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tween their respective vertices. Ramsey 
proved that, given a positive integer k, 
there is some least integer 3( )R k <  such 
that in any graph on ( )R k  vertices, one is 
guaranteed some k-vertex subset within 
which either all k

2
d n pairs of vertices are 

included as edges — it forms a clique — or 
none are — it forms a stable set. See Fig-
ure 1 for an example showing ( )R 4 17> . 
Cliques and stable sets are two of the tidi-
est graph structures possible, so one can 
view Ramsey’s theorem as finding order 
within some arbitrary system, a common 
refrain in mathematics.

when the parameter 3 above is raised to, 
say, 5, the precise value of the correspond-
ing minimum is a well-known open prob-
lem — the current best lower bound is 43, 
while the upper bound was recently low-
ered with extensive computer assistance to 
48 by Angeltveit and McKay [1]. You quickly 
run out of room in your house, because the 
problem suffers so badly from ‘combinato-
rial explosion’.

The fact that when 3 is replaced by 
any fixed positive integer k, the corre-
sponding minimum, call it ( )R k , is always 
well-defined was shown by a Cambridge 
polymath of the early twentieth century, 
Frank Plumpton Ramsey (or ‘The man who 
thought too fast’ [6], according to a recent 
New Yorker piece). He established this fact 
as a lemma: he needed it for the decidabil-
ity of some first-order logic statements in 
relation to a Hilbert problem [7]. This has 
become one of his namesakes: the ( )R k  
are known as Ramsey numbers.

One might better cast this in graph 
theoretic terms: associate a vertex of the 
graph to each guest; if two guests have 
ever shaken hands, include an edge be-

There’s been a rush of exciting results in 
Combinatorics recently, with many evident-
ly immutable challenges suddenly yielding. 
When I was asked to write about one of 
these, I elected for what on the face of it 
appears to be relatively small progress, but 
for one of the oldest, most cherished, and 
most difficult challenges of them all.

Imagine hosting a party prior to the 
9th of March of this year. Of course, as a 
conscientious host, you naturally wonder 
to yourself, are there 3 guests here all of 
whom have previously shaken hands with 
each other, or are there 3 no two of whom 
have ever shaken hands? Could it be that 
this is already guaranteed merely by dint 
of having sufficiently many houseguests? 
More specifically, what is the minimum 
number (if it exists) of houseguests to 
guarantee this, arguably curious, property?

The answer here is not 5, as you could 
have some 5 houseguests sat around a 
round table, each having shaken hands 
only with his or her two neighbours. And 
a routine case analysis will check that the 
minimum is indeed exactly 6, so perhaps a 
subdued affair. On the other hand, already 
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Figure 1 A Payley graph of order 17 has no cliques or 
stable sets of size 4.
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a stubbornly enduring challenge. However, 
a natural idea for enhancing the Erdős–
Szekeres inductive argument above was 
introduced by Andrew Thomason, also of 
Cambridge, in the late eighties [9]. Instead 
of considering some vertex v, one may con-
sider some r-vertex clique (or, symmetrical-
ly, r-vertex stable set) and bound the num-
ber of ways it can be extended to a ( )k 1+
-vertex clique (respectively ( )l 1+ -vertex 
stable set) inductively. The catch is that 
to conclude, instead of using the pigeon-
hole principle as before, one must consider 
graphs that contain neither a ( )k 1+ -vertex 
clique nor an ( )l 1+ -vertex stable set, so-
called Ramsey graphs, and carefully esti-
mate how many r-vertex cliques and stable 
sets they contain. Thomason leveraged the 
case r 3=  to obtain a polynomial factor 
improvement on (1).

A good while later, we saw the last ma-
jor advance. I recall it was my first pro-
fessional visit to Hungary in 2006 when 
Ron Graham — the late mathemagician and 
juggler extraordinaire — had completely re- 
jigged his plenary talk to tell the story 
of Ramsey numbers and, in particular, to 
eagerly discuss a circulating preprint by a 
then-Cambridge-PhD-student David Con-
lon. It eventually appeared in the Annals 
of Mathematics [2]. Conlon, building com-
prehensively upon the enhanced inductive 
strategy of Thomason’s, achieved a first su-
perpolynomial improvement upon (1):

( ) ( ( ) / )exp log log logR k
k
k

c k k
2 2
1

2#
-
-

-e o

 for some absolute constant c 0> . Conlon 

as k " 3. Upon first witnessing such a 
short and basic argument, one might ask: 
why can’t this easily be beaten? But before 
that, the bound being exponential in k, 
could the Ramsey numbers really be so 
large?

A little over a decade later, Erdős ad-
dressed this latter question [3] and in do-
ing so incidentally seeded the birth of two 
separate, though closely intertwined fields, 
namely Probabilistic Combinatorics and 
Random Graph Theory. In hindsight, his un-
expected realisation was natural, that is, to 
use a ‘most arbitrary’ of systems, a binomi-
al random graph. That is, take a collection 
of n vertices and, independently, for each 
of the n

2
d n pairs, toss a fair coin to deter-

mine whether or not the pair is included as 
an edge. By a straightforward estimation of 
the size of a largest clique or stable set in 
this probability space of graphs, together 
with a flourish of what is now called the 
probabilistic method, he proved the exis-
tence of graphs certifying an exponential 
lower bound:

( ) ( )R k
e

o k
2
1 1 2

k
$ +c m

as k " 3. After more than seventy years 
and the growth of a mature, consistently 
active field around this result, which in-
corporates other perspectives from nearby 
areas such as probability, algorithms and 
network science, this remains, up to the 
leading constant, the best known lower 
bound.

Back to the question of improving upon 
the simple bound (1), it also turns out to be 

While Ramsey was satisfied with the fact 
that each ( )R k  exists (nevertheless in a foot-
note he wrote “But this value is, I think, still 
much too high.”), Paul Erdős and George 
Szekeres [5] soon after revisited Ramsey’s 
theorem, as one way towards a problem in 
discrete geometry, the fabled Happy End
ing Problem. (Their work appeared in one 
of the first issues of Compositio Mathemat
ica.) They produced the following argument 
for bounding ( )R k . First, consider a more 
general definition, where ( , )R k l  denotes the 
least integer such that in any graph on ( , )R k l  
vertices, one is guaranteed a clique of or-
der k or a stable set of order l. Second, note 
that it is enough to verify, together with the 
trivial base cases ( , ) ( , )R k R k1 1 1= =  and 
( , ) ( , )R k R k k2 2= = , that ( , )R k l1 1 #+ +  
( , ) ( , )R k l R k l1 1+ + +  for each ,k l 1$ . 

For then this class of upper bounds satis-
fies the recurrence for the binomial coef-
ficients k l

k
+d n. Third, take any graph with 

( , ) ( , )R k l R k l1 1+ + +  vertices, so that any 
vertex v must have either ( , )R k l 1+  neigh-
bours or ( , )R k l1+  non-neighbours, by the 
pigeonhole principle. In the former case, 
there is by definition a set of neighbours of 
v that forms either a k-vertex clique — so to-
gether with v is a ( )k 1+ -vertex clique — or 
an ( )l 1+ -vertex clique, and either way we 
are done. The latter case about ( , )R k l1+  
non-neighbours is symmetric. This yields 
that 
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already an astonishing array of scientific 
contributions under his belt, Ashwin Sah. 
By incorporating techniques from the theo-
ry of Graph Limits — a modern, analytic de-
scendant of Random Graph Theory — Sah 
has accomplished a more efficient, and 
nearly optimal, estimate of the required 
subgraph counts, effectively pushing the 
quasirandom framework to its limit [8]. 
This gives a further superpolynomial im-
provement on (1):

( ) ( ( ) )exp logR k
k
k

c k
2 2
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-
-

-e o

for some absolute constant c 0> .
So where are we now? At broader gran-

ularity, the current bounds yield

( ) ( ) ,liminf limsupR k R k2 4/ /k

k

k1 1
k

# # #
"3

"3

but this is how it stood in 1947! Erdős [4] 
wrote, “I offer 250 dollars for a proof that

( )lim R k c/

k

k1 =
"3 (2)

exists and I offer 10 000 dollars for a dis-
proof. I am of course sure that (2) holds. 
I offer 250 dollars for the determination 
of c ... perhaps c 2= ?” Sah’s progress has 
shown that there is some give, albeit tiny 
in relative terms, in this famous challenge. 
Will it precipitate sudden further progress? 
Or will it amount to an even more difficult 
barrier? s

This article is dedicated in admiration of the life 
and achievements of Ron Graham (1935–2020).

Now fourteen years since the last break-
through, it is another phenom, this time a 
young scholar based in another Cambridge 
(Massachusetts), having only this year 
completed his bachelor’s degree, yet with 

did so by carrying out the clique and sta-
ble set counts for larger fixed r via a quasi
random framework: roughly speaking, by 
comparing Ramsey graphs to binomial ran-
dom graphs.
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