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for instance we can exploit the so-called SIR model (Susceptible– 
Infected–Recovered model), described, e.g., in [15, Section 2.4 and 
3.3]. In this model we have three functions over time: S, the num-
ber of healthy people in the population, which still did not have 
the disease; I , the number of infected people; and R, the number 
of recovered people, which now have an immunity and so will not 
be infected again. (The model has many branches exploited in 
various applications, see, e.g., [15], but for now such a simplified 
form is more than enough.) We assume that nobody is born and 
nobody dies, so S I R N+ + =  is a constant and for a discrete 
time line (representing for example the number of days after the 
disease appearance) according to the SIR model we will have the 
following recurrence

, , ,S S N
S I

I I N
S I

I R R In n
n n

n n
n n

n n n n1 1 1
b b

c c= - = + - = ++ + +

where b interprets the infectivity chance and c stands for the re-
covery chance. Now, we will simplify this model a bit by supposing 

Stochastic processes appear as an inherent important ingredient 
for many models. The reader can find a vast literature on applica-
tions of stochastics in various fields of physics, mechanics, eco-
nomics, biology, et cetera., see, e.g., [2, 4]. Our goal here is not to 
describe all of these applications; instead we are going to focus on 
a currently more substantial topic as an illustration of stochastic 
approach: epidemics.

Assume that there is an epidemic of a certain disease spreading 
over a fixed population. (Poor reader, if you find the infection topic 
too dramatic, please presume that this ‘disease’ is nothing but the 
Pokémon Go game downloads or a number of gummy bears sold.) 
In this case we are definitely interested in predicting the number 
of infected people or, say, the infected area. Fortunately there have 
been done a lot in this direction during the past century, and 
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that S N 3. .  (i.e. the number of infected people is still pretty 
low comparing to the total population, this seems to hold, e.g., for 
HIV, SARS-CoV-1, MERS, et cetera), so we will have only

( ) .I I In n n1 b c= + -+ (1)

Equation (1), though being useful for a small extremely densely 
populated society, does not tell us what happens if we have a big 
territory over which the infection spreads so the area effects start 
playing a role. Now we are going to make our model — hopefully — 
more realistic which would reflect such a setting.

1.	 We assume that we have a bounded domain RO 21  (designat-
ing the area where the disease spreads) and a process ( , )I t x  
corresponding to the infection density at point x O!  in time 
t 0$ .

2.	We assume that the infection spreads not only in time, but in 
space, and we will use a special operator 

x x1
2

2

2
2

2

D = +
2

2

2

2 , also 
known as the Laplacian, in order to emulate this evolution. This 
operator generates the heat semigroup (see, e.g., (8)), which 
is used in particular for modelling how the temperature of an 
object distributes in time, so such an operator perfectly fits in 
our setting (see, e.g., [10] ). The impact of the Laplacian in the 
disease spreading will be controlled by a constant 0$m .

3.	Our recovery chance c seems to depend on I in reality: when 
I is small c is a constant smaller than b, after getting a cer-
tain level of I we have a maximum of c (infected people get 
a better help as the infection is noticed), and finally, when I 
is getting really big, c again falls down to the almost initial 
level as the capacities of the hospitals are limited. (Note that 
in reality c seems to depend on time as well. Indeed, as I is 
big, more pharmacy companies and research institutes work on 
the possible vaccines or treatments. But as such breakthroughs 
in treatment come discretely in time, one can assume that the 
research impact in c is governed by a Poisson process with 
the intensity depending on I. Though such a model seems to 
be more precise, we will not consider it here due to technical 
complications.)

4.	The same corresponds to b: it is quite big for small I, but 
when I is getting bigger, b is becoming smaller, as there are 
less healthy people around and quarantine measures could be 
undertaken. To sum up, we can assume that g b c= -  is a Lip-
schitz bounded function of I (| ( ) ( ) | | |x y C x y#g g- -  for some 
C 0> ) so that

5.	

( ) , ( )lim x0 0 0> < <
x

3g g-
"3

There are always randomly appearing fluctuations, disturbing 
our model. We will assume here that these fluctuations are gen-
erated by a Wiener process Wt depending on time. (Highly likely 
such oscillations depend on space as well, but for simplicity we 
will not consider space-time white noise.) If the reader is not 
acquainted with such a notion, please imagine a trajectory of a 
molecule in the air.

6.	Sometimes researches discover new diagnosing methods, or it 
could be a dramatic change in the political situation, and the 
number of infected people drastically jumps. Or the other way 
around, a revolutionary treatment is found, and the infected 
number drops down. Nobody knows, when such changes hap-
pen. It is completely unpredictable, but everybody expects, that 

such events will occur with a certain chance. Fortunately math-
ematics can model such phenomena with a Poisson process Pt: 
a process, which has jumps of size 1 happening at sudden ran-
dom times which distribution is exponential, i.e.

( ) !
( )

, , .P P n n
t s

e n t s0P ( )
t s

n
t s $ $- = =

- - -

(The intensity of Pt, i.e. the measure which indicates how many 
jumps happen in a particular time segment, which is defined by 
[ , ]s t P PE t s|o = - , could also depend on I. Nonetheless, here we 

assume that o is Lebesgue.)
7.	People do travel! Therefore we assume that our domain is divid-

ed into n ‘clusters’ , ,A An1 f : within such a cluster every visiting 
infected ‘tourist’ increases the infection density by a constant. (It 
must not be specifically a tourist, but any traveler within the pop-
ulation.) As again we have no idea when such a traveler comes, 
the corresponding impact can be modeled by independent Pois-
son processes , ,P Pn1 f  and the coefficients ( ( )), , ( ( ))I t I tn1 fc c , 
where we consider ( )I t  as a function ( , )x I t x7  on the whole O 
so that ( ( )), , ( ( ))I t I tn1 fc c , e.g., can have the following form:

( ( )) ( , ) , , , ,I t I t x dx k n1k k fc }= =
O
a k# (2)

with ( )xk}  being of the order { , }min x1 1- , so when the total 
infected number is small, each traveler infects about one-two 
persons, but when I is big, each traveler contacts less and 
hence infects less. (The intensity of these Poisson processes 
could depend on I as well due to travel restrictions acting when 
I is big.)

Recurrence (1) thus transforms to the following stochastic partial 
differential equation:

( , ) ( , ) ( ( , )) ( , ) ( , ) ( , )

( ) ( ( )) , , ,

( , ) ( ), ,

d d d d

d
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]]]]]]
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/ (3)

where dI , dt, dW, dP, and dPk are differentials, which could be 
imagined as ‘small changes of I, t, W, P, and Pk ’ respectively, a 
indicates how big is the impact of random fluctuations, b rep-
resents the dependence on Pt, ( )x1Ak

 is an indicator function of the 
cluster Ak which equals 1 when x Ak!  and 0 when x Akg , and the 
function I0 is the distribution of the disease in the very beginning, 
which typically can be assumed as an indicator function of a sub-
set of O (see for example Figure 1).

How can we understand that the epidemic is getting serious? 
Very often we tend to evaluate the reality by just one number, 
which is very convenient as we come up with the decision depend-
ing on how this number is big or small.

In particular, whatever positive functions f and g on O repre-
senting two possible infection densities are, we need to choose a 
parameter l such that

f is worse then g if and only if ( ) ( )f g>l l ,

so we somehow order possible infection distributions. There are 
two obvious choices of such a parameter: either l stands for the to-
tal number of all infected people, i.e. ( ) ( ) ( )dI I I x x1 |l l= =

O
# , or l 

corresponds to the density maximum, i.e. ( ) ( ) ( )maxI I I x
x O

|l l= =3
!

. 
Both approaches have their disadvantages: in the first case ( )Il  
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Fortunately for us, there has been developed a massive amount 
of work concerning stochastic equations with values in Banach 
spaces. My point here is not to make an overview over all these 
results, but to demonstrate, so we will fix one approach, which 
provides us with the so-called mild solution (see, e.g., [3, 9] and 
references therein):

( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( ( )) , .

d

d d

d

I t S t I S t s I s s

a S t s I s W b S t s I s P

S t s I s P t 01

t

t
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t
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kt
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0 0

0 0

01
k

$

m m m a

m m m m

m m c

= + -

+ - + -

+ -
=
/

#

# #

# (7)

Here ( ( ))S t t 0$  denotes the heat semigroup, a family of linear maps 
on ( )L Op  which is a semigroup (i.e. ( ) ( ) ( )S t s f S t S s f+ =  for any 

( )f L Op! ) and which is generated by the Laplacian, i.e. for any 
smooth ( )f L Op! ,

( ) ( )
( ) ,lim

S t f S t f
S t f t 0

0
$f

f
D

+ -
=

"f

(so the Laplacian is the ‘derivative’ of ( )S t  in t). For example, if 
RO 2= , then ( )S t  has the following form:

( ) ( ) ( ) , .dS t f x t f y e y x4
1 R| | /x y t4 2

R

2

2 !r= - -# (8)

The key tool we are going to exploit in proving that there is only 
one process ( )I t  satisfying (7) is the magic fixed point argument 
(aka the Schauder theorem):

Theorem 1.  Let X be a Banach space with a norm $ . Assume 
that there is a function z from X to itself and a constant [ , )C 0 1!  
such that

for any( ) ( ) , .x y C x y x y X# !z z- - (9)

Then there exists a unique x X!  satisfying ( )x xz = .

In our setting, let X be a space of all ( )L Op -valued processes 
on [ , ]T0  starting in I0 and let z be defined by

( )( ) ( ) ( ) ( ( ))
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(Such X is not a Banach space, but one can represent this as a 
Banach space by subtracting I0 and setting the norm by (11).) Our 
aim is to find such $  and T that (9) is satisfied (then we immedi-
ately get existence and uniqueness of I with ( )I Iz = , so the same 
would follow for the solution of the integral equation (7) on [ , ]T0 !). 
Luckily we know the proper $  in advance, so we choose it to be

( ) ,supI I tE,p T
t T

p
0

|=
# #

(11)

where Ep means the expectation of a random variable p, i.e. the 
mean (or the integral) of all the values of p over all the random-
ness created by W and P (see, e.g., [1, 12] ).

Exercise 2.  Prove that ,p T$  is a norm. Hint: think of E as of an 
integral.

can be incredibly big, though I can be smudged over the domain, 
so the infection is still not dangerous; in the second case there 
might be an extremely high (even infinite) pick in one point but 
there could be no infection outside a small surrounding of this 
point, and there is no need for panic yet. It turns out that there is a 
whole zoo of parameters which continuously interpolates between 
the two cases discussed above, the so-called Lp-norms:

( ) .df f x x
/

p
p

p1

|=
O
c m#

Notice how wonderful they are! First, they have the promised lim-
its:

( ) , , ( ), .maxdf f x x p f f x p1p p
x O

" " " " 3
!O

#

Second, f p combines together caring about the infection area, 
as 1l , and taking huge picks into account, as l3, and this de-
pendence changes as p varies. Do you mind more about picks? 
Increase p! Does the infection area play a major role? Simply drop 
p down.

Finally, f p is a norm, i.e. a nonnegative function acting on 
functions which satisfies the following three properties:

1.	 triangle inequality: f g f gp p p#+ + ,
2.	homogeneity: af a fp p=  for any a R! ,
3.	positivity: f 0p =  if and only if f 0= .

(One can think of a norm as of a distance function.) We will call the 
space of all functions f with f <p 3 the Lp space and denote it 
by ( )L Op . This space is a Banach space (i.e. a linear space with a 
norm which is complete, see, e.g., [11] ).

Thanks to the discussion above from now on we are interested 
only in ( )I t p. Fix p2 < 3#  (we omit the case of p 3=  as some-
times L3 spaces are terrible to work with, see, e.g., [8, Example 
6.1.18] and [7, 8] in general, and the case of p 2<  in order to 
avoid certain technical difficulties appearing later), and consider 
the equation (3) not pointwise in x O! , but as an equation on 
processes with values in ( )L Op , i.e.
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where a is a Lipschitz function which acts from ( )L Op  to itself and 
, , n1 fc c  are Lipschitz functions acting from ( )L Op  to R, i.e. there 

exist positive constants Ca and Cc such that for all f and g from 
( )L Op ,

( ) ( ) ,

( ) ( ) , , .

f g C f g

f g C f g k n1for any

p p

k k p f

#

#

a a

c c

- -

- - =

a

c (6)

(5)

Exercise 1.  Prove (5) and (6) given g is Lipschitz and assuming that 

kc  is defined by (2) and the corresponding k}  is Lipschitz.

Now the question is: Does (4) make sense? Paper is patient, 
and one can write down any equation they want. But will this 
equation have a solution? In which sense? And is it unique, so that 
basing on it one can try to make forecasts?
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martingale, see, e.g., [13] ), thanks to the work [13] of van Neerven, 
Veraar, and Weis on stochastic integration in Banach spaces (see 
also [14] ) and using (13) we can estimate (14) in the following way 
exploiting the square function:

( )( ( ) ( ))
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/
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p
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m
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#

#

#

for some fixed constant Cp, where the latter integrals are taken 
pointwise in O. By Hölder’s inequality, the Fubini theorem, and 
(13) we get
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Consequently, if we sum everything up

( )( ( ) ( )) .sup dS t s F s G s W C T F GE ,
t

s p p p T
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2
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t T0
#m m- - -

# #

#

Now we move to our last Poisson ingredients of (12). First similarly 
to (14) we notice that
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Thanks to the work of Dirksen [5, Theorem 1.1] we can estimate 
such a stochastic integral with respect to the Poisson noise by
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where t P tt7 -  is called a compensated Poisson process which is 
called so as

, ,P t t0 0E t $- =

Cp is a constant depending only on p, and ( ))  follows from the 
dilated analogue of (13), see [6]. (Integrals with respect to P tt -  

Now let us check the assumptions of Theorem 1. Let F and G 
be two processes with values in ( )L Op  such that ( ) ( )F G I0 0 0= = . 
Then by (10), (11), and by the triangle inequality
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Let us now estimate each part of the right-hand side of (12). First 
note that ( )S t  is linear, consequently

( ) ( ) ( ) ( ) ( )( ( ) ( ))

( )( ) ( ) .

S t F S t G S t F G

S t I I S t

0 0 0 0

0 00 0
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t T t T0 0

m m- = =
# # # #

Now note that ( )S t  is a contraction on ( )L Op  for any t 0$ , i.e.

( )S t f fp p# (13)

(we leave this as an exercise). Therefore by the triangle inequality 
(now applied for an integral)
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where for ( ))  we used (5) and ( )))  follows from the fact that any 
norm is nonnegative.

Next, let us move to the stochastic integral with respect to the 
Brownian motion. First note that thanks to the so-called dilation 
trick shown in [6] by Fröhlich and Weis we can think of ( ( ))S t t 0$  
as of a group, not just a semigroup (though this group is different 
from ( )S t  and acts on a different Lp space, but this does not play a 
big role for us here in this illustration) so that ( ) ( ) ( )S t s S t S s- = - . 
Therefore in particular by (13) (though such a dilated ( )S t  does not 
act on ( )L Op , it does have a bounded norm, see [6]) and by the 
linearity of ( )S t ,
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Now, as we have a proper stochastic integral (we call it proper 
as it has the form ( )dF s Ws#  but not ( , )dF t s Ws# , so it is a local 
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Figure 2  ( )I t  for .t 0 6= .

Figure 3  ( )I t  for .t 1 2= .

Figure 1  Here and later [ , ]0 1O 2=  is periodic, ( )I t 1[ . , . ] [ . , . ]0 6 0 8 0 6 0 8= #  for t 0= .

Figure 4  ( )I t  for .t 1 8= .

Figure 5  ( )I t  for .t 2 4= . Figure 6  ( )I t  for t 3= .
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Now, when we have that (4) has a unique solution (again, in 
some sense), we are able to ask further questions, such as

–– For which t either ( )I t p or ( )I tE p becomes small/big?
–– What happens if we change the coefficients of (4)? What ad-

ditional terms corresponding to the fight against the disease 
would with a high chance vanish ( )I t p in time?

–– Can we simulate the solution of (4) (see Figures 1–7)? Will this 
simulation converge to the solution? In which sense?

–– How (4) and its solution are related to the real epidemic dy-
namics?

–– What happens if we change (3) and (4) to the full SIR (or any 
other appropriate) model (likewise in [10] )? Can we then obtain 
the existence and uniqueness of the solution using the tools 
exploited above?

–– Do we have convergence of the disease distribution in some 
sense (see, e.g., Figures 1–7)?

–– et cetera.

These questions are extremely challenging on their own and they 
require additional rigorous research, but at least we can guarantee 
that they are well-posed.

Example 3.  Figures 1–7 present a simulation of the solution of (3) 
for [ , ]0 1O 2=  being periodic (in this case the heat kernel has a sim-
ple form), .0 015m = , ( ) . . , { , . . }max minx x x3 7 0 1 2 0 1 6 5g = - - -" ,, 
a 50= , b 5= , ( )An n 1

2500
=  is a partition of O into 2500 equal squares 

with the side length 0.02, ( ) { , /( . )}minx x x4 0 1kc = + , and intensi-
ties of Pk are not Lebesgue measures, but .0 08 Rm +

. The simulation 
is made on the mesh of 50 50#  points with the time differences of 
0.01. Figures 1–6 show the graph of the infection density for times
, . , . , . , . ,t 0 0 6 1 2 1 8 2 4 3= , and Figure 7 demonstrates the evolution of 

( )I t 2 over [ , ]t 0 3! .	 s

and more general compensated Poisson random measures have 
been studied by Dirksen in [5].) Similarly, exploiting (6) one can 
show that

( ) ( ( ( )) ( ( )))

( ) .

sup dS t s F s G s P

C C T F G1

1E

,

t
A k k s

k
p

p p T

0t T
k

0

#

m m c c- -

+ -c

# #

#

If we sum up all the estimates, we get

( ) ( )

| | | | ( ) ( ) ,

I G

C T a C T b C T C C T F G1 1

,

,

p T

p p p p T2
1

#

z z-

+ + + + + -a c` j
so if we choose T small enough, the conditions of Theorem 1 are 
satisfied, and thus there is only one I so that (4) holds on [ , ]T0 . 
Iterating the procedure (first constructing the solution on [ , ]T0 , 
then starting in T on the segment [ , ]T T2 , et cetera), we obtain a 
unique solution of (4) on the whole R+.
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