
	 In de verdediging	 NAW 5/22  nr. 1  maart 2021	 63

In
 d

e 
ve

rd
ed

ig
in

g

Pas gepromoveerden brengen hun werk onder 
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weten aan onze redacteur.
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Large Deviations for Stochastic Processes on Riemannian Manifolds
Rik Versendaal

In September 2020 Rik Versendaal from the Delft University of 
Technology successfully defended his PhD thesis with the title 
Large Deviations for Stochastic Processes on Riemannian Mani-
folds. Rik carried out his research under the supervision of Prof. dr. 
Frank Redig, and Prof. dr. Jan van Neerven.

During his PhD Rik worked on large deviations for processes 
on Riemannian manifolds. In particular, he studied extensions of 
large deviations for random walks and Brownian motion on curved 
spaces. Furthermore, he also considered large deviations for ran-
dom walks in Lie groups and large deviations for Brownian motion 
on evolving Riemannian manifolds, meaning that the Riemannian 
metric is time-dependent.

At the moment Rik is a postdoc at Utrecht University. Currently 
he is working on random (geometric) networks, both from a theo-
retical perspective but also on their practical applications.

Large deviation theory – the theory of the very rare
Large deviation theory is a mathematical theory, and a sub-
field of probability theory, that is concerned with quantifying 
the exponentially small probabilities of rare events, in particular 
deviations from the typical behaviour. Arguably the most well-
known construction in probability theory is a random walk, i.e. 
a sum of independent random variables all having the same 
distribution. Since all these random variables have the same 
distribution they all have the same mean value and variance, 
denoted by n and v, respectively. The law of large numbers 
says that as the size of the sum grows, then the whole sum 
divided by the number of terms in the sum is almost equal to 
n. A natural question that follows is whether we can say some-
thing about the deviations of this random walk from the typical 
behaviour as given by the law of large numbers. A first answer 
is given by the central limit theorem, which gives the ‘normal’ 
deviations. Moreover, the so-called large deviation principle pro-
vides the ‘large’ deviations. These three results are summarized 
in the Table 1, where …, ,X X1 2  denote independent and iden-
tically distributed random variables and ( , )0 1N  denotes a ran-
dom variable following the normal distribution with mean 0 and 
variance 1.

Where the law of large numbers only tells that the probability 
of large deviations goes to 0, the theory of large deviations is 
concerned with how fast this convergence is. Large deviations of 
random walks were first studied by Harald Cramér in the 1930s and 
a unified formalization of large deviation theory was developed 
later in the 1960s by the Indian mathematician and winner of the 
Abel Prize in 2010 Srinivasa Varadhan.
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Walking on geodesics
The results discussed above concern random walks in Euclidean 
spaces, but what happens when you start walking in curved spac-
es? In his thesis Rik was motivated by this question and studied 
random walks on manifolds. This generalization is far from straight-
forward because even the basic definition of a random walk has to 
be adapted with care. Let’s have a look into this. Indeed, if some-
one would simply copy the approach from the Euclidean case, a 
problem you immediately run into is that you cannot add points in 
a manifold together and rescale by a factor. This problem already 
occurs when one considers the sphere, which is the prototypical 
example of a manifold.

To set this right, the increments { }X { }n n 1$  of the random walk 
 Xi

n

i1=
/  may be thought of as vectors. The addition of such a 

vector then amounts to following the straight line in the direction 
of the vector for time 1 to assure that the entire vector is added. 
See the left picture in Figure 1 for a visualization of this interpre-
tation. On a manifold, vectors providing directions are precisely 
the tangent vectors. Therefore, to make a ‘step’ of the random 
walk, a random tangent vector is considered. To make the next 
step the ‘straight line’ in that direction is followed. In Euclidean 
space, straight lines are lines of shortest distance between 
points, i.e., they are geodesics. On a manifold, following the 
‘straight line’ means that the random walk has to follow the geo-
desic in that direction. The random walk is finally constructed by 
concatenating a number of random steps. This random walk after 
n steps is denoted by Sn and will be referred to as a geodesic 
random walk. 

Harald Cramér
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The random walk behaves almost like nn. The deviations of order n of the random 
walk from the typical behavior nn are given 
by the normal distribution.

The large deviations, i.e. of order n, of the 
random walk from the typical behavior nn 
are given by the Legendre transform of the 
logarithmic moment generating function, 
denoted by *( )xK . 

Table 1
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In the Euclidean setting, Brownian motion ( )W t  is usually de-
fined as the unique continuous process with independent, station-
ary increments such that ( ) ( )W t W s-  has a normal distribution 
with mean 0 and variance t - s. Since there is no clear way to de-
fine increments of a manifold-valued process, this approach is not 
suitable to define a Brownian motion on a manifold. It turns out 
that there are various methods, from geometric to probabilistic, to 
define a Brownian motion on a manifold if additional structure is 
considered. Rik managed to prove that for a Riemannian Brownian 
motion the probability it follows a certain path c is exponentially 
small and the exponent is given by a rate function corresponding to 
the action of the path c which depends on the Riemannian metric g.

Brownian motion on a Riemannian manifold – Pollen grains on a drop
In his thesis Rik also studied Brownian motion on a manifold that 
changes over time. More precisely, he considered manifolds with a 
Riemannian metric which changes over time. One can for example 
think of a sphere, whose radius varies in time. A motivation to 
proceed into this direction comes from molecular biology and the 
random movements of proteins in cell membranes. Cells usually 
deform over time, and this influences the stochastic process that 
describes the movement of the proteins. In the Euclidean case, the 
rate of a path has a physical interpretation, namely as an action 
of the path. Rik managed to prove the remarkable result that this 
interpretation is also true in Riemannian manifolds, even when 
equipped with a time-dependent metric.

The more personal aspect
Behind all dissertations there is always a person, with flesh and 
bones, who has endured the long path of a PhD trajectory and has 
produced the work at hand.

Were you also involved in some other activities and events during 
your PhD?
“I have done a research visit to the group of Anton Thalmaier in 
Luxembourg for two months. That is what helped me out in under-
standing how to deal with time-dependent geometry. Now I know 
the underlying idea where various ‘magical’ formula’s come from. 
Furthermore, I was also a finalist for the KWG PhD Prize in 2019, 
where I got to present my PhD research in a short plenary talk 
at the NMC.”

Are there some nice memories from the last four years you would 
like to share?
“It may not immediately sound like a nice memory, but it was a 
turning point in my PhD and a great triumph in the end. In my 
article on large deviations for geodesic random walks, I spotted 
a very tiny mistake in the proof when everything was as good 
as ready. Although the mistake was only one small equation, the 
consequences where huge, and I had to come up with quite some 
different arguments to make things work in the end. It was very 
frustrating, but the satisfaction was ever greater when I found the 
new approach that worked. It showed that even very small details 
can have a large impact.”	 s

What remains is to define how the random walk can be rescaled 
by a factor n

1 . This is done by rescaling the tangent vectors that 
yield the direction at which the walk moves. Equivalently, this cor-
responds to following the geodesics for time n

1  instead for time 1. 
The rescaled random walk is denoted by ( )Sn n n

1 ) . 
The formal method to define a geodesic random walk relies on 

the Riemannian exponential map. Furthermore, because the space 
variable determines in which tangent space the increment should 
be, the random walk has to be defined recursively, this means that 
the direction of the n-th step is found given all the previous steps, 
namely Sn 1- .

Two additional complications that arise in the Riemannian set-
ting but not in the Euclidean, concern the proper definition of 
independent and identically distributed increments of the random 
walk. The crux is that the dependence of the direction of the n-th 
step and all the previous steps is purely geometric, in the sense 
that the previous steps of the random walk only determine the 
tangent space from which the new direction should be chosen. 
The second complication regards a proper definition of identically 
distributed increments. In general, the increments of a geodesic 
random walk do not live in the same tangent space. In order to 
overcome this, Rik relied on a technique called parallel transport, 
which was used to identify tangent spaces. Because the identifica-
tion via parallel transport depends on the curve along which the 
vectors are transported the analysis is rather intricate.

In his thesis Rik managed to quantify the large deviations for 
scaled geodesic random walks on Riemannian manifolds. This re-
sult generalizes the previous known results for Euclidean spaces 
where the concepts of a random walk, an increment, a scaling and 
independence are rather straightforward to define. Besides random 
walks, Rik also studied another and more complicated stochastic 
process, the Brownian motion. A random walk as discussed above 
is a stochastic process in discrete time, you can imagine that the 
same questions can also be posed for stochastic processes in con-
tinuous time. In general, for every stochastic process where some 
typical behavior exists, think of a counterpart of the law of large 
numbers, you can ask the question of how the fluctuations around 
this typical behavior behave. The continuous-time stochastic pro-
cess that Rik studied is the Brownian Motion.

Figure 1  Visualization of the construction of a geodesic random walk. On the left, the 
interpretation of a random walk in Euclidean space as repeatedly following straight lines in 
the direction of vectors. On the right, this idea is extended to the sphere, where the walk 
follows geodesics in the direction of tangent vectors.


