p 4n n n1 #-+  for in-
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This is not the case if n has four or more 
distinct odd prime factors. For optimal 
ternary cyclotomic polynomials the situa-
tion is even more under control, since if 
we know that ( )a k bpqr 1 =  and ( ) ,a k apqr 2 =  
with ,b a p- =  then b must be the maximal 
coefficient and a the minimal one.

The family pqrU  with p fixed
In this subsection we briefly discuss other 
research on ternary coefficients.

The height ( )A n  is unbounded if n rang-
es over the ternary integers. However, if 
we restrict to ternary n having a prescribed 
smallest prime factor ( ) ,P n p=  we get a 
bounded quantity ( ) .M p  The definition of 

( )M p  can be stated more explicitly as 

( ) { ( ): },maxM p A pqr p q r2 < < <=

where p is a fixed odd prime and q,r range 
over the primes satisfying .r q p> >  As the 
definition of ( )M p  involves infinitely many 
cyclotomic polynomials, it is not clear 
whether there exists a finite procedure to 
determine it. Duda [15], during his intern-
ship at MPIM, provided such a procedure. 
It reduces the computation of ( )M p  to the 
determination of the maximum value of 

( ),A n  with n running through a finite set 
of ternary integers pqr. As the n involved 
are huge, the procedure is unfortunately 
not practical. It is a major open problem 
to find a practical procedure leading to ex-
plicit values of ( )M p . 

In 1971, Möller [35] gave a construc-
tion showing that ( ) ( )/M p p 1 2$ +  for 
p 5> . On the other hand, in 1968, Sis-
ter Marion Beiter [5] had conjectured 
that ( ) ( )/M p p 1 2# +  and shown that 

( )M 3 2=  [7], which on combining leads 
to the conjecture that ( ) ( )/M p p 1 2= +  for 
p 2> . The bound of Möller together with 
Beiter’s [6] bound ( )M 5 3#  shows that 

( ) .M 5 3=  Zhao and Zhang [49] showed 
that ( ) .M 7 4=  Thus Beiter’s conjecture 
holds true for p 7# . Gallot and Moree [21] 
showed that Beiter’s conjecture is false for 
every .p 11$  Moreover, they showed that 
for every 0>e  we have ( ) ( )M p p3

2$ e-  
and conjectured that always ( ) / ,M p p2 3#  
dubbing this conjecture the ‘corrected Sis-
ter Beiter conjecture’ (see Table 3).

The true behavior of ( )M p  is much more 
complicated than suggested by Beiter’s 
conjecture. For one, it is related to the 
distribution of inverses modulo primes p. 
Given any integer a coprime to p, any in-
teger b with (mod )ab p1/  is its modular 

Let p be a prime and n a positive inte-
ger. Then from (7) the following properties 
are easily deduced

1. ( ) ( ) if dividesX X p npn n
pU U= ;

2. ( ) ( ) ( ) if is oddX X n1 ( )
n

n
n2U U= - -{ ;

3. ( ) ( / )X X X1( )
n

n
nU U= { , that is, nU  is 

self-reciprocal if n 1> .

For example, using the first property we 
infer that ( ) ( ) .X X X 116 2

8 8U U= = +
It is a classical result that if n has at 

most two distinct odd prime factors, then 
( ) ,A n 1=  cf. Lam and Leung [27]. The first 

non-trivial case arises where n has pre-
cisely three distinct odd prime divisors 
and thus is of the form ,n p q re f g=  with 

p q r2 < < <  prime numbers. By repeat-
edly invoking the first property above we 
have { } { },A p q r A pqre f g =  and hence it 
suffices to consider only the case where 
e f g 1= = =  and so .n pqr=  This moti-
vates the following definition.

Definition 1. A cyclotomic polynomial nU  
is said to be ternary if n pqr= , with 2 < 
p q r< <  primes. In this case we call the 
integer n ternary.

An important subclass of these polyno-
mials where we have even more control 
are the optimal ternary cyclotomic polyno-
mials.

Definition 2. A ternary cyclotomic polyno-
mial pqrU  is said to be optimal if its coef-
ficients assume p 1+  different values, that 
is { }A pqr  has cardinality .p 1+

The usage of the word optimal comes 
from the fact that p 1+  is the maximum 
number of distinct coefficients that can 
occur.

A special property of ternary cycloto-
mic polynomials is that consecutive coef-
ficients differ by at most one (proven in 
[20] ). Here an example: 

( )X

X X X X

X X X

2 2 2

3 4 3

11 13 17

672 673 674 675

676 677 678

g

g

U

= - - - -

- - -

$ $

It follows that { }A n  consists of con-
secutive integers if n is ternary (this 
is not true in general!). For example, 

{ } { , , , , , },A 11 13 17 4 3 1 2 3$ $ f= - -  as can 
be read off from Table 5. In the ternary 
case the behaviour of the coefficients is 
both non-trivial, but also understood so 
well, that we can use this to our benefit. 

Andrica’s Conjecture is currently out of 
reach as we have just seen (even under 
RH). The next best thing one can then 
hope for is to prove that there are not too 
many n for which the inequality fails (more 
on that later).

Many mathematicians take it that an 
unproven assertion can only be called con-
jecture if there are overwhelming reasons 
for its truth. From this perspective it seems 
fair to say that this does not apply to any 
of the conjectures in this section. Some log 
log log devil (or any of its kin) might well 
be lurking somewhere ...

The size of large prime gaps
Estimating the size of large prime gaps by 
establishing a small exponent a in

(6)

p p $-

( )p p O xn n
p x

p

1

n

n n n1

- =
#

a
+

+

^ h/

is a sport. The current record is due 
to Heath-Brown [23], who established 

,/3 5a e= +  with e any positive number. 
This result is very relevant for us, as we 
will see in the sequel. I include the table 
with ‘exponent hunters’, as it strongly sug-
gests how much effort it often takes in 
prime number theory to achieve seemingly 
small improvements (see Table 2).

More on cyclotomic polynomials
From (1.3) it can be deduced by so-called 
Möbius inversion that

( ) ( ) ,X X 1 ( / )
n

d n d

d n
U = -

;

n% (7)

where the product is over all positive divi-
sors d of n and n is the Möbius function 
defined by ( ) ( )n 1 tn = -  if n is a square-
free positive integer having t prime factors, 
and ( )n 0n =  if n has a repeated prime 
factor.

exponent author year

0.9666 D. Wolke 1975

0.8674 R. J. Cook 1979

0.8243 M. N. Huxley 1980

0.8083 A. IviĆ 1981

0.8055 R. J. Cook 1981

0.7501 D. R. Heath-Brown 1979

0.6944 A. S. Peck 1998

0.6666 K. Matomäki 2007

0.6001 D. R. Heath-Brown 2019

Table 2 Record exponents a in (6) over time.



Pieter Moree  Prime gaps and cyclotomic polynomials NAW 5/22 nr. 4 december 2021 223

:

,

:

, .

p
m p

m m m p

p
m p

m m m p

2
1

0 4 2 3

2
1

0 4 2 3

is a prime,

is a prime,

R

2

2

|

,

$ #

$ #

=
-

-

+ +

-
+

+ +

'

'

2

2

We conjecture that this set equals the set 
of all natural numbers, thus implying that 
each natural number can arise as maximum 
coefficient of some cyclotomic polynomial. 
Roughly speaking R is a union of integers 
in intervals of the form (( )/ / ,p p1 2 2- -  
( )/ / ),p p1 2 2- +  and thus if the gaps 
between successive primes are always suf-
ficiently small, all natural integers will be 
covered. Working out the technicalities one 
arrives at the following result. 

Theorem 2. If p p p p<n n n n1 1- ++ +  holds 
for ,p h2n #  then the integers , , ,h1 2 f  are 
in .R  Andrica’s conjecture, Conjecture 2, 
implies that every natural number occurs 
as the maximum coefficient of some terna-
ry cyclotomic polynomial. 

A lot of numerical work on large gaps 
has been done (see the website [39]). This 
can be used to infer that the inequality in 
Theorem 2 holds for .p 2 2 1 8 10n

63 19$ $# . , 
leading to the following corollary. 

Corollary 1. Every integer up to 9 1018$  oc-
curs as the maximal coefficient of some 
ternary cyclotomic polynomial.

If holes in the set R appear, it is when 
.p p p pn n n n1 1$- ++ +  The number of 

natural numbers up to x that are not in R 
(if any), is close to 

.

d p p

d d

n n n
p x

d p p

n
p x

d p p

n
p x

d p

1
2

2 2

n

n n n

n

n n n

n

n n

1

1

# #

- -
#

$

#

$

#

$

+

+

+

+

+

_ h/

/ /

Now the reader might be reminded of 
(6). An easy climb on the shoulders of gi-
ants in analytic number theory then leads 
to the following result.

Theorem 3. For any fixed 0>e , there ex-
ists a constant Ce such that the number 
of positive integers x#  that do not occur 
as a height of a ternary cyclotomic poly-
nomial is at most .C x /3 5

e
e+  Under the Rie-

mann Hypothesis this number is at most 
.C x /1 2

e
e+

in certain triangles with (mod ).ab 1 241/  
For a detailed analysis of this construction, 
see Cobeli et al. [12].

Our results on the maximum coefficient
In this section I finally return to Question 1 
and discuss the recent progress made on it 
in my paper with Kosyak, Sofos and Zhang 
[26]. It relies on a construction found by 
my former intern Eugenia Roşu (using only 
paper!). For certain primes p it improves on 
an earlier construction by Gallot and my-
self (found using paper ... and computer). 
The original formulation is quite lengthy, 
however for us the following watered down 
version will do. 

Theorem 1 (Moree and Roşu [38] ). Let m 0$  
be an arbitrary integer and p m m4 2 32$ + +  
be any prime. Then there exist primes q1, r1, 
q2, r2 such that pq r1 1

U  and pq r1 1
U  have maxi-

mum coefficient ( )/ ,p m1 2- -  respectively 
( )/ .p m1 2+ +

This shows that the set of cyclotomic 
maximum coefficients we can obtain cer-
tainly contains 

inverse. The collection of points ( , )a b  with 
,a b p0 < <  is called the modular hyperbo-

la; for a survey see Shparlinski [42]. The 
distribution of points on the modular hy-
perbola is traditionally investigated using 
the Kloosterman sum ( , ; ),K a b p  which is 
defined as 

( , ; ) ,K a b p e
x p1 1

( )/i ax bx p2=
# # -

r + r/

with xr any modular inverse of x modulo p. 
(As an aside we note that the Dutch word 
kloosterman means ‘cloister man’ and thus 
the cloister man sums can be used to in-
vestigate a conjecture of a nun. Honi soit 
qui mal y pense! Reader beware: too in-
tense study of these sums and their appli-
cations can lead to ‘Kloostermania’ [34].) 
By a fundamental result of Weil we have 
| ( , ; ) | ,K a b p p2#  which can be used to 
show that ( ) / logM p p p p2 3 3> /3 4-  (see 
Cobeli et al. [12] ).

In Figure 2 we display part of the mod-
ular hyperbola mod 241 that is relevant 
in constructing a sharp lower bound for 

( )M 241  in the work of Gallot and myself. It 
gives integer pairs ( , )a b  with ,a b1 240# #  

p 3 5 7 11 13 17 19 23 29 31 37 41

( )/p 1 2+ 2 3 4 6 7 9 10 12 15 16 18 21

( )M p $ 2 3 4 7 8 10 12 14 18 19 22 26

/p2 36 @ 2 3 4 7 8 11 12 15 19 20 24 27

Table 3  Some numerical evidence for the corrected Sister Beiter conjecture.

Figure 2  ( )M 241  estimation relevant part of modular hyperbola mod 241.
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for the numbers , , .m 1 10f=  The integer 
k has the property that ( ) ,a k mpqr !=  with 
the sign coming from the sixth column. The 
seventh column records the difference be-
tween the largest and smallest coefficient 
and is in bold if this is optimal, that is, if the 
difference equals p (compare Definition 2). 
See [26] for the continuation of the table 
up to .m 40=

Prime differences make their appear-
ance since in our approach we work with 
ternary cyclotomic polynomials. One would 
want to work with nU  with n having at least 

of results as described in the previous sec-
tion for the minimum coefficient and for 
the height. In case of the height a conjec-
ture slightly stronger than Andrica’s enters 
the game. 

Conjecture 4. Every natural number occurs 
as the height of some cyclotomic polyno-
mial.

We demonstrate this in Table 5, which 
gives the minimum ternary integer n pqr=  
with p q r< <  such that nU  has height m 

A different approach
Let h 1>  be odd. If there exists a prime 
p h2 1$ -  such that ( )q h p1 1|= + -  is a 
prime too, then for some prime r q>  it can 
be shown that pqrU  has maximum coeffi-
cient h. This is a consequence of work of 
Gallot, Moree and Wilms [22] and involves 
ternary cyclotomic polynomials that are not 
optimal. For some choices of h,p and q see 
Table 4.

Conjecture 3. Let h 1>  be any odd integer. 
There exists a prime ,p h2 1$ -  such that 

( )h p1 1+ -  is a prime too.

This conjecture is a consequence of the 
widely believed Bateman–Horn conjecture 
[1], which implies that, given an arbitrary 
odd integer ,h 1>  there are infinitely many 
primes p such that ( )h p1 1+ -  is a prime 
too.

Theorem 4. If Conjecture 3 holds true, then 
every positive odd natural number occurs 
as maximal coefficient of some ternary 
cyclotomic polynomial. Unconditionally a 
positive fraction of all odd natural num-
bers occur as maxima.

Our proof of the second assertion 
makes use of deep work of Bombieri, 
Friedlander and Iwaniec [8] on the lev-
el of distribution of primes in arithmetic 
progressions with fixed residue and vary-
ing moduli. Although the unconditional 
statement in Theorem 4 is surpassed by 
the unconditional statement in Theorem 3, 
the proof of Theorem 4 is, in a way, ‘or-
thogonal’ to the one of Theorem 3; it thus 
has the potential of working for variations 
of the problem where the method behind 
Theorem 3 would fail. Interestingly, like 
our prime gap criterion, it rests on a varia-
tion of a certain very well studied problem 
involving prime numbers. Both prime num-
ber questions are, however, quite differ-
ent. In [26] we also obtain the same type 

h p q

3 5 11

5 13 53

55 139 7507

117 263 30509

219 449 997883

Table 4  Smallest choice of p h2 1$ -  with  ( )q h p1 1|= + -  
prime.

height p q r k sign diff.

1 3 7 11 0 + 2

2 3 5 7 7 - 3

3 5 7 11 119 - 5

4 11 13 17 677 - 7

5 11 13 19 1008 - 9

6 13 23 29 2499 - 10

7 17 19 53 6013 + 14

8 17 31 37 5596 - 14

9 17 47 53 14538 - 17

10 17 29 41 4801 - 17

Table 5  Minimal ternary examples with prescribed height.

With Bogdan Petrenko and MPIM interns Oana-Maria Camburu, Jessica Fintzen and Eugenia Roşu (from left to right).
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four prime factors; however, this leads to 
a loss of control over the behaviour of the 
coefficients in general and the maximum, 
minimum and height in particular. Prime 
number properties play a true role if one 
asks for the possible heights ( )A n  and ex-
trema of { }A n  with n restricted to ternary 
integers.

Further reading
For a popular account on prime gaps in 
Dutch see one of the chapters in Van den 
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Brandhof [47], who speaks of them as  
‘Priemwoestijnen’ (prime deserts). Riben-
boim’s book [41] gives a wealth of results 
on prime numbers and their distribution. 
It can be thought of as a number-the-
oretical version of the Guinness Book 
of Records. Also some of the underlying 
mathematics is explained. For a computa-
tional history of prime numbers and Rie-
mann zeros see [37]. The truly courageous 
might have a go at the monumental book 
of Landau [28].  s
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