Problemen

Problem Section

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 April 2021**. The solutions of the problems in this issue will appear in the next issue.

Problem A (proposed by Daan van Gent and Hendrik Lenstra)

Let *G* and *A* be groups, where *G* is denoted multiplicatively and where *A* is abelian and denoted additively. Assume that *A* is 2-torsion-free, i.e. it contains no element of order 2. Suppose that $q: G \rightarrow A$ is a map satisfying the parallelogram identity: for all $x, y \in G$

we have

$$q(xy) + q(xy^{-1}) = 2q(x) + 2q(y)$$
.

Prove that for all $x, y \in G$ we have $q(xyx^{-1}y^{-1}) = 0$.

Problem B (folklore)

Prove that every Jordan curve (i.e. every non-self-intersecting continuous loop in the plane) contains four points *A*, *B*, *C*, *D* such that *ABCD* forms a rhombus.

Problem C (proposed by Daan van Gent)

A *directed binary graph* is a finite vertex set V together with maps $e_1, e_2 : V \to V$. (The edges are formed by the ordered pairs $(v, e_i(v))$ with $i \in \{1, 2\}$.)

For $a, b, c, d \in \mathbb{Z}_{>0}$, an (a:b)-to-(c:d) distributive graph is a directed binary graph G together with distinct vertices $s, t_1, t_2 \in V$ such that G interpreted as a Markov chain has the following properties:

- 1. For all $v \in V$ the edges $(v, e_1(v))$ have transition probability $\frac{a}{a+b}$ and edges $(v, e_2(v))$ have probability $\frac{b}{a+b}$.
- 2. It has the initial state *s* with probability 1.
- 3. Both t_1 and t_2 connect to themselves, meaning $e_i(t_j) = t_j$ for all $i, j \in \{1, 2\}$.
- 4. It has a unique stationary distribution of t_1 with probability $\frac{c}{c+d}$ and t_2 with probability $\frac{d}{c+d}$.

Show that for all $a, b, c, d \in \mathbb{Z}_{>0}$ there exists an (a:b)-to-(c:d) distributive graph.

Edition 2020-3 We received solutions from Brian Gilding, Pieter de Groen, Marco Pouw and Ludo Pulles.

Problem 2020-3/A (proposed by Onno Berrevoets)

Let $f:(-1,1) \to \mathbb{R}$ be a function of class C^{∞} , i.e., all higher derivatives of f exist on (-1,1). Let $c \ge 0$ be a real number. Suppose that for all $x \in (-1,1)$ and all $n \in \mathbb{Z}_{\ge 0}$ we have $f^{(n)}(x) \ge -c$. Also assume that for all $x \in (-1,0]$ we have f(x) = 0. Prove that f is the zero function.

Solution We received solutions from Brian Gilding, Pieter de Groen and Marco Pouw. This solution is based on the one by Brian Gilding, who not only gives a very concise solution, but also shows that some of the assumptions can be weakened.

Since $f \in C^{\infty}(-1,1)$ and $f \equiv 0$ in (-1,0], $f^{(n)}(0) = 0$ for every $n \in \mathbb{Z}_{\geq 0}$. Consequently, for arbitrary $x \in (0,1)$ and $n \in \mathbb{Z}_{\geq 2}$, Taylor's Theorem (or repeated integration by parts, following the proof by Pieter de Groen) gives

Redactie: Onno Berrevoets, Rob Eggermont en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems Solutions

$$f(x) = \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt \ge -c \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} dt = -c \frac{x^{n}}{n!}$$

Likewise,

$$f'(x) = \int_{0}^{x} \frac{(x-t)^{n-2}}{(n-2)!} f^{(n)}(t) dt,$$

and this gives us

$$f(x) - \frac{x}{n-1}f'(x) = -\int_{0}^{x} \frac{t(x-t)^{n-2}}{(n-1)!} f^{(n)}(t)dt \ge c \int_{0}^{x} \frac{t(x-t)^{n-2}}{(n-1)!}dt = \frac{c}{n-1} \frac{x^{n}}{n!}$$

Passage to the limit $n \to \infty$ yields f(x) = 0 for all such x.

The assumption $f^{(n)} \ge -c$ in (-1,1) for every $n \in \mathbb{Z}_{\ge 0}$ for some nonnegative real number c can be relaxed to $\pm f^{(n)} \le n!g_n$ for every $n \in \mathbb{Z}_{\ge 0}$ for a sequence of nonnegative functions $\{g_n: n \in \mathbb{Z}_{\ge 0}\} \subset L^{\infty}_{loc}(-1,1)$ with the property $x^n ||g_n||_{L^{\infty}(-x,x)} \to 0$ as $n \to \infty$ for all $x \in (0,1)$. Furthermore, given that $f^{(n)}(0) = 0$ for every $n \in \mathbb{Z}_{\ge 0}$, it is not necessary to suppose that $f \equiv 0$ in (-1,0). This can be shown analogously to $f \equiv 0$ in (0,1).

Problem 2020-3B (proposed by Onno Berrevoets)

 $\text{Consider the map } f: \mathbb{Z}_{\geq 0}^2 \to \mathbb{Z}_{\geq 0}^2, \ (a,b) \mapsto (2\min\{a,b\}, \max\{a,b\} - \min\{a,b\}).$

We call $(a,b) \in \mathbb{Z}_{\geq 0}^2$ *equipotent* if there exists $n \in \mathbb{Z}_{\geq 0}$ such that $f^n(a,b) = (x,x)$ for some $x \in \mathbb{Z}_{\geq 0}$ (where $f^n = f \circ \cdots \circ f$). Show that $(a,b) \in \mathbb{Z}_{\geq 1}^2$ is equipotent if and only if $\frac{a+b}{\gcd(a,b)}$ is a power of 2.

Solution We received solutions by Pieter de Groen and Ludo Pulles. This solution is based on the one by Pieter.

It is clear that f(ca,cb) = cf(a,b) for all non-negative integers a, b, k, and it follows that (ca,cb) is equipotent if and only if (a,b) is. So it suffices to show that for $a,b \ge 1$ relatively prime, we have (a,b) is equipotent if and only if $a + b = 2^k$ for some $k \ge 1$.

 $\in:$ Suppose that $a, b \in \mathbb{Z}_{\geq 1}$ are relatively prime and satisfy $a + b = 2^k$. If k = 1, we have $(a,b) = (1,1) = f^0(1,1)$ is equipotent. If k > 1 and (c,d) := f(a,b), then $c = 2\min(a,b)$ is even, and hence so is d because c + d = a + b is even. Hence (a,b) is equipotent with sum 2^k if and only if $(\frac{c}{2}, \frac{d}{2})$ is equipotent with sum 2^{k-1} . Note that $\frac{c}{2}$ and $\frac{d}{2}$ are relatively prime because $\gcd(2\min\{a,b\}, \max\{a,b\} - \min\{a,b\})$ can only take on the values $\gcd(a,b)$ or $2 \gcd(a,b)$. We can conclude (a,b) is equipotent by induction.

⇒: Conversely, suppose that $a,b \in \mathbb{Z}_{\geq}1$ are relatively prime with a+b not a power of 2. Note that the sum of (a,b) is invariant under f, because if f(a,b) = (p,q), we have $p+q = \max(a,b) + \min(a,b) = a+b$. If a+b is odd, then the same is true for $f^n(a,b)$, so (a,b) is not equipotent. Suppose a+b is even. Because a,b are relatively prime, both a and b are odd. Now similar to the above, if f(a,b) = (c,d), then both c and d are even, and (a,b) is equipotent if and only if $(\frac{c}{2}, \frac{d}{2})$ is. Since $\frac{c}{2} + \frac{d}{2} = \frac{a+b}{2}$ and $\frac{c}{2}, \frac{d}{2}$ are relatively prime, repeating this procedure eventually results in a pair with odd element-sum, which is not equipotent. Hence (a,b) was not equipotent either.

Problem 2020-3/C* (folklore)

Uncle Donald cuts a 3 kg piece of cheese in an arbitrary, finite number of pieces of arbitrary weights. He distributes them uniformly randomly among his nephews Huey, Dewey and Louie. Prove or disprove: the probability that two of the nephews each get strictly more than 1 kg is at most two thirds.

Solution This problem remains open. This is a Star Problem for which the proposer does not know any solution. For the first correct solution sent in within one year there is a prize of \notin 100.