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should not try. The question is: What is 
the most promising way to pursue this en-
deavor?

I propose to study variants of three no-
torious mathematical problems: the Collatz 
conjecture [8], the Chromatic Number of 
the Plane (CNP) [13], and the most wanted 
Folkman graph [6]. The proposed variants 
are likely much easier than the original 
problems, but they are still unresolved. 
If we cannot even solve these easier vari-
ants, then the original problems are com-
pletely out of reach. In fact, disproving the 
proposed variants of Collatz or CNP would 
immediately solve the respective original 
problems. It is not evident whether these 
variants are more suitable for human or 
automated reasoning, although all variants 
can be formulated as search problems with 
existing techniques. I expect that they are a 
challenge for both humans and computers. 
Personally, I would gladly see them solved 
because they represent major roadblocks 
that currently stand in the way of progress 
on the original problems. To motivate re-
search, I offer prizes for the solutions.

found in this manner are often too large 
to be interpreted by humans, it is very well 
possible that for some of these problems 
a small and humanly understandable proof 
does not even exist. 

Automated reasoning has been effective 
in mathematical discovery and has facilitat-
ed the resolution of various mathematical 
problems. Interesting new methods have 
been applied successfully in recent years, 
including the use of neural networks [14]. 
One may therefore wonder whether auto-
mated reasoning is ready to solve prob-
lems that have intrigued mathematicians 
for many decades. Although the answer 
is probably no, that does not mean we 

Computer-assisted mathematics has a rich 
history with many exciting results. Major 
achievements range from Appel and Haken’s 
proof of the Four Color Theorem [1] in 1976 
to the success of Buzzard, Commelin, Mas-
sot and collaborators [3] in formalizing a 
complicated construction by Scholze just 
a year ago. Computers are better than hu-
mans in dealing with enormous case splits 
and in checking the details of mathematical 
proofs once properly formalized. My work in 
this direction focuses mostly on computer- 
assisted (frequently purely computer-reli-
ant) mathematical discovery, trying to find 
proofs that would be practically impossible 
for humans to find. Although the proofs 
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ple, the starting number 466032, which re-
sults in a sequence that first goes down for 
a few steps, then up, down, and up again, 
before terminating: 

.

466032 349524 262143 294911

331775 373247 419903 472391

531440 398580 298935 336302

" " " "

" " " "

" " " "=

Showing termination of ( )H n  is my first 
challenge:

Challenge 1 ($ 500). Prove or disprove that 
iteratively applying map ( )H n  will eventu-
ally reach = for all n 1$ .

A counterexample in the form of a num-
ber n such that the repeated application of 

( )H n  will never reach = can be converted 
into a counterexample for the Collatz con-
jecture and is therefore unlikely to exist.

Chromatic Number of the Plane
The Chromatic Number of the Plane (CNP) 
asks how many colors are required in a col-
oring of the plane to ensure that there ex-
ists no monochromatic pair of points with 
distance 1. Early work on CNP showed that 
the chromatic number is between 4 and 7. 
The lower bound is due to the Moser spin-
dle: a 7-vertex unit-distance graph with 
11 edges. A unit-distance graph is formed 
by a set of points in the plane where two 
points are connected by an edge whenever 
the distance between them is exactly 1. 
The upper bound can be shown by a tes-
sellation of the plane using hexagon tiles 
with an outer radius slightly smaller than 1. 
Tiles consist of a single color and tiles of 
the same color can be placed more than 
distance 1 from each other. Figure 2 shows 
the Moser spindle and the tessellation.

In a breakthrough in 2018, Aubrey de 
Grey improved the lower bound by con-
structing — with the help of automated-rea-
soning tools — a 1581-vertex unit-distance 
graph with chromatic number 5 [4]. This 
result triggered the Polymath-16 project in 
which mathematicians around the globe 
teamed up to make further progress on 
this problem. In the weeks and months af-
terwards, I was able to gradually reduce 
the size of the smallest unit-distance graph 
with chromatic number 5 using SAT tech-
niques. My best result so far is a graph 
with 510 vertices. Jaan Parts has the cur-
rent record with 509 vertices [11].

I also looked into improving the lower 
bound to 6. At some point, I was hope-

on a computer cluster for the hardest sub-
systems. However, an implementation by 
my PhD student Emre Yolcu can now solve 
these subsystems in mere seconds [15].

We also explored easier Collatz-like 
problems. Some turned out to be real chal-
lenges. For example, we studied whether 
the repeated application of the Collatz map 
will eventually reach a number ( )mod1 8 , 
i.e., a number that leaves the remainder 
1 when divided by 8. However, for some 
numbers, the map avoids the numbers 
congruent to ( )mod1 8  for many steps. Fig-
ure 1 shows the transitions across residue 
classes modulo 8 of the Collatz map. The 
figure shows that there are multiple cycles. 
Some cycles such as ( )mod6 7 6 8" "  and 

( )mod0 0 8"  cannot be repeated indefi-
nitely. As a consequence, the map cannot 
avoid the numbers congruent to ( )mod4 8 , 
which can also be shown using our auto-
mated approach. Unfortunately, similar rea-
soning cannot deduce that one will eventu-
ally reach a number congruent to ( )mod1 8 .

Studying the transition graph, argu-
ably the easiest non-trivial variant, asks 
whether the Collatz map will eventually 
reach a number congruent to ( )mod5 8  or 

( )mod7 8 . Without ( )mod5 8  and ( )mod7 8 , 
only two cycles remain: 1 4 2 1" " "  and 
1 4 6 3 2 1" " " " " . The former cycle is 
decreasing, while the latter is increasing 
(any non-trivial variant needs at least one 
increasing cycle). Experiments also suggest 
that problem is easier: for the original Col-
latz, the observed worse case of the num-
ber of steps to termination is quadratic in 
the number of bits of the initial number, 
while for the variant without ( )mod5 8  and 

( )mod7 8  it is linear [5]. The variant can 
also be expressed as a Collatz-like prob-
lem with the following map (= denotes an 
undefined case at which the iterated appli-
cation stops):

( )
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( ),
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n n

n n
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This map slightly increases the numbers 
congruent to ( )mod7 8 , decreases numbers 
congruent to ( )mod0 4 , and terminates on 
all other numbers. Reasoning about this 
map therefore seems significantly easi-
er than the original Collatz conjecture as 
it terminates instantly on most numbers. 
However, there exist arbitrarily long se-
quences of map ( )H n . Consider, for exam-

Collatz conjecture
The Collatz conjecture states that every nat-
ural number will eventually reach 1 when 
the following map, known as the Collatz 
map, is applied repeatedly: if the number 
is even, divide it by 2; if the number is odd, 
multiply it by 3 and add 1. For example, if 
we start with the number 3, then we follow 
the path .3 10 5 16 8 4 2 1" " " " " " "

Once 1 is reached, the repeated appli-
cation of the map results in the cycle 

.1 4 2 1" " "  Most mathematicians be-
lieve that the conjecture holds, which is 
also supported by experimental evidence: 
computers were used to validate that all 
numbers up to 268 will eventually reach 1. 
However, a proof of the conjecture still ap-
pears far away. Paul Erdős famously stated 
that ‘‘mathematics may not be ready for 
such problems”.

A couple of years ago, Scott Aaronson 
and I started a moonshot project to tackle 
the conjecture via automated reasoning. 
Scott designed a rewriting system that ter-
minates on any input string if and only if 
the Collatz conjecture is true. The rewrite 
system consists of eleven rules. Unsurpris-
ingly, state-of-the-art rewrite termination 
tools, such as AProVE, were not able to 
solve the termination problem. However, 
we were able to show termination of any 
subset of ten rules (proving termination 
of a strict subsystem is generally easier). 
Scott solved them by hand while I solved 
them via the help of satisfiability (SAT) 
solving — a crucial technique to prove hard 
termination problems. The subsystems 
were clearly easier than the full system, 
even though most of them were non-trivial. 
My initial approach required many hours 
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7

Figure 1 Transition graph of the iterates in the Collatz 
trajectories across residue classes modulo 8. Let ( )C n  de-
note the Collatz map. The edge u v"  is part of its transi-
tion graph if and only if there exists some modn u 8/ ^ h 
such that ( ) modC n v 8= ^ h. Bold edges indicate transi-
tions where ( )C n n2 .
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Challenge 2 ($ 500). Construct an odd-dis-
tance graph with chromatic number 6 or 
prove that none exists.

What makes odd-distance graphs with 
chromatic number 6 interesting? The pat-
terns observed in 4-colorings of dense 
unit-distance graphs can also be observed 
in 4-colorings of odd-distance graphs 
with significantly fewer vertices (points). 
Therefore, knowing which points form an 
odd-distance graph with chromatic num-
ber 6 can be a big help in constructing a 
unit-distance graph with chromatic number 
6 (if it exists). Note that if no odd-distance 
graph with chromatic number 6 exists, then 
there is clearly no unit-distance graph with 
chromatic number 6. Hence the chromatic 
number of the plane would be 5.

The Most Wanted Folkman Graph
Finally, let’s consider another old but slight-
ly more recent graph problem. It involves a 
graph property, called the monochromatic 
triangle property. A graph has this proper-
ty if every coloring of its edges with two 
colors, say red and blue, includes a red or 
blue triangle. It is relatively easy to check 
that a fully connected graph with 6 vertices 
(i.e., a 6-clique) has the monochromatic tri-

large chromatic number [13]. However, no 
odd-distance graph with chromatic number 
6 is known. Constructing one is therefore 
my second challenge.

ful that I was close: I found several large 
graphs (around 100 000 vertices) for which 
SAT techniques were unable to find a valid 
5-coloring. I tried to prove the absence of 
5-colorings with massive parallel computa-
tion, but failed. Meanwhile, I was studying 
4-colorings of dense unit-distance graphs 
and observed that points that are certain 
distances apart from each other always had 
a different color. This notion is also known 
as a virtual edge. There was a clear pattern 
in the found virtual edges: their length was 
an odd number divided by an odd number. 
In a later experiment I searched for color-
ings of the large graphs using edges for 
any distance that is an odd number divided 
by an odd number. Surprisingly, the solver 
was able to find valid 5-colorings. Hence 
the large graphs have chromatic number 
at most 5, because adding edges can only 
increase the chromatic number.

At this point I became intrigued by 
odd-distance graphs: two points are con-
nected if they are an odd distance apart. 
Such graphs have been studied by Moshe 
Rosenfeld and various co-authors. One 
interesting result is that there exists an 
odd-distance graph with chromatic num-
ber 5 that consists of only 21 vertices [2], 
which is shown in Figure 3. Alexander 
Soifer conjectures that there are odd-dis-
tance graphs in the plane with an infinitely 

Figure 2 Visualizations of early bounds of CNP: The Moser spindle graph and a 7-color tessellation of the plane.

Figure 3 The smallest known odd-distance graph with chromatic number 5. The shortest edges have length 1 and the 
bold edges have length 3.
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for showing that there exists a Folkman 
graph with fewer than a million vertices. 
Lu received that prize from Ronald Graham 
in 2007 after constructing a Folkman graph 
with just 9697 vertices [10]. Graham con-
tinued Erdős’s quest by offering another 
cash prize of $ 100 for showing the exis-
tence of a Folkman graph with fewer than 
a hundred vertices. The current record is a 
Folkman graph consisting of 786 vertices 
found by Lange, Radziszowski and Xu [9].

man Graph problem asks for the smallest 
such graph.

Erdős was the first to push for finding 
the smallest Folkman graph. He offered a 
cash prize of $ 100 to the first person who 
could show the existence of a Folkman 
graph with fewer than 10 billion vertices. 
Spencer in 1988 received the prize by prov-
ing that there exist Folkman graphs with 
fewer than 3 billion vertices. Afterward, 
Erdős offered another cash prize of $ 100 

angle property. This is also why Ramsey 
number ( )R 3 6= . In 1967, Erdős and Haj-
nal asked the following: does there exist 
a graph without a 4-clique as an induced 
subgraph that has the monochromatic tri-
angle property? Folkman proved in 1970 
that such graphs exist, but his argument 
involved graphs of enormous size. Graphs 
with the monochromatic triangle property 
that are 4-clique-free are known as Folk-
man graphs, and the Most Wanted Folk-

Figure 4 Graph G127 which is likely a Folkman graph.
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Final remarks
The Collatz conjecture is famous not only 
because of its perceived hardness but 
also because of its elegance. Many vari-
ants have been proposed [8] and my first 
challenge is another one. What makes this 
challenge interesting is that it appears 
much easier while no obvious termination 
argument exists. For most other variants 
this is not the case: either they appear as 
hard as Collatz or an argument of (non-)
termination is known. Successes on Col-
latz-like problems have been limited so far. 
Focusing on an easier variant could hope-
fully result in some interesting insights. 

Out of the proposed variants, the sec-
ond challenge is likely the easiest one. The 
main reason is that some progress is finally 
being made regarding the chromatic num-
ber of the plane. Before de Grey’s break-
through, practically no advances had been 
made in 68 years. I expect that smaller and 
smaller unit-distance graphs will be found 
with chromatic number 5 and that eventu-
ally also some interesting candidates for 
chromatic number 6 will be constructed. 
However, at that point, we might end up 
in a situation similar to the most wanted 
Folkman graph: proving that the chromatic 
number is 6 might become the hardest part. 

The history of the most wanted Folkman 
graph is rich with lots of progress. If the 
third challenge can be met, then it might 
even be possible to prove the monochro-
matic triangle property of various of its sub-
graphs with less than 100 vertices (the chal-
lenge posed by Graham). The cash prizes 
by Erdős inspired many researchers in this 
direction. Let’s continue this tradition.  s

There is, however, a major difference: 
While local search techniques are able to 
quickly satisfy almost all clauses of the 
formula for the Pythagorean Triples prob-
lem, such techniques cannot get close to a 
satisfying assignment for the G127 formula. 
This would suggest that the G127 formula is 
very unsatisfiable (meaning that there are 
many potential ways to refute the formu-
la) and that showing unsatisfiability (prov-
ing the monochromatic triangle property) 
should be relatively easy. However, in my 
experience, solving this formula with SAT 
techniques is much harder than the Pytha-
gorean Triples problem, which required 
four CPU years and resulted in a proof of 
200 terabytes [7]. Some other techniques 
might be more suitable for this problem, 
if they can exploit the observation that the 
formula is very unsatisfiable. Still, I consid-
er it a serious challenge.

Challenge 3 ($ 500). Prove or disprove that 
any bi-coloring of G127 has a monochro-
matic triangle.

Of the small candidates for Folkman 
graphs, G127 is interesting because of its 
many symmetries. It has also been ob-
served by others [12] that many vertices 
can be dropped from G127, likely preserv-
ing the monochromatic triangle property. 
Experimental evidence suggests that up 
to 33 vertices can be dropped, resulting 
in graphs with just 94 vertices. Howev-
er, proving the monochromatic triangle 
property of these smaller graphs is ex-
pected to be more difficult than proving 
it for G127.

The search for the smallest Folkman 
graph ran into an interesting twist in recent 
years. While it has been difficult for many 
years to find Folkman graphs of modest 
size, there are several small candidates for 
Folkman graphs (around 100 vertices) for 
which we cannot prove the monochromatic 
triangle property. The potentially most ef-
fective automated method for proving the 
monochromatic triangle property of small 
graphs is the use of SAT techniques, which 
is one of the reasons why I became inter-
ested in this problem. The SAT approach 
to the problem works as follows: given a 
graph, a propositional formula is construct-
ed asking whether the monochromatic tri-
angles can be avoided. If this formula is 
unsatisfiable, it means that the property 
cannot be avoided and that it therefore 
holds. Although the SAT formulas of the 
small candidates are not large, they turn 
out to be very hard.

Let’s consider one graph in particular: 
G127 [12]. As the name suggests, G127 has 
127 vertices. Let’s call them , ,v v1 127f . Two 
distinct vertices vi and vj are connected if 
and only if | | ( )modi j 5 127k/-  for some 
k 0$ , which leads to 2666 edges. Figure 4 
shows G127, which is 4-clique-free and 
believed to be a Folkman graph [12]. The 
SAT formula stating whether G127 has the 
monochromatic triangle property has sev-
eral aspects in common with the SAT for-
mula for the Pythagorean Triples problem 
[7], whose solution made me the proud re-
cipient of a $ 100 prize by Ronald Graham. 
For example, both formulas are similar in 
size, and all clauses in the two formulas 
are of length 3. 
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