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on This Problem Section is open to everyone; everybody is encouraged to send in solutions 
and propose problems. Group contributions are welcome. We will select the most elegant 
solutions for publication. For this, solutions should be received before 15 July 2021. The 
solutions of the problems in this issue will appear in the next issue. 

Problem A  (proposed by Onno Berrevoets)

A hot frying pan contains 22021 potato slices. Each time we toss the slices, each slice has 
a chance of 0.5 to land on its other side. These probabilities are individually independent. 
How often do we need to toss the slices so that with probability at least 0.5 all slices will 
have lain on both sides?

Problem B  (folklore)

1.	 Five young ladies in a school walk in a line for ten days in succession. It is required 
to arrange them daily so every pair of ladies occupies all ten possible (pairs of ) po-
sitions in this line. More precisely, it is required to find ten permutations , ,1 10fr r  of 
{ , , , , }1 2 3 4 5  such that for all { , , , , }i j 1 2 3 4 5! ! , and for all { , , , , }' 'i j 1 2 3 4 5! !  there is 
a { , , , }k 1 2 10f!  such that { , } { ( ), ( )}' 'i j i jk kr r= . Is this possible? If so, produce such 
permutations, and if not, prove so.

2.	Replace 5 by n (with { , , , , }n 4 6 7 8 9! ) and replace 10 by n
2b l in the above problem. For 

which of these values of n does a set of permutations as in the previous part exist?

Problem C  (proposed by Onno Berrevoets)

Let R be a commutative ring, and consider the set X of R-ideals J with J J2 ! . Suppose 
that I is a maximal element of X (with respect to inclusion). Prove that I is a maximal 
ideal of R.

Edition 2021-1 We received solutions from Rik Bos, Pieter de Groen, Nicky Hekster, Marnix 
Klooster and Rutger Wessels.

Problem 2021-1/A  (proposed by Daan van Gent and Hendrik Lenstra)

Let G and A be groups, where G is denoted multiplicatively and where A is abelian and 
denoted additively. Assume that A is 2-torsion-free, i.e. it contains no element of order 2.

Suppose that :q G A"  is a map satisfying the parallelogram identity: for all ,x y G!  
we have

( ) ( ) ( ) ( ) .q xy q xy q x q y2 21+ = +- (1)

Prove that for all ,x y G!  we have ( )q xyx y 01 1 =- - .

Solution We received solutions from Rik Bos, Nicky Hekster, Marnix Klooster, and Rutger 
Wessels. The solution provided uses the one by Nicky.

We let 1 denote the identity element of G, and 0 the identity element of A. Substituting 
y 1=  yields ( )q2 1 0= , whence ( )q 1 0=  since A is 2-torsion free. Substituting x 1=  in (1) 
gives

( ) ( ) .q y q y y Gfor all1 != - (2)

In the case x y= , formula (1) implies 

( ) ( ) .q x q x x G4 for all2 != (3)

By switching the x and y in (1) we obtain ( ) ( ) ( ) ( )q yx q yx q y q x2 21+ = +- , so using (2) we 
get ( ) ( ) ( ) (( ) ) ( ) ( ) ( ) ( )q xy q xy q xy q yx q xy q yx q yx q yx1 1 1 1 1+ = + = + = +- - - - - , hence

( ) ( ) , .q xy q yx x y Gfor all != (4)
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s Applying (1) with x replaced by xy we see that

( ) ( ) ( ) ( ) , .q xy q xy q x q y x y G2 2 for all2 != - + (5)

Next we claim that

( ) ( ) , .q xy x q xy x y G4 for all2 != (6)

Indeed,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( ) ( ) ( ) .

q xy x q x y q x y q x q y q yx q x q y

q yx q y q x q x q y q xy

2 2 2 4 2

2 2 2 4 2 4

2 2 2 2 2 2
(4) (5) (4)(3)

(5) (4)

= = - + = - +

= - + - + =

It follows that 

( ) (( )( ) ) ( ) ( ) ( ) ( ) ( ) .q xyx y q xy yx q xy q yx q xy x q xy q xy2 2 4 4 01 1 1 2
(1) (4)(6)

= = + - = - =- - -

Problem 2021-1/B  (folklore)

Prove that every Jordan curve (i.e. every non-self-intersecting continuous loop in the plane) 
contains four points A, B, C, D such that ABCD forms a rhombus.

Solution We received a partial solution from Pieter de Groen. This is a sketch of a solution 
that is largely based on that, and will work in many simple cases. A full proof by Mark 
Nielsen can be found at https://link.springer.com/content/pdf/10.1007/BF01265340.pdf. 
Even more generally, Arthur Milgram proved in 1939 (published in PNAS in 1943 as ‘Some 
Topologically Invariant Metric Properties’) that for all n 3$ , every Jordan curve contains an 
inscribed equilateral n-gon. It remains an open problem whether any Jordan curve contains 
an inscribed square. This problem is known by several names, such as the square peg 
problem, the inscribed square problem, or the Toeplitz’ conjecture.

Let J be a Jordan curve, i.e. a non-self-intersecting continuous loop : [ , ]J 0 1 R2" . We 
write ( ) ( ( ), ( ))J t x t y t= . Without loss of generality, we may assume that ( ) ( , ) ( )J J0 0 0 1= = . 
Let ( ) ( ) ( )J t x t y t2 2= +  be the distance from J(t) to the origin. Let m be the absolute 
maximum of ( )J t  , and let ( , )t 0 1m !  such that ( ) .J t mm =  Since J is continuous, for 
every r m0 < < , the equation ( )J t r=  has a solution on both ( , )t0 m  and ( , ) .t 1m  Let 
( ) { ( ) | ( ) , [ , ]}S r J t J t r t t0 m| != =  and let ( ) { ( ) | ( ) , [ , ]} .'S r J t J t r t t 1m| != =  The union S 

of the sets S(r) forms a closed, simply connected set (this being the image of the restric-
tion of J to [ , ]t0 m  ), and so does the union S’ of the sets in ( )'S r .

Given the origin ( , )A 0 0|=  and two distinct points ( ), ( )B J s C J s1 2= =  at equal distance 
from the origin, the points A, B, C and D B C|= +  are the vertices of a rhombus. In partic-
ular, for any ( , ]r m0!  , any pair of elements ( )B S r!  and ( )'C S r! defines a rhombus with 
vertices A, B, C on J and top-vertex .D B C= +

We let ( ) { | ( ), ( )}'T r B C B S r C S r! != +  and ( , ]r m0! ( )T T r= ' . The set T is connected. 
Namely, the union of the sets ( ) ( )'S r S r R4# 1  is connected, and T is the image of a 
continuous map with the former union as its domain. Note that there are some subtleties 
involved in showing connectedness of the union of the sets ( ) ( )'S r S r# ; if one wants to 
walk from ( , )B C  to ( , )' 'B C , we cannot simply walk from B to B’ and take the same path 
from C to C’, since for example on one path, the distance to the origin may be increas-
ing while on another path, it might sometimes decrease. One may need to backtrack on 
occasion. We will not give a full proof here (and there may be an issue with sufficiently 
complicated Jordan curves).

We show that T contains a point in the exterior of J. Consider the curve near ( ( ), ( ))x t y tm m . 
Then either there is a closed interval [ , ]a b  with a b!  containing tm such that for all a t b# #  
the distance from ( ( ), ( ))x t y t  to ( , )0 0  is equal to m, or no such interval exists. In both cases, 
for all 0>e , there is some r rm#  such that there exist ( ), ( )'t S r t S r1 2! !  with t t1 2!  such 
that the distance from ( ( ), ( ))x t y ti i  to ( ( ), ( ))x t y tm m  is less than e. For e sufficiently small, 
letting ( ( ), ( ))B x t y t1 1=  and ( ( ), ( ))C x t y t2 2=  yields | |D m> , so D lies in the exterior of the 
curve. If we can also find an element of T that is in the interior of the curve, we will be 
done, since by connectedness, T must intersect the curve somewhere.
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s The problem is that this does not necessarily happen; here is an example in which this 
is not the case:

The Jordan curve is the union of the top black path and the middle red path. Any rhombus 
with three vertices on the black path ( ( ), ( ))cos sint t  for /t0 2# # r  including the point ( , )1 0  
will have its fourth vertex on the bottom blue path, parameterized by ( ( ) ( ( ) ),cos cost t2 1- -  
( ) ( ))sin sint t2 -  for /t0 4# # r . The red path only intersects the blue path at ( , )1 0 . The 

round part of the red path is part of the circle centered at ( . , )0 5 0  with radius .0 5.
To fix this, we may need to choose a different starting point. Note that our argument 

that T contained a point outside of the curve was independent of our starting point A, so 
it now suffices to find any rhombus with three points on J such that its fourth point lies in 
the interior of J. By the Jordan curve theorem, the interior of J (is a well-defined concept 
and) is non-empty. Pick any point P in the interior. Since J is compact, there is a point B’ at 
minimal positive distance from P. The line passing through BP intersects J in some other 
point C’ such that P lies on the line segment B’C’. Again by compactness, we may assume 
the line segment B’C’ does not intersect J in any points other than B’ and C’. Without loss 
of generality, P is the midpoint of this line segment. The perpendicular bisector of B’C’ 
intersects J again; let A be a point of this intersection at minimal distance to P. If there 
are two such points, we have found a rhombus. Otherwise, by choosing A to be the origin, 
we find ' ' 'D B C= +  lies in the interior of J (since otherwise, there would be a point on the 
bisector closer to P that is also in J ). The previous part of the argument now shows that 
the set T contains a point D that lies on J. This concludes the proof.

Problem C  (proposed by Daan van Gent)

A directed binary graph is a finite vertex set V together with maps , :e e V V1 2 " . (The 
edges are formed by the ordered pairs ( , ( ))v e vi  with { , }i 1 2! .)

For , , ,a b c d Z 0>! , an ( : )a b -to- :c d] g distributive graph is a directed binary graph G 
together with distinct vertices , ,s t t V1 2 !  such that G interpreted as a Markov chain has 
the following properties:

1.	 For all v V!  the edges ( , ( ))v e v1  have transition probability a b
a
+  and edges ( , ( ))v e v2  have 

probability a b
b
+ .

2.	 It has the initial state s with probability 1.
3.	Both t1 and t2 connect to themselves, meaning ( )e t ti j j=  for all , { , }i j 1 2! .
4.	 It has a unique stationary distribution of t1 with probability c d

c
+  and t2 with probability c d

d
+ .

Show that for all , , ,a b c d Z 0>!  there exists an ( : )a b -to- :c d] g distributive graph. 

Solution We received no submissions from readers. This solution was provided by Daan 
van Gent.

First we construct ( : )a b -to-( : )1 1  distributive graph for all a and b:

By ‘substitution’ it suffices to construct a ( : )1 1 -to-( : )c d  distributive graph for all c and d. 
Let k Z 0! $  such that .c d 2k#+  Make a complete binary tree with root s and such that 
there are 2k leaves of equal distance to s. Connect c of those to t1 and d of those to t2 and 
connect the remaining c d2k - -  to s.

s

t1 t2


