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2010, it is known that 2 12n
+  is composite 

for .n5 32# #  Some mathematicians have 
even conjectured that 2 12n

+  is compos-
ite for all !n 5$  If they are correct, then 
Fermat could not have been more wrong! 
In short, just because the smaller primes 
seem to display certain patterns, one can-
not extrapolate that these patterns hold in 
general. One needs to prove, rigorously, 
that these patterns hold continue past the 
small data points that humans are able to 
compute. The fact that the primes appear 
to land along the diagonals in the spiral 
above is also a phenomenon that dissi-

For example, in Figure 1 the positive 
whole numbers are arranged in a spiral, 
starting with 1 at the center. There is a 
black dot at each prime that appears on 
the line. Remarkably, the black dots ap-
pear to arrange themselves along diagonal 
lines. Perhaps there is a certain rhythm of 
the primes after all!

Looking at the primes naturally leads 
one to look for patterns. However, one 
has to be a bit careful when looking for 
patterns in the primes. In 1650, Fermat fa-
mously conjectured that all numbers of the 
form 2 12n

+  (where , , , , ,n 0 1 2 3 4 f=  ) are 
prime. He based his conjecture on the fact 
that the pattern holds for , ...,n 0 4= , and 
that was as far as he could compute by 
hand. However, in 1732, Euler showed that 
Fermat’s conjecture fails when .n 5=  As of 

Patterns in the prime numbers?
Prime numbers have long been a source 
of fascination. Just as some people would 
look to the skies and wonder about the 
stars, others would look at lists of whole 
numbers and wonder about the primes: 
that is, those numbers greater than 1 that 
are only divisible by 1 and themselves. 
Like DNA in biological organisms, primes 
can be viewed as the ‘building blocks’ of 
the integers. Every positive integer great-
er than 1 can be expressed uniquely as 
a product of primes. In other words, the 
prime factorization of an integer complete-
ly specifies that integer. 

Some would say that the primes behave 
erratically, seeming to appear at random 
places, while others would say that they 
display a surprising amount of symmetry. 

Research 

 (Mind the) gaps 
between primes

The question of whether there are infinitely many pairs of ‘twin primes’ (primes that differ 
by 2) has puzzled mathematicians for hundreds, if not thousands, of years. Until recently, 
it was not even known whether there are infinitely many pairs of primes that differ by a 
finite number. In 2013, Yitang Zhang stunned the mathematics community by proving that 
there are infinitely many pairs of primes that differ by at most 70 000 000. While 70 000 000 
is still quite far from 2, Zhang’s work has inspired a flurry of activity on this problem, 
leading to many other interesting results in number theory. This expository article is based 
on a talk that Lola Thompson gave with the same title at the Winter Symposium of the 
Koninklijk Wiskundig Genootschap (Royal Dutch Mathematical Society) on 9 January 2021. 
The other speaker was Pieter Moree, who also has an article in this issue. 
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Figure 1  Prime spiral, by Eric W. Weisstein [15].
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Twin primes
One pattern that does seem promis-
ing in the exploration of prime numbers 
is the incidence of twin primes: primes 
that differ by 2. The following are pairs 
of twin primes: ( , )3 5 , ( , )5 7 , ( , )11 13 ,... 
Some very large pairs of twin primes have 
been found! For example, the numbers

(

)

3756801695685 2 1

3756801695685 2 1

666669

666669

$

$

-

+

are both prime and they only differ by 2, 
making them a twin prime pair. However, it 
is not yet known whether there are infinite-
ly many such pairs. Determining whether 
there are infinitely many pairs of twin 
primes is one of many famous unsolved 
problems in number theory.

More generally, one could ask if there 
are infinitely many pairs of primes that dif-
fer by any positive integer h that you like. 
This question can be answered very easily 
when h is odd. Since there is only one even 
prime number, namely 2, then we only get 
odd differences between primes when the 
smaller prime is 2. As a result, gaps of size 
h for odd h can appear at most once. The 
situation where h is even appears to be 
a lot more interesting. In the special case 
where h 2= , these are the pairs of twin 
primes that we considered above. Howev-
er, we could also look at primes that differ 
by 4 or 6 or 8 or ... 

We refer to differences between consec-
utive primes as ‘gaps’ between primes. It 
has been conjectured that all even gaps 
between primes occur infinitely often:

Conjecture 1 (de Polignac, 1849). For even 
integers h, there are infinitely many pairs 
of primes ,p p h+ .

This is the first known appearance of the 
so-called ‘twin primes conjecture’ that ap-
pears in the literature. While the statement 
seems simple enough, it is astonishingly 
difficult to prove. In fact, up until recently, 
one could not even show that any particu-
lar integer appears infinitely often as a gap 
between primes! We still do not know of a 
single example of a prime gap that occurs 
infinitely often. However, as we will see be-
low, it has been shown (as of 2013) that at 
least one finite number appears infinitely 
often as a gap between primes.

The GPY approach
In 2003, Dan Goldston and Cem Yıldırım 
announced a proof that there are infinite-

and another number. As a result, the only 
columns that could possibly contain prime 
numbers are columns ‘1’ and ‘5’ above. 
The fact that we have convinced ourselves 
that the pattern in the table is true in only 
a few sentences shows that this pattern is 
pretty trivial. 

In this article, we will focus on some 
patterns in the primes that are both prov-
ably true and nontrivial.

Prime number theory
How many primes are there? It turns out 
that there are infinitely many of them. The 
first few prime numbers are relatively close 
together: , , , , ...2 3 5 7  . However, as you zoom 
out further, the primes seem to spread out. 
Indeed, there are four prime numbers be-
tween 1 and 10, in other words 40% of 
the first ten positive numbers are prime. 
However, only 25% of the first one hun-
dred numbers turn out to be prime, and 
the percentage appears to get worse as 
you look at larger and larger intervals. One 
can see this phenomenon illustrated in the 
following Table 2.

One might look at this table and won-
der, in the long run, what percentage of the 
positive whole numbers are prime. Perhaps 
surprisingly, as you make the table infinite-
ly large, the percentage will approach 0%! 
In other words, there are infinitely many 
primes, but they are extremely rare with-
in the set of positive whole numbers. 
The primes are so rare that, if you put all 
positive whole numbers into a paper bag 
and draw one number out at random, you 
would have a 0% chance of selecting a 
prime!

pates as you zoom out, though there is a 
good reason for it. 

As another cautionary tale, consider the 
positive whole numbers in Table 1. The ca-
sual observer might notice that all of the 
primes (except 2) seem to fall in columns 
‘1’ and ‘5’. Unlike the previous example, 
this pattern actually holds in general. One 
could prove that all primes greater than 2 
fall into columns ‘1’ and ‘5’ if an infinite 
table were constructed in the same man-
ner. Unfortunately, this is not a deep ob-
servation. Notice that, every entry in col-
umn ‘1’ can be written in the form n6 1+ , 
where , , , ...n 0 1 2=  . Similarly, column 2 
corresponds to the numbers of the form 
n6 2+ , and the other whole numbers can 

be written in the form n6 3+ , n6 4+ , n6 5+ , 
or 6n. Notice that ( )n n6 2 2 3 1+ = + . This 
means that n6 2+  can always be factored 
into a product of two numbers that are be-
tween 1 and ,n6 2+  so it cannot be prime. 
Similar logic shows that n6 3+  and n6 4+  
also cannot be prime. Moreover, 6n is 
clearly not prime since it is a product of 6 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

Table 1

10 4 40%

100 25 25%

1 000 168 16.8%

10 000 1 229 12.29%

100 000 9 592 9.592%

1 000 000 78 498 7.85%

10 000 000 664 579 6.65%

100 000 000 5 761 455 5.70%

1 000 000 000 50 847 534 5.09%

10 000 000 000 455 052 511 4.55%

100 000 000 000 4 118 054 813 4.12%

1 000 000 000 000 37 607 912 018 3.77%

Table 2  Percentage of numbers that are prime.
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some conditions in Goldston, Pintz and 
Yıldırım’s work in order to overcome the 
barrier that prevented them from obtaining 
an unconditional result.

The barrier in Goldston, Pintz and 
Yıldırım’s paper had to do with how ‘uni-
formly distributed’ the primes are. In order 
to understand what is meant by this, we 
will need to take a step back and discuss 
modular arithmetic. Simply put, modular 
arithmetic is something that we do every 
day when we tell time on an analogue 
clock. For example, when the digital clock 
says that it is 13:00, we mentally convert 
it to the time on the old analogue clock 
and say that it is 1 PM. Similarly, 14:00 
corresponds to 2 PM, 15:00 corresponds to 
3 PM, et cetera.

Instead of creating clock faces with 
twelve numbers, we can create clock fac-
es with any quantity of numbers that we 
like. We could make a clock with only three 
numbers, or we could make a clock with 
thirteen numbers. For various reasons, 
number theorists like to work with clocks 
that have a prime number of numbers. 

In the example shown in Figure 2, we see 
that the numbers keep wrapping around 
the clock. Since 7 behaves like midnight in 
this clock, it means that 8 corresponds to 
1, and 9 corresponds to 2, ... but we can 
also imagine traveling around the clock 
in a counterclockwise fashion and have a 
notion of negative numbers on our clock. 
We say that the numbers on a clock with 

geons that you want to stuff into n holes, 
there must be at least one hole contain-
ing two pigeons. Moreover, if you have 
infinitely many pigeons that you want to 
stuff into finitely many holes, then there 
must be a hole with an infinite number 
of pigeons. In our example, the ‘‘pigeons’ 
are gaps between pairs of primes and the 
‘holes’ are the even numbers between 2 
and 70 000 000.

Zhang’s approach
How did Zhang manage to overcome the 
difficulties that Goldston, Pintz and Yıldırım 
encountered? 

When his result was announced, he 
seemed like an unlikely superhero. After 
earning his PhD, he was unable to secure 
an academic position. Instead, he spent 
five years doing a series of odd jobs (Sand-
wich Artist at a Subway restaurant, motel 
employee in Kentucky, delivery worker in a 
New York City restaurant) before taking an 
adjunct position at the University of New 
Hampshire. Prior to his seminal paper on 
gaps between primes, he had only writ-
ten two other papers, including his PhD 
thesis which was never published. He was 
already in his late 50’s when he made his 
groundbreaking discovery. Perhaps work-
ing outside of the traditional academic 
system is what gave him the freedom to 
follow his convictions. He believed that, 
rather than needing to develop a whole 
new set of tools, he could simply relax 

ly many pairs of primes that differ by at 
most 12. In other words, they claimed that 
they could prove that one of the numbers 
2, 4, 6, 8, 10 or 12 appears infinitely of-
ten as a gap between primes. This an-
nouncement was met with a great deal of 
excitement. After all, it would be the first 
time that anyone could prove that a finite 
number appears infinitely often as a gap 
between primes! Unfortunately, their work 
was quickly discredited by Granville and 
Soundararajan, who found a fatal flaw 
in their argument. While Goldston and 
Yıldırım were unable to salvage the orig-
inal result, they were able to join forces 
with another author, János Pintz, to obtain 
a conditional result. A conditional result is 
one that depends on the validity of a dif-
ferent unsolved conjecture. In their case, 
they proved:

Theorem 1 (Goldston, Pintz and Yıldırım, 
2005). If a certain unsolved conjecture is 
true, then there are infinitely many pairs of 
primes that differ by at most 16.

(The unsolved conjecture is called the 
Elliot–Halberstam Conjecture.) On the sur-
face, this only looks a bit worse than what 
they initially announced. After all, it would 
just mean that one of the numbers 2, 4, 
6, 8, 10, 12, 14 or 16 appears infinitely of-
ten as a gap between primes. However, the 
famous unsolved conjecture that they as-
sumed is also likely to be very difficult to 
prove. For that reason, the result is some-
what less satisfying than if it were an un-
conditional proof. 

For several years, the general con-
sensus in the number theory community 
was that Goldston, Pintz and Yıldırım had 
pushed the existing mathematical tools as 
far as possible. In other words, it would 
take a whole new set of tools in order to 
prove that there are infinitely many pairs 
of primes with a finite number appearing 
as a gap between them. Then, out of no-
where, a relatively unknown mathemati-
cian named Yitang Zhang announced that 
he had done what had long eluded num-
ber theorists: he had shown that there are 
infinitely many pairs of primes that differ 
by at most 70 000 000. By the pigeonhole 
principle this means that there must be 
some finite (even) number between 2 and 
70 000 000 that appears infinitely often as 
a gap between primes! (The pigeonhole 
principle says that if you have n 1+  pi- Figure 2  Modulo 7 clock by Richard Taylor [14].
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made a mere six months after Zhang’s pa-
per on gaps between primes appeared on 
the arXiv. James Maynard [7] and Terence 
Tao independently showed that one could 
obtain k-tuples that include a certain num-
ber of primes infinitely often. Namely, they 
proved:

Theorem 3 (Maynard-Tao, November 2013). 
Let m 2$ . For any admissible k-tuple 
( , ..., )h hk1  with k sufficiently large (relative 
to the size of m), there are infinitely many 
n such that at least m of , ...,n h n hk1+ +  
are prime. 

Notice that one cannot tell which of the 
m numbers in n h1+  wind up being prime. 
However, this result is already stronger 
than what Zhang showed, since the k 1=  
case implies that there are bounded gaps 
between pairs of primes. The astounding 
part is that Maynard and Tao used an ap-
proach that was completely different from 
that used by Zhang. Rather than relaxing 
the conditions on q and showing that the 
primes are reasonably well-distributed in 
a slightly broader range, they developed 
a powerful new method that has already 
revealed itself to be useful in a broad array 
of applications.

The method used by Maynard and Tao 
requires using a mathematical tool called 
a sieve. Just like a collander is used to 
separate pasta from water, or a plastic 
sieve is used on the beach to separate sea 
shells from sand, a mathematical sieve is 
used to separate numbers with a property 
that we desire from numbers without that 
property. Maynard and Tao pre-sieved the 
set of positive integers, creating a sample 
space that consisted only of those that 
are likely to be prime and closer togeth-
er than average. Then they were able to 
show that the weighted average of the 
number of primes among , ...,n h n hk1+ +  
over the sample space that they con-
structed is sufficiently large that there 
must be a certain number of primes in the 
tuple. 

Polymath improvements
Recall that Zhang’s original result showed 
that there are infinitely many pairs of 
primes that differ by at most 70 000 000. Al-
most immediately, various mathematicians 
set out to whittle that number down. Tao 
had the brilliant idea of crowdsourcing this 
work, spreading the tasks over dozens of 

Maynard and Tao’s approach
When hearing about twin primes, students 
often ask about the next logical case: can 
there be infinitely many triples of primes? 
Here, the answer depends on what is 
meant by a ‘triple of primes’. If one looks 
at triples of the form ( , , )p p p2 4+ +  and 
asks whether they can be prime infinite-
ly often, the answer is, unfortunately, ‘no’. 
The reason that this cannot happen is be-
cause one of the numbers p, ,p 2+  and 
p 4+  must always be divisible by 3. As 
an exercise, you can use clock arithmetic 
to check this for yourself! (Hint: Consider 
three cases: ( )modp 1 3/ , ( )modp 2 3/ , 
and ( )modp 0 3/ , and then see what this 
tells you about p 2+  and p 4+  in each 
case.)

In order to exclude the cases of tuples 
whose entries cannot all be prime, we de-
fine the notion of an admissible k-tuple:

Definition 1. We say that a k-tuple ( , ..., )h hk1  
of nonnegative integers is admissible if it 
doesn’t cover all of the possible residue 
classes (mod p) for any prime p.

For example, ( , , , , )0 2 6 8 12  is an admissi-
ble 5-tuple. We can see this by checking to 
make sure that, for every prime p, there are 
always some residue classes (mod p) that 
are not covered by this tuple. Notice that 
none of the terms in the 5-tuple are con-
gruent to ( )mod1 2 , so the residue 1 is not 
covered. Similarly, all of the numbers in the 
5-tuple are congruent to 2 and ( )mod0 3 , 
so the residue 1 remains uncovered. One 
can check this for all small prime clock siz-
es and then, once you have more possible 
residue classes than terms in the tuple, it 
is clear that there will always be some res-
idue classes that are not covered (in this 
example, it is sufficient to check through 
p 5= , since after that there will be more 
than 5 residue classes (mod p)). 

Now that we have excluded the impossi-
ble prime tuples by establishing an admis-
sibility criterion, we can state a nice gener-
alization of gaps between pairs of primes:

Conjecture 2 (Hardy-Littlewood prime k-tu-
ples). Let ( , ..., )h hH k1=  be admissible. Then 
there are infinitely many integers n such 
that all of n h1+  are prime.

Unfortunately, this is even more diffi-
cult to prove, and it remains a conjecture. 
However, progress in this direction was 

7 values are integers (mod 7). When two 
numbers are equivalent to one another 
on the clock with 7 numbers, we say that 
they are congruent (mod 7). For example, 
we just saw that ( )mod8 1 7/ . The picture 
also shows us that ( )mod1 6 7/- . When 
two numbers are equivalent in this clock 
arithmetic, we say that they fall into the 
same residue class. 

In order to prove an unconditional ver-
sion of their result, Goldston, Pintz and 
Yıldırım (GPY) would have needed to show 
that the primes are reasonably ‘well-distrib-
uted’ among the residue classes (mod q) for 
all positive integers q up to a certain point. 
As an example, the primes are ‘well-dis-
tributed’ (mod 7) if there is an equal pro-
portion of primes in each possible residue 
class (it turns out that primes other than 7 
cannot be congruent to ( )mod0 7  since this 
would imply that they are divisible by 7 
and we know that primes have no divisors 
besides 1 and themselves). This leaves six 
possible residue classes that the primes 
can fall into, namely they can be congru-
ent to any of the numbers between 1 and 

( )mod6 7 . So, being reasonably well-dis-
tributed would mean that about 1/6 of the 
primes are congruent to ( )mod1 7 , roughly 
1/6 are congruent to ( )mod2 7 , et cetera. It 
has been proven that this is true when the 
size of the clock is relatively small. Howev-
er, when looking over a range of numbers 
[ , ]N1 , the GPY proof relies on the assump-
tion that the primes are reasonably well 
distributed modulo q when q is just a tiny 
bit larger than .N /1 2  It turns out that the 
primes are well-distributed for q smaller 
than N /1 2; nevertheless, one cannot prove 
unconditionally that the same phenome-
non occurs for q N> /1 2. To get past this 
issue, Zhang put some extra restrictions on 
the values of q that he looked at, but was 
able to show that for integers q with these 
restrictions, he could prove that the primes 
were reasonably well-distributed, even 
when q is a bit larger than N /1 2. In spite of 
these extra restrictions on q, it was enough 
to push the GPY machinery through and 
obtain the following unconditional result:

Theorem 2 (Zhang, May 2013). There are 
infinitely many pairs of primes that are at 
most 70 000 000 apart.

At long last, the world had confirmation 
that there is a finite number that appears 
infinitely often as a gap between primes!
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Theorem 6 (Castillo, Hall, Lemke Oliver, Pol-
lack and Thompson, 2014). Let m 2$ . For 
any admissible k-tuple ( , ...,h hk1 ) of poly-
nomials in [ ]xZp  with k ‘sufficiently large’, 
there are infinitely many [ ]f xZp!  such that 
at least m of , ...,f h f hk1+ +  are irreducible. 

This improves on the original work of 
Hall and Pollack in several ways. First, our 
‘gaps’ need not be prime integers: in fact, 
we also can prove that our result holds 
when f is any monomial. Second, the 
proofs of Hall and Pollack are constructive, 
and the examples of pairs of prime polyno-
mials that differ by a specific integer jump 
up in degrees very quickly. In other words, 
their method produces a relatively sparse 
set of examples of prime polynomials with 
bounded gaps between them. In contrast, 
our prime polynomial pairs occur in many 
degrees. In fact, we can even show that, 
for sufficiently large degrees, any positive 
proportion of elements of [ ]xZp  of bound-
ed degree can occur as a gap between 
prime polynomials! 

This work has recently been extended 
by Sawin and Shusterman in [12], who 
prove a number of prime polynomial an-
alogues of problems that remain open for 
prime integers. 

Digit sums
One perhaps surprising application of the 
proof method of Maynard and Tao has to 
do with digit sums. Notice that, if we take 
the sum of the digits of 523, we obtain 
5 2 3 10+ + = . Similarly, if we sum the dig-
its of 541, then we get .5 4 1 10+ + =  It 
turns out that 523 and 541 are consecutive 
primes. It is natural to wonder whether 
there are other pairs of consecutive primes 
with the same digit sum in base 10. As 
always, there are a number of ways to 
generalize this question. One could look at 
triples of consecutive primes that have the 
same digit sum, or quadruples, or quintu-
ples, ... Moreover one could consider digit 
sums in other bases, rather than just look-
ing at base-10 digit sums (as in the exam-
ple above). From now on, let ( )s ng  denote 
the sum of the base-g digits of n. 

In 1961, Sierpiński posed the question: 
“Are there arbitrarily long runs of consecu-
tive primes p on which ( )s pg  is constant?” 
He also considered the related questions 
of whether one could find arbitrarily long 
runs of consecutive primes on which the 
digit sum is always increasing (or always 

As one might imagine, there are many 
parallels between prime numbers and 
prime polynomials. In fact, there is a whole 
area of number theory research dedicat-
ed to understanding which results about 
prime numbers still hold for prime polyno-
mials. Thus, it is natural to consider wheth-
er we can translate the results of Maynard 
and Tao about gaps between prime num-
bers and obtain analogous results for poly-
nomials.

Just like we could reduce integers (mod 
p), where p is a prime number, we can also 
do this with polynomials.

Example: The polynomial x x4 5 12 + +  is 
irreducible. However, if we reduce it (mod 3) 
then it factors as follows: 

( )

( ) ( ) .

mod

mod

x x x x

x

4 5 1 2 1 3

1 3

2 2

2

/

/

+ + + +

+

Let [ ]xZp  denote the set of polynomials 
(mod p). The first to prove a ‘bounded 
gaps’ result for prime polynomials was 
Chris Hall, who showed in his PhD thesis 
[6] that any of the numbers , ...,p1 1-  can 
occur as gaps between prime polynomi-
als in [ ]xZp  infinitely often, provided that 
p is greater than 3. The case where p 3=  
turned out to be trickier. However, two 
years later, Paul Pollack showed in his PhD 
thesis [9] that the result also holds when 
p 3= . Combining their results yields the 
following theorem that holds for all p 3$ :

Theorem 5 (Hall, 2006; Pollack, 2008). If 
p 3$ , then any a Zp!  (excluding a 0= ) 
occurs infinitely often as a gap between 
irreducible polynomials.

Notice that this is a much stronger re-
sult than anything that we can say about 
gaps between prime numbers. For exam-
ple, this result implies that there are in-
finitely many pairs of prime polynomials 
that differ by 2. If we could prove that for 
prime integers, we would solve the famous 
twin primes conjecture! Indeed, it is often 
easier to prove the polynomial analogues 
of famously difficult problems about prime 
numbers. 

After the paper of Maynard [7] appeared 
on the arXiv, Hall and Pollack teamed up 
with a few others who were interested in 
studying the methods of Maynard and Tao. 
This is where the author of the present 
article enters the picture. Along with Abel 
Castillo, Chris Hall, Robert Lemke Oliver, 
and Paul Pollack, we showed [2]: 

mathematicians in order to speed up the 
process. This became known as the poly-
math project, more specifically Polymath 8, 
since it was the eighth crowdsourced 
project to come from this initiative. Using 
Zhang’s approach, Polymath 8 was able to 
bring the gap size of at most 70 000 000 
all the way down to at most 4680. Using 
the approach of Maynard and Tao, Poly-
math 8 [11] was able to obtain further im-
provements. The current state-of-the-art is 
as follows:

Theorem 4 (D. H. J. Polymath, 2014). There 
are infinitely many pairs of primes that are 
at most 246 apart. 

In other words, by the pigeonhole prin-
ciple, we know that at least one even num-
ber between 2 and 246 appears infinitely 
often as a gap between primes! Moreover, 
if one is willing to assume an unsolved 
conjecture (The Elliot–Halberstam Conjec-
ture), Polymath 8 has obtained the condi-
tional result that at least one of the num-
bers 2, 4, or 6 must appear infinitely often 
as a gap between primes! 

Applications of the Maynard–Tao machinery
In this section, we discuss just a few of 
the many applications of Maynard and 
Tao’s work on small gaps between primes. 
The main focus will be on the author’s own 
work, since one of the aims of the Winter 
Symposium of the Royal Dutch Mathemat-
ical Society was to highlight the research 
of mathematicians working in the Nether-
lands. In reality, there are many interesting 
applications of the Maynard–Tao approach, 
far too many to list here. For a more com-
prehensive guide, see, for example, the ex-
cellent article by Andrew Granville [5]. 

Prime gaps between polynomials
Just like the primes were the building 
blocks of the integers, we could also look 
at building blocks of polynomials: these 
are called irreducible polynomials and they 
are polynomials that cannot be factored 
any further. For example, we can factor the 
polynomial ( )( ) .x x x x1 1 13 2- = - + +  As 
hard as we try, we cannot factor x 1-  or 
x x 12 + +  into smaller polynomials. As a 
result, x 1-  and x x 12 + +  are irreducible 
polynomials. In fact, x 1-  and x x 12 + +  
are examples of cyclotomic polynomials, 
which you can learn more about by read-
ing Pieter Moree’s article [8] in this issue.)
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number of ways. First, our results hold for 
digits sums in any base (i.e., we are not 
limited to base 10). Moreover, our results 
do not depend on the validity of any un-
solved conjectures — they are uncondi-
tional! The proof method goes beyond 
the scope of this expository article, but 
it is worth briefly mentioning that it com-
bines the proof method of Maynard–Tao 
with a deep result of Drmota, Mauduit and 
Rivat [3].	 s
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In late 2013, my co-author and I became 
aware that the methods developed by 
Maynard and Tao were being used to prove 
a number of results on runs of consecutive 
primes. The first such paper was written by 
Banks, Freiberg and Turnage-Butterbaugh [1] 
within the same month that Maynard’s 
paper appeared on the arXiv. We realized 
that it would be possible to use these new 
methods to generalize the results of Sier-
pinski, Erdős and Schinzel. In particular, we 
showed [10]:

Theorem 7 (Pollack and Thompson, 2014).
For any base g, there are arbitrarily long 
runs of consecutive primes p on which 

( )s pg  is constant / increasing / decreasing. 

Note that we generalize the prior work 
on digit sums on consecutive primes in a 

decreasing). He showed [13] that he could 
find increasing pairs of digit sums, i.e., 

( ) ( )s p s p<n n10 10 1+ , infinitely often. The fol-
lowing year, Erdős showed that one can also 
find decreasing pairs of digit sums infinite-
ly often. In 1968, Sierpiński went a step 
further, showing that if an unsolved conjec-
ture (Dickson’s prime k-tuples conjecture) 
is assumed, then one can obtain decreas-
ing triples of consecutive primes infinitely 
often, i.e., ( ) ( ) ( ) .s p s p s p> >n n n10 10 1 10 2+ +  
Some time later, in an unpublished claim, 
Schinzel announced that, assuming a dif-
ferent unsolved conjecture (Schinzel’s Hy-
pothesis H), one can show that there are 
arbitrarily long runs of consecutive primes 
on which the digit sums are increasing, 
and similarly there are arbitrarily long runs 
of consecutive primes on which the digit 
sums are decreasing.
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