
14 NAW 5/22 nr. 1 maart 2021 Life and work of Hillel Furstenberg Benjamin Weiss

In 1965 he accepted an offer from the 
Hebrew University of Jerusalem, which he 
accepted, and it has remained his academ-
ic home until today. He supervised many 
students for their PhD degree, many of 
them became quite prominent. Most have 
remained in Israel and he is to a large 
extent responsible for Israel’s becoming 
a leading center in ergodic theory, topo-
logical dynamics and especially their ap-
plications to group theory, number theory 
and combinatorics. Prior to the Abel Prize 
he has received many prizes for his work 
including the Israel Prize and the Harvey 
Prize (1993), the Emet Prize (2004) and the 
Wolf Prize (2007).

1950s
Rather than trying to divide his work into 
different areas I will describe his work and 
its vast impact in a more or less chrono-
logical order. There is a commonly accept-
ed wisdom that every colloquium talk in 
mathematical should contain at least one 
proof. In a similar vein I will include in 
this survey a complete summary of one of 
the first papers that Hillel wrote while he 
was still an undergraduate. It is titled ‘On 
the infinitude of primes’ and appeared in 

He graduated Yeshiva University in 1955 
with two degrees, both BA and MA and went 
on to Princeton University for his doctoral 
studies. His advisor was Salomon Bochner 
who just in that year, 1955, had published 
his influential book Harmonic Analysis and 
the Theory of Probability. Hillel submitted 
his thesis titled simply Prediction Theory in 
1958. In the same year he married Rochelle 
Cohen from Chicago who had been very ac-
tive in Bnei Akiva, a religious Zionist youth 
movement. During the following year he 
was an instructor at Princeton and then at 
MIT. In 1961 became an assistant professor 
at the University of Minnesota. He was a 
visiting professor at Princeton in 1963–1964 
where I was privileged to take a course in 
probability theory with him. The last lec-
tures of this course were devoted to a new 
concept ‘absolute independence’ which 
evolved into the theory of disjointness (see 
below). When he returned to Minnesota he 
was granted tenure as a full professor.

Hillel Furstenberg was born in 1935 in Ber-
lin. His family succeeded in escaping from 
Nazi Germany soon after the Kritallnacht 
pogrom in November 1938. Their first stop 
was in England where his father died and 
with his mother and older sister they came 
to the United States in 1940. For the first year 
they lived with an uncle who had a poultry 
farm in New Jersey. They then moved to the 
Washington Heights neighborhood in New 
York City and his high school and college 
studies were at the Yeshiva University com-
plex. While still in high school his math-
ematical abilities became evident and he 
was greatly encouraged and supported by 
Jekuthiel Ginsburg, the founding editor of 
the Scripta Mathematica. This was one of 
the very few journals at that time dedicated 
inter alia to the history of mathematics and 
its recreational aspects. Jekuthiel Ginsburg 
employed him in various tasks connected 
with the journal including translating arti-
cles from French and German.
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plication of Zorn’s lemma. Perhaps the sim-
plest examples of minimal actions of Z are 
irrational rotations of the circle, or more 
generally the higher dimensional tori Td.

One of the basic tools in topological dy-
namics is that of invariant measures. For 
groups G like R, Z, and more generally 
for all amenable groups, every action of 
G on a compact space has at least one 
invariant measure. For non-amenable 
groups like semi-simple non-compact 
groups invariant measures may not exist. 
However, for any probability measure n 
on G there always exist measures o on X 
such that ( )g d g) o n o=#  where g ) o is 
the push forward of the measure o under 
the homeomorphism of X that is given by 
g G! . Such measures are called stationary 
measures.

Hillel’s proof of Weyl’s equidistribution 
theorem was based on showing that certain 
kinds of extensions of these toral rotations 
have a property which is even stronger than 
minimality which is called strict ergodicity. 
This means that the action has a unique in-
variant measure with global support. These 
extensions were homeomorphisms of Td r+  
of the form ( , ) ( , ( ))F u v u v f ui= + +  where 
i is an irrational rotation of Td and f is a 
continuous function from Td to Tr. These 
actions are called skew-products because 
the second coordinate is being acted upon 
by a variable homeomorphism. In his the-
sis he took f to be given by some special 
integer matrix, and in the paper [8] he took 
up the general question as to when is such 
an extension, and even a tower of such 
extensions, strictly ergodic. This led him to 
the study of general distal actions. These 
are actions with the property that for all 
pairs of distinct elements ( , )x y X X#!  the 
closure of the orbit {( , ): }gx gy g G!  does 
not intersect the diagonal. Since the sec-
ond coordinate is being acted upon by 
isometries the functions F of the above 
form define distal actions of Z.

The simplest kinds of actions are the 
equicontinuous ones in which the homeo-
morphisms ( , )g $a  form an equicontinuous 
family. In this case their closure in the 
group of homeomorphisms with the uni-
form topology form a compact group K 
and the space decomposes into minimal 
sets where each minimal set is a homo-
geneous space of K and the action by G 
is simply given by multiplication. The ir-
rational rotations are just such examples. 
Naturally such actions are distal.

matics, physics and computer science. It 
also initiated Hillel’s interest in the general 
study of non-commuting random products 
and the structures needed to describe their 
limiting behavior.

The results of these investigations were 
published in 1963, Hillel’s annus mirabilis. 
Gian-Carlo Rota began his review of this 
paper [9] in the AMS Math Reviews with 
the words “This is a profound memoir”, 
and instead of attempting to summarize it 
quoted at length Hillel’s clear introduction. 
It is here that the fundamental role of sta-
tionary measures is exploited for the first 
time. This was also one of the motivations 
Hillel had for embarking on a highly orig-
inal study of Lie Groups and their actions 
to which I return later. Before explaining 
what stationary measures are I will need to 
explain some of the basic concepts of to-
pological dynamics which are perhaps not 
as well known as probability theory.

The abstract discipline had its origins 
in the qualitative study of solutions to the 
differential equations of classical mechan-
ics. As such it was mainly concerned with 
actions of the reals on Euclidean space and 
their asymptotic properties. In the more 
abstract approach one takes as basic ob-
jects pairs ( , , )X G a  where X is a topological 
space, often assumed to be compact, and 
G is a topological group. The a is a con-
tinuous mapping from G X#  to X, which 
for fixed g G!  is a homeomorphism of X 
and as functions from X to X, ( , )g $a  is a 
homomorphism from G to the group of 
homeomorphisms of X. The classic exam-
ples have G R= , while the simplest case 
is when G Z=  and then we often write 
simply ( , )X T  where T is a homeomorphism 
and corresponds to 1, so that one wants 
to study the properties of Tn, especially 
as n tends to infinity. We often abbreviate 
( , )g xa  to simply gx where it is understood 

that we are discussing a fixed action. The 
orbit of a point x is the set { }gx  as g rang-
es over all the elements of the group.

Such an action is said to be topologically 
transitive if there is at least one dense or-
bit, i.e. at least one point such that the 
closure of its orbit is X. An action is said to 
be minimal if all orbits are dense. Closed 
G-invariant subsets E of X are called min-
imal sets if the restriction of the action to 
E is minimal. Any action contains topologi-
cally transitive subsets, and if X is compact 
then there is always at least one minimal 
set. This latter fact follows easily by an ap-

the American Mathematical Monthly [7]. 
(Hillel’s official first name is Harry and all 
of his earlier papers were published under 
that name. His Hebrew name is Hillel and 
he has been using it for all of his publica-
tions in the last forty years.) In it he gives 
a highly original proof of Euclid’s theorem 
as follows. He topologizes the integers, 
positive as well as negative, by taking for 
a base for the topology all arithmetic pro-
gressions. In this topology each arithmetic 
progression is both closed and open. Now 
by contradiction assume that the set of 
primes { }p  is finite. Denote by Ap all mul-
tiples of p. These are arithmetic progres-
sions and their union is therefore closed. 
But the complement consists of { , }1 1-  
which is clearly not open, hence we have 
arrived at a contradiction.

1960s
His first major work was an expanded ver-
sion of his thesis, published in 1960 in the 
Princeton Annals of Mathematical Studies 
under the title ‘Stationary processes and 
prediction theory’. While at that time the 
prediction theory of stochastic processes 
was already highly developed it was Hillel’s 
idea to study the possibility of develop-
ing a theory which involves only a single 
sample sequence. To accomplish this he 
used the pointwise ergodic theorem to 
show how to recover the distribution of an 
ergodic stationary stochastic process from 
a single typical sample sequence. He then 
introduced new methods from harmonic 
analysis to prove some special cases of the 
prediction problem. He also obtained as a 
byproduct of these new methods, dynam-
ical proofs of some of the classical theo-
rems of Hermann Weyl on equidistribution. 
Many of the original ideas that pervade his 
later work appear already in this mono-
graph, applied to a very specific problem 
in probability.

In that same year (1960) he published, 
jointly with Harry Kesten, a fundamental 
paper [14] on the limiting behavior of the 
products of a sequence of independent, 
identically distributed random matrices. 
Their results were motivated in part by an 
observation made by Marc Kac that solving 
certain second order differential equations 
sometimes entails studying random prod-
ucts of 2 2# -matrices. This paper laid the 
foundations for the modern study of prod-
ucts of random matrices which has turned 
out to have many applications in mathe-
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In the first step of the tower, namely an 
isometric extension of the trivial system, 
one obtains an equicontinuous system. 
An immediate corollary of the theorem is 
then the surprising result that any distal 
system has an equicontinuous factor. It fol-
lows that groups with no equicontinuous 
actions, such as ( , )SL d R  have no distal ac-
tions. However even for such groups there 
can be isometric extensions. More general 
structural results require some more defi-
nitions. The opposite of an isometric ex-
tension is a proximal extension. A pair of 
points ( , )x x1 2  is called proximal if the clo-
sure of {( ( , ), ( , ): }g x g x g G1 2 !a a  in X X#  
has a nonempty intersection with the di-
agonal. An action ( , , )X G a  is called a prox-
imal action if every pair of points ( , )x x1 2  is 
proximal. An extension : X Y"r  is called 
a proximal extension if every pair ( , )x x1 2  
such that ( ) ( )x x1 2r r=  is proximal. Later 
work by R. Ellis, E. Glasner, W. Veech and 
others showed that a very large class of ac-
tions, so called PI (proximal-isometric), can 
be obtained by a succession of proximal 

of a homogeneous space /K L of a com-
pact metric group K and there is a contin-
uous metric ( , )d x x1 2  defined on all pairs 
( , )x x1 2  such that ( ) ( )x x1 2r r=  such that 
the fibers are isometric to /K L and finally 
the key property: ( , ) ( , )d x x d gx gx1 2 1 2=  for 
all such pairs and all g G! . The simplest 
such situation is when /X Y K H#=  and 
for a continuous function :f Y K"  one has 
( , ) ( , ( ) )T y kH Sy f y kH= . It is straightforward 

to check that an isometric extension of a 
distal system is also distal. If one has an 
infinite tower of successive extensions one 
readily obtains an action on the inverse 
limit of the compact spaces which is of 
course compact. Such an inverse limit of 
isometric extensions is also distal. The 
remarkable structure theorem that Hillel 
proved states:

Theorem 1. Every distal system can be ob-
tained from the trivial one point system by 
a combination of the operations of form-
ing an isometric extension and taking in-
verse limits.

In [10] Hillel gave a beautiful concrete 
description of the structure of an arbitrary 
distal action of any locally compact group 
G. This structure theorem is the cornerstone 
of all later structure theorems in topological 
dynamics and served as the model for the 
structure theorems in ergodic theory which 
played such a key role in his remarkable 
ergodic theoretic proof of Szemeredi’s the-
orem to which I will return below. In order 
to formulate the result we need some more 
definitions. If we have two actions a,  b 
of G on compact spaces X,  Y and a con-
tinuous mapping r from X onto Y that 
is equivariant, i.e. ( , ( )) ( ( , ))g x g xb r r a=  
then we say that the action a is an exten-
sion of b while b is called a factor of a. In 
the case when the acting group is Z if the 
two systems are ( , ), ( , )X T Y S  the equivari-
ance is simply T Sr r= .

Now the main notion we need is that 
of an isometric extension. An extension of 
an action on Y which is given by the map 
: X Y"r  is called an isometric extension 

of Y if all fibers ( )y1r-  carry the structure 
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every irrational i the fractional parts of 
{ : }!vi v R  are dense in [ , ]0 1 . Another way 
to formulate this is that the only closed 
invariant sets for the action of R on the 
unit circle { : | | }S z z 1C!= =  by z z" v 
are finite sets of roots of unity and S itself. 
In contrast, for the action on S which is 
generated by a single integer k, there is a 
host of distinct invariant closed sets. These 
invariant sets can have arbitrary Hausdorff 
dimension between zero and one. This was 
the first ‘rigidity result’ that exhibited the 
dramatic difference between the action of 
a single transformation and an action by 
several commuting transformations.

In the setting of ergodic theory Hillel 
suggested that an analogous result should 
be true. Namely that the only purely 
non-atomic measure on S invariant under 
such a semigroup R is Lebesgue measure. 
This problem remains open until today.

 The best partial results were obtained 
more than thirty years ago in works by 
R. Lyons, D. Rudolph and A. Johnson 
[29, 30, 31]. Without entering the detailed 
story the final result they achieved was that 
if the semigroup leaves a measure n invari-
ant, and n has positive entropy under the 
action of some element of the semigroup 
then n equals Lebesgue measure.

In most of the more recent works on 
rigidity of higher rank actions of algebra-
ic origin there is a similar important role 
played by the entropy. It is these results 
in homogeneous dynamics that have had 
many applications to number theory and 
Diophantine approximation not to mention 
quantum unique ergodicity. I will say more 
about these matters below.

1970s
Returning to what came after the paper 
on disjointness, Hillel realized that the 
Diophantine result suggests some sort of 
transversality between the actions of mul-
tiplication by p and multiplication by q. 
He explored this in a lecture in 1969 at a 
symposium honoring his mentor S. Boch-
ner [13] where he again developed some 
new ideas and formulated several conjec-
tures which have stimulated many further 
developments. The study of the Hausdorff 
dimension of sets of the type that Hillel 
was considering in this paper was quite 
a narrow field fifty years ago. The work of 
B. Mandelbrot on fractals popularized the 
field and was one of the stimuli to many 
attempts to settle these conjectures. Quite 

Just a few years later, in 1967, Hillel 
published a landmark paper titled ‘Dis-
jointness in ergodic theory, minimal sets, 
and a problem in Diophantine approxima-
tion’ [12]. I can do no better in describing 
the impact of this work than by quoting 
from the review by Bill Parry (who was at 
that time one of the leading figures in er-
godic theory and topological dynamics):

“The approach to ergodic theory in this 
remarkable paper is complementary 
to the one developed, mainly by the 
Russian school, associated with numer-
ical and group invariants. In fact, the 
relationship investigated here between 
two measure-preserving transforma-
tions (processes) and between two con-
tinuous maps (flows) is disjointness, an 
extreme form of non-isomorphism. The 
concept seems rich enough to warrant 
quite a few papers, and these papers 
will no doubt be largely stimulated by 
the present one. An interesting aspect 
of the paper, apart from the new results 
it contains, is the entirely novel demon-
stration of a number of established the-
orems.”

Needless to say his prediction has been 
more than fulfilled. I will not try to ex-
plain what disjointness is except to say 
that there are two separate (albeit similar) 
definitions, one for measure preserving 
systems and one for topological dynamical 
systems. He applied the measure theoret-
ic version to a problem of filtering signals 
that have been distorted by random noise. 
On the topological side he proved a ba-
sic result about disjointness in topological 
dynamics and used this in a remarkable 
application of these new ideas to Dio-
phantine approximation which I will now 
describe.

Among the equidistribution theorems 
that H. Weyl proved in his famous 1916 
paper is the result that for any increas-
ing sequence of integers an the fractional 
parts of a xn  are equidistributed for a.e. 
real number x. For a nn =  the only excep-
tions are rational numbers. However if 
an is a lacunary sequence, i.e. the ratios 

/a an n1+  are bounded away from one, then 
there are uncountably many exceptions. 
While the semigroup pn is lacunary, the 
semi-group generated by co-prime inte-
gers ,p q, i.e. { }p qn m  is easily seen to be 
non-lacunary. Hillel showed that for any 
non-lacunary semi-group R of integers and 

and isometric extensions beginning with 
the trivial action on one point. All of these 
results rely in a fundamental way on Hillel’s 
structure theorem.

The third paper of that year (1963) is 
titled ‘A Poisson formula for semi-simple 
Lie groups’ [11]. One of the motivations 
for that work came from the work on 
distal systems and isometric extensions. 
When one has a ‘skew product transfor-
mation’: ( , ) ( ( ), ( )( ))T x y S x R x y= , where S 
is a fixed transformation, ( )R x  is a trans-
formation on the y-coordinate depending 
on x and one iterates this transforma-
tion, one is led to product transforma-
tions of the form ( ) ( ) ( ) ( ) .R x R x R x R xn 3 2g  
Assuming the transformations ( )R x  come 
from a given group of transformations, one 
can hope to analyze this product in terms 
of properties of the group. The complexity 
of this expression led Hillel to consider the 
case where the successive ( )R xn  are inde-
pendent random variables. For the case of 
a matrix group this is what Hillel worked 
on with Kesten. Now he turned to the gen-
eral case of random walks of groups.

It is in this paper that the important no-
tion of a strongly proximal action was in-
troduced (although the name came later). 
An action of G on a compact space X is 
called strongly proximal if the action in-
duced on the probability measures on X 
is proximal. For minimal actions this is the 
same as saying that for any probability 
measure n on X there is a net gi such that 
gi ) n converges in the weak)-topology to a 
point mass. For a semi-simple Lie group G 
a compact homogeneous space /G H M=  
is called a boundary if the natural action 
of G on M is strongly proximal. Hillel iden-
tified a unique maximal boundary which is 
now called the Furstenberg boundary of G. 
The Poisson formula referred to in the title 
is a generalization of the classical Poisson 
formula which represents every bounded 
harmonic function in the unit disk as an 
integral of a continuous function on the cir-
cle with respect to the Poisson kernel. Hillel 
defines harmonic functions on G and then 
gives an analogue of this formula using a 
kernel which is defined on the Furstenberg 
boundary. These boundaries have turned 
out to play an important role in areas far 
from the original probabilistic motivations, 
coming from random walks on G (a spe-
cial case of this was the original paper on 
products of random matrices), such as the 
theory of C)-algebras.
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results classifying the invariant measures 
for actions by unipotent groups on homo-
geneous spaces. The major work here was 
done by Marina Ratner and the theory that 
she developed, called simply Ratner theory 
has been widely employed in applications 
of homogeneous dynamics to number the-
ory and geometry.

In 1975 the Israeli Institute for Advanced 
Studies was established at the Hebrew Uni-
versity of Jerusalem. This institute has no 
permanent members, but serves as the 
venue for semester-long, or year-long, pro-
grams of intensive international activity in 
a specialized area. In the first year of the 
Institute, 1975–1976, Hillel was among the 
organizers of the program in ergodic theo-
ry. This included Donald Ornstein, from the 
US, Jean-Paul Thouvenot from France, Mike 
Keane from Holland, and others. There 
were also many visitors and among them 
was Konrad Jacobs, who was the leading 
figure in ergodic theory in Germany in the 
preceding period. At that time he was more 
interested in combinatorics and he gave 
a colloquium talk in which he presented 
E. Szemerédi’s proof of the Erdős–Turan 
conjecture on arithmetic progressions in 
sets of integers with positive density.

Having learned about the result Hillel 
went on to give a completely different 
proof using methods from ergodic theory 
[17]. The first part of the new proof is for-
mulating a result in ergodic theory which 
is equivalent to Szemerédi’s theorem. This 
result is a far reaching generalization of the 
Poincaré recurrence theorem, it reads:

Theorem 2. If ( , , , )X TB n  is a measure pre-
serving system and A B!  has positive 
measure then for any positive integer k 
there is some n 0>  such that

( ( ) ( ) ( )) .A T A T A T A 0>n n kn2+ + + +gn

Poincaré’s theorem is the case k 1=  
and this is called the multiple recurrence 
theorem. The fact that one can deduce 
Szemerédi’s theorem form this multiple 
recurrence theorem was immediately clear 
to Hillel because it follows from what is 
now called the ‘Furstenberg correspon-
dence principle’ which Hillel first exploited 
to great benefit in his thesis on predic-
tion theory. This principle gives a precise 
rendering of the heuristics whereby the 
integers are seen as a measure space, 
density of a set representing its mea-

‘Random walks and discrete subgroups 
of Lie groups” [15] in which he gave a 
new application of probability theory to 
group theory. A discrete subgroup C of 
a non-compact connected Lie group G is 
called a lattice if the quotient space /G C 
has finite measure. This means that, there 
is a subset D G1  with finite left-invariant 
Haar measure and the translates ,D !c c C 
cover G. Hillel’s main result was that a lat-
tice subgroup of ( , )SL d R  cannot be iso-
morphic to a subgroup of ( , )SL 2 R  (discrete 
or not). His proof goes via the study of 
the maximal boundaries and the Poisson 
boundaries. He constructs a random walk 
on a lattice subgroup C of ( , )SL d R  whose 
Poisson boundary coincides with the max-
imal boundary of ( , )SL d R . This work is 
related to the well-known Mostow rigidity 
and the methods of Hillel influenced the 
work of G. Margulis on super-rigidity.

At the retirement conference for G. A. 
Hedlund, one of the pioneers of the mod-
ern study of topological dynamics, Hillel 
presented his proof of the unique ergo-
dicity of the horocycle flow. This was pub-
lished in the following year [16] in the pro-
ceedings of that meeting. To explain this 
result we need to define what is the horo-
cycle flow and what is unique ergodicity. 
A real flow ( , )X Tt , here the acting group 
is the reals, is said to be uniquely ergodic 
if it has a unique invariant measure. This 
measure is ergodic and the system has a 
unique minimal set. The restriction of the 
action to the minimal set is strictly ergodic. 
As a consequence it follows that all orbits 
of the flow are equidistributed.

The horocycle flow has for its state space 
the unit tangent bundle of a 2-dimensional 
surface with constant negative curvature. 
The universal cover of such a space is the 
hyperbolic plane. In the unit disc model 
for the hyperbolic plane the geodesics are 
described by circular arcs that are perpen-
dicular to the boundary. The horocycles are 
circles tangent to the boundary. Algebra-
ically one can describe this as follows. Let 

( , )SLG 2 R=  and C a cocompact discrete 
subgroup. Let /X G C=  and Tt denote the 
one parameter subgroup t1

0 1c m which acts 
on X by multiplication on the left. This 
is one of the two horocycle actions, the 
other is described by .t

1 0
1c m  Hedlund had 

shown that these horocyle flows were min-
imal and Hillel proved that they are also 
uniquely ergodic — hence strictly ergodic. 
This result was the first in a long series of 

recently one of these conjectures was es-
tablished independently by P. Shmerkin 
[32] and M. Wu [33] and I shall describe 
this in some detail as a nice illustration of 
the depth of Hillel’s insights.

Let dim denote the Hausdorff dimension 
function for subsets of ( , )X d , a compact 
metric space. Two closed subsets A,  B of 
X are defined by Hillel to be transverse if

dim( ) max{ ,dim dim dim }.A B A B X0+ = + -

Two continuous mappings T, S from X to X 
are said to be transverse if for all closed 
sets A and B that are T and S invariant, 
respectively the sets A,  B are transverse.

The conjecture in question is:

Conjecture (1970). Two positive integers a, b 
are said to be multiplicatively indepen-
dent, if the ratio of their logarithms is irra-
tional. For an integer m denote by Tm the 
map of the unit interval to itself defined 
by ( ) (mod )T x mx 1m = . The mappings Ta , Tb 
are transverse for all multiplicatively inde-
pendent integers ,a b.

The two proofs of this conjecture by 
Shmerkin and Wu are quite different. Wu’s 
proof makes use of one of the novel tools 
developed by Hillel in [13] to obtain some 
partial results towards his conjecture. Hil-
lel introduced there spaces of measures on 
trees and Markov processes on these spac-
es. These ideas were later elaborated and 
given a geometric form as ‘CP-processes’. 
Rather than giving a detailed definition of 
these processes I will quote Hillel’s abstract 
to his 2008 paper titled ‘Ergodic fractal mea-
sures and dimension conservation’ [20]:

“A linear map from one Euclidean space 
to another may map a compact set bi-
jectively to a set of smaller Hausdorff 
dimension. For ‘homogeneous’ fractals 
(to be defined), there is a phenomenon 
of ‘dimension conservation’. In proving 
this we shall introduce dynamical sys-
tems whose states represent compactly 
supported measures in which progres-
sion in time corresponds to progressive-
ly increasing magnification. Application 
of the ergodic theorem will show that, 
generically, dimension conservation is 
valid. This ‘almost everywhere’ result 
implies a non-probabilistic statement 
for homogeneous fractals.”

Coming back to his work on random 
walks and Lie groups in 1971 he published 
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Here is a more geometric version which 
can be easily deduced from the above.

Theorem 5. There is a function ( , )Q qe  de-
fined for 0>e  and q a prime power, so 
that if F is the field with q elements and 
V is a vector space over F of dimension 

( , )N Q q> e , and if S V1  is a subset with 
cardinality | |S q> Ne , then S contains an 
affine line.

This latter theorem was established 
several years earlier in [25]. These results 
have been vastly extended over the years 
by many people, including Vitaly Bergel-
son [2] who was a student of Hillel. Ber-
gelson’s achievements include replacing 
arithmetic progressions by patterns based 
on polynomials of higher degree. In anoth-
er development inspired by Hillel’s struc-
ture theorem for ergodic systems a more 
refined structure theorem was found which 
involves special types of isometric exten-
sions involving compact nilmanifolds. This 
was done in joint work of Bernard Host 
and Bryna Kra [28], and independently by 
Tamar Ziegler [34], who was also a student 
of Hillel. The role that the nil-systems play 
in the study of what have become to be 
known as non-conventional ergodic aver-
ages was originally discovered by Hillel 
and me, and appeared for the first time 
in the papers by J.-P. Conze and E. Lesig-
ne [5, 6]. It was elaborated and applied 
to polynomial patterns in sets of positive 
density in [27].

Hillel returned to homogeneous dy-
namics in his paper titled ‘Stiffness of 
group actions’ [19]. In it he introduced 
the new notion of stiffness. If o is a 
probability measure on a group G then 
an action of G on a space X is o-stiff 
if every o-stationary measure on X is in-
variant. Hillel showed that for carefully 
chosen o on ( , )SL d Z , namely probabili-
ty measures o so that the corresponding 
stationary measure on the boundary of 
( , )SL d R  is absolutely continuous with re-

spect to Lebesgue, the action of ( , )SL d Z  
on Td is o-stiff. He conjectured that this 
should be true for any measure whose 
support generates ( , )SL d Z . This insight 
was more than confirmed about ten 
years later in [3, 4], and further greatly 
generalized in [1].

In [22] Hillel and Glasner embark on 
a general study of stationary dynami-
cal systems, that is actions of a group 

be formulated as follows (A similar result 
was obtained independently at the same 
time by R. Zimmer).

Theorem 3. An arbitrary ergodic system is 
a relatively weakly extension of a measure 
distal system.

Using this Hillel was able to fully prove 
the multiple recurrence theorem. Shortly 
afterwards the new methods showed their 
strength in the proof of a new combinato-
rial result on subsets with positive density 
in Zd. This work which was done jointly 
with Yitzhak Katznelson [24] was based on 
a generalization of the multiple recurrence 
theorem in which the powers of the trans-
formation T were replaced by a general 
collection of k 1+  commuting measure pre-
serving transformations { , , , }T T Tk0 1 f .

1980s – today
Hillel gave a marvelous exposition of these 
and many other results in his monograph 
Recurrence in Ergodic Theory and Combi-
natorial Number Theory [18], which was 
based on the Porter Lectures that he gave 
at Rice University in 1978. This monograph 
opened up an entire new field in the in-
terface between dynamical systems and 
combinatorial number theory. Over the 
next ten years in a series of papers written 
jointly with Katznelson the new methods 
were able to prove many new combinato-
rial theorems. The paper which culminated 
the series titled ‘A density version of the 
Hales–Jewett theorem’ [26] established a 
density version of the combinatorial Hales–
Jewett theorem, much as Szemerédi’s theo-
rem is a density version of the classic van 
der Waerden theorem.

Here is what the theorem says. One 
generalizes the notion of an arithmetic 
progression to something purely com-
binatorial. Let ( )WN A  be the set of all 
words of length N over the alphabet 
{ , , , }A a a ak1 2 f= . For any x A!  consider 

a word ( )w WN A!  in which x occurs at 
least once. Let { ( ), ( ), , ( )}L w a w a w ak1 2 f=  
where ( )w aj  is obtained from ( )w x  by re-
placing all copies of x by aj. Then L is 
called a combinatorial line.

Theorem 4. For any 0>e  and integer 
k there exists an ( , )M ke  such that if 
N > ( , )M ke  any set ( )S WN A1  with cardi-
nality | |S N> ke  contains a combinatorial 
line.

sure and the shift operation, x x 17 + , a 
measure preserving transformation. The 
existence of an arithmetic progression 
{ , , , , }a id i k0 1 f+ =  in a set of positive 
density takes on the meaning of a point 
in a set of positive measure recurring in 
the set after a power of the measure pre-
serving transformation is applied k times 
in succession.

In the other direction it is straightfor-
ward to see that the combinatorial theo-
rem implies the ergodic version. Having 
established this equivalence the big task 
remained of proving this multiple recur-
rence theorem. The first reduction is to 
use the ergodic decomposition of an arbi-
trary measure preserving transformation to 
an integral of ergodic systems. It remains 
then to establish the theorem for ergodic 
systems.

On the one hand it is quite easy to es-
tablish it for the Kronecker systems, which 
correspond to rotations on a compact 
group. At the other extreme are the weak-
ly mixing systems. These are systems for 
which the unitary operator associated to 
the measure preserving transformation has 
no non trivial eigenfunctions. An equiva-
lent definition is that the direct product 
of the system with itself is ergodic under 
the diagonal action. For these weakly mix-
ing systems Hillel proved a multiple ergo-
dic theorem, generalizing von Neumann’s 
mean ergodic theorem. The multiple recur-
rence then follows from this.

The really difficult task was combining 
these two extreme kinds of behavior. For 
this Hillel developed a structure theorem 
for all ergodic systems. The first part is 
a measure theoretic analogue of distality. 
A measure distal system is one which can 
be represented as a tower of isometric 
extensions beginning with a Kronecker 
system. This is modeled on his struc-
ture theorem for distal transformations 
in the setting of topological dynamics. 
Next he generalized the notion of weak-
ly mixing from simple systems to their 
extensions. A measure preserving system 
( , , , )X TB n  is an extension of a measure 
preserving system ( , , , )Y SC o  if there is a 
measurable mapping : X Y"r  mapping 
n to o and satisfying T Sr r= . The ex-
tension is relatively weakly mixing if the 
relative product of X with itself over Y 
is ergodic. The exact definition of relative 
product is somewhat technical and I will 
omit it. Hillel’s structure theorem can then 
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I have tried to give a survey of some 
of the host of original ideas that are to be 
found in the publications of Hillel Fursten-
berg. This published work resembles the 
tip of an iceberg in the following sense. 
Generations of students and colleagues 
have benefited from his ideas spanning 
a range of mathematics going far beyond 
the areas I have touched on in the above. 
In addition his work has inspired count-
less developments which I have barely 
touched on. In conclusion I would like to 
thank Hillel for all that I have learned from 
him during all these years from 1963 until 
today. s

which appeared in [21]. In it he develops 
a theory of mini-sets and micro-sets of 
a closed subset A of Rd. A mini-set of A 
is just the intersection of A with a small 
square that is re-scaled to be of unit size, 
while the micro-sets of A are the limits 
in the Hausdorff metric of mini-sets of A. 
There is a new notion of dimension called 
the star-dimension and ergodic theory is 
used to show that the star-dimension of a 
set A is the maximal Hausdorff dimension 
of a micro-set of A. There are further re-
sults connected to preservation of dimen-
sion for homogeneous fractals and connec-
tions with ergodic theory.

G with a probability measure m and an 
action of G on a space X equipped with 
an m-stationary measure o. They devel-
op a general theory of factors, extensions 
and conditional measures. They prove 
a structure theorem and use it to estab-
lish a theorem of Szemerédi type for the 
group ( , )SL 2 R . In a further paper [23] 
they use the structure theorem to prove 
a version of multiple recurrence for sets 
of positive measure in a general stationary 
dynamical system.

Hillel came back to his ideas about 
fractals and ergodic theory in a wonderful 
series of lectures at Kent State University 
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