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Pas gepromoveerden brengen hun werk onder 
de aandacht. Heeft u tips voor deze rubriek 
of bent u zelf pas gepromoveerd? Laat het 
weten aan onze redacteur.
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ETH-Tight Algorithms for Geometric Network Problems
Sándor Kisfaludi-Bak

In June 2019 Sándor Kisfaludi-Bak from the Eindhoven University of 
Technology successfully defended his PhD thesis with the title ETH-
Tight Algorithms for Geometric Network Problems. Sándor carried 
out his research under the supervision of prof. dr. Mark de Berg 
and prof. dr. Hans Bodlaender (Utrecht University). He received his 
degree cum laude, a very rare distinction that is only given for out-
standing results that have been obtained with a very high level of 
independence. Moreover, his thesis also received the distinguished 
dissertation award from the European Association for Theoretical 
Computer Science (EATCS).

During his PhD Sándor worked on algorithms for geometric net-
work problems. In his thesis he presented a general framework to 
develop sub-exponential algorithms for certain types of geomet-
ric intersection graphs. This framework applies to many different 
problems and leads to algorithms that are both faster and more 
general than what was known. At the moment Sándor is a postdoc 
at the Algorithms and Complexity Group of the Max Planck Institute 
for Informatics, in Saarbrücken, Germany.

Geometric networks, algorithms and complexity
In geometric networks vertices correspond to points in some geo-
metric space and edges indicate whether there is some kind of 
connection between these points. 

A lot of problems from graph theory have geometric variants 
when considering geometric networks. Think of the Traveling Sales-
man Problem for example, or TSP for short. In the TSP a complete 
undirected graph G with positive weights on the edges is given. 
The goal is to compute a cycle visiting every vertex exactly once 
and having minimum weight. In the geometric variant, called the 
Euclidean TSP, the input is a set of n points in Rd and the goal is 
to find a cycle of minimum Euclidean length visiting all the points. 

In order to solve combinatorial problems, algorithms are used. 
When looking for the most efficient algorithm for a given problem, 
it is useful to have some method to give lower bounds: to prove 
that improving the algorithm’s running time beyond some point is 
not possible. Unfortunately, such strong claims can rarely be made: 
for most combinatorial problems, there is no good methodology 
to prove unconditional lower bounds. For this reason, most lower 
bounds are conditional, i.e., only hold on the basis that some 
complexity theoretic assumption holds. 

Conditional lower bounds are usually done via reductions: prov-
ing that a problem is at least as hard as some older problem that 
researchers have failed to improve upon for decades. Under the 
condition that the older problem is indeed not solvable within a 
certain amount of time, this then proves that the problem at hand 
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is not solvable in that time either. In other words, in order to prove 
a lower bound for problem B, you try to find a polynomial algo-
rithm that maps yes- and no-instances of some hard problem A to 
yes- and no-instances of problem B respectively. 

The classic complexity theoretic assumption is that NP-hard 
problems are not solvable in polynomial time or, in other words, 
that P NP! . If a proper reduction is found, people say that the 
problem has no polynomial algorithm under the P NP!  assump-
tion, i.e., there is no algorithm that solves the problem in nc time 
for any constant c 0>  (where n is the size of our input).

ETH-tight complexity
While P NP!  is still the most popular hypothesis, it does not al-
low one to distinguish algorithms with single exponential running 
times, e.g. 2 ( )nH , from those with 2 ( )o n  running times; the latter 
is usually called sub-exponential time. There is a huge difference 
between 2 ( )nH  running time and, say, 2 ( )o n  running time. It is there-
fore interesting to be able to distinguish between problems that 
admit the latter type of running time, and problems that (most like-
ly) do not. For this reason, stronger hypotheses than P NP!  were 
developed. One of the most well-known ones is the Exponential 
Time Hypothesis which is formulated in terms of the 3-Satisfiability 
problem, see the box below for more details. We say that an algo-
rithm is ETH-tight if the algorithm runs in 2 ( )f n  time, and having an 
algorithm with running time 2 ( ( ))o f n  would contradict ETH.

A question that arises is the following, how does one prove 
that a problem cannot be solved in 2 ( ( ))o f n  time, assuming ETH? 
This is done, as said above, via reductions. The difference between 
classic reductions for proving NP-hardness and those needed for 
ETH-tight lower bounds is that the created instance of problem B 
should be sufficiently small. This is why traditional techniques de-
veloped for proving NP-hardness cannot be used in this context, 
new techniques for proving ETH-tight lower bounds are needed.

In his thesis Sándor developed a general framework to develop 
sub-exponential algorithms for certain types of geometric inter-
section graphs. The algorithmic framework uses the paradigm of 
divide and conquer. In this paradigm, one tries to find a so-called 
separator in a graph. The separator is a relatively small subset of 

vertices, which when taken away, divides the graph into two smaller 
components that have no edges going between them, essentially 
creating two smaller independent instances of the original problem. 
One can then consider all options of how the solution interacts 
with the separator (since the separator is small, this can be done 
efficiently), and for each such choice solve the problems on the 
two sides of the separator recursively. While the divide and con-
quer paradigm has been around for a long time, the thesis proves 
stronger separator theorems, which is the key ingredient required 
for the faster algorithms. In addition, the framework can be applied 
to more graph problems when compared to the existing techniques.

Euclidean Travelling Salesman Problem 
In 1972 it was shown that the TSP problem is NP-hard. A brute-
force algorithm for TSP runs in ( !)O n , but the celebrated Held–Karp 
dynamic-programming algorithm, discovered independently by 
Held and Karp and Bellman, runs in ( )O n2n 2  time. Despite exten-
sive efforts and progress on special cases, it is still open if an exact 
algorithm for TSP exists with running time (( ) ( ))polyO n2 ne- . 

The geometric counterpart of this problem has been studied ex-
tensively and it can be considered one of the most important geo-
metric optimization problems. In the early nineties, algorithms with 
n n running time were presented for Euclidean TSP in the planar 
case, and some years later an algorithm with n ( )O n /d1 1-

 running time 
was presented for any d 2$ . Despite significant interest in sub-ex-
ponential exact algorithms over the past decade, there has been no 
progress on Euclidean TSP, except for a lower bound stating that 
the problem admits no 2 ( )O n /d1 1 e- -

 algorithm unless ETH fails.
Sándor succeeded in settling the complexity of Euclidean TSP, 

up to constant factors in the exponent. He constructed an algo-
rithm for Euclidean TSP in Rd, where d 2>  is a fixed constant, with 
running time 2 ( / )O d1 1- , and he showed that no 2 ( / )o d1 1-  algorithm 
exists unless ETH fails.

The more personal aspect
Behind all dissertations there is always a person, with flesh and 
bones, who has endured the long path of a PhD trajectory and has 
produced the work at hand. 

Were you also involved in some other activities and events during 
your PhD?
“My PhD was done in the Networks program, which organized sev-
eral events throughout the years. The training weeks were an espe-
cially good experience for me and I imagine for many others as well. 
It was a loose community where hard work was encouraged, but at 
the same time the atmosphere was not too competitive, and it was 
easy to socialize with like-minded peers. Those weeks were also a 
good opportunity to break out of my research bubble a little bit.”

What are your plans for the future?
“I plan to stay in academia. I really enjoy research, and push-
ing the limits of our understanding. Teaching is also rewarding; I 
would know next to nothing without having had the great teachers 
and colleagues I had the pleasure to learn from. So the short-term 
goal is to get a position more permanent than that of a postdoc, 
preferably in Europe. And to perform the job hunt while main-
taining the current momentum in several solo and collaborative 
research projects.”	 s

3-Satisfiability problem
The goal is to decide if there is a satisfying assignment to a 
3-CNF formula on n variables. Such a formula is in conjunctive 
normal form and has clauses of size three. In other words, its 
basic building blocks are n variables and their negations, and 
it is a disjunction of size three conjunctions. The following 
expression is an example of a 3-CNF-formula:

( ) ( ) ( ) .x x x x x x x x x1 2 3 2 4 5 1 3 40 0 / 0 0 / 0 0J J J J

Currently, the best worst-case algorithm that solves 3-Satis-
fiability runs in .1 3071 2 ( )n n= H  time. Note that simply trying 
all the 2n ways in which variables can be set to true and 
false already yields an algorithm with running time 2 ( )O n . Not 
succeeding in finding a faster algorithm for this problem, i.e., 
no 2 ( )o n  algorithm, for so many years led R. Impagliazzo and 
R. Paturi in 2001 to state the Exponential Time Hypothesis 
(ETH). It states that there is a constant c 0>  such that there 
is no 2cn algorithm for 3-SAT.


