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esis neither provable not refutable on the 
basis of the axioms of ZFC.

For later use we abbreviate “there is a bi-
jection between X and Y ” as X Y/ . Thus, 
the Continuum Hypothesis states that if X 
is an infinite subset of R then either X N/  
or X R/ . 

In the next section I will summarize the 
description from [1] of the so-called EMX 
learning problem. The section that fol-
lows contains the translation from [1] of 
the learning problem into a purely combi-
natorial problem about functions between 
powers of the unit interval and an expla-
nation of why that translation is equivalent 
to the Weak Continuum Hypothesis. In the 
section thereafter we shall see that the 
combinatorial part is related to a result of 
Kuratowski from 1951 [6], that characteriz-
es when, given k N! , a set has (at most) 
k 1+  equivalence classes of infinite sets 
under the equivalence relation / discussed 
above. In the last section I will show why I 
think that the problem is not undecidable 
at all: there is no algorithm that solves this 
particular learning problem.

The learning problem
This is a summary of the parts of [1] that 
lead to the undecidability result.

The authors start with the following real- 
life situation as an instance of their gen-
eral learning problem. A website has a 
collection of advertisements that it can 
show to its visitors; each advertisement, 
A, comes with a set, FA, of visitors for 
whom it is of interest: say if A advertis-

And, no, the Continuum Hypothesis is 
not a paradox either. It is ‘simply’ a state-
ment about subsets of the real line that 
exhibits a concrete incompleteness of 
ZFC Set Theory. That theory is subject to 
Gödel’s incompleteness theorem, hence it 
comes with its own version of the formula 
{. Both { and the Continuum Hypothesis 
show that ZFC is incomplete, the differ-
ence between these formulas is that the 
Continuum Hypothesis is interesting and 
{ is not. This is not meant in a pejora-
tive way; as Gödel’s construction applies 
to potentially very many different theo-
ries one would not expect { to say some-
thing very specific in the theory that it is 
constructed for.

The set theory in [1] is related to Can-
tor’s original formulation of the Continuum 
Hypothesis [2]: if one declares two sets 
to be equivalent if there is a bijection be-
tween them then the infinite subsets of 
R are divided into two equivalence class-
es, those of the sets equivalent to N and 
those of the sets equivalent to R.

The learning problem from [1] is equiv-
alent to a weaker version: the number of 
equivalence classes is finite. For the rest of 
this note we shall refer to that statement 
as the Weak Continuum Hypothesis. This 
statement is, like the Continuum Hypoth-

In the paper [1], in Nature Machine Intel-
ligence, its authors exhibit an abstract 
machine-learning situation where the 
learnability is actually neither provable nor 
refutable on the basis of the axioms of 
ZFC. This was deemed so exciting that the 
mother journal Nature devoted two com-
mentaries to this: [9] and [3].

The first of these, [9], is rather matter-
of-fact in its description of the problem 
but the second, [3], manages, in just a few 
lines, to mix up Gödel’s Incompleteness 
Theorems and the undecidability of the 
Continuum Hypothesis. It misstates the for-
mer — “Gödel discovered logical paradoxes’’ 
— and misinterprets the latter: “a paradox 
known as the Continuum Hypothesis”.

No, Gödel did not discover paradoxes; 
he proved a (highly) technical result about 
formal proofs. That result shows that under 
certain circumstances a first-order theory 
will be incomplete, that is, there is a for-
mula { such that there is no formal proof 
of { nor of its negation. The formula { con-
structed by Gödel asserts, indirectly, “there 
is not formal proof for { ” and as such looks 
a bit like “this sentence is false”, which can 
be construed as a version of the Liar’s Para-
dox. There is a difference however: the for-
mula { does not refer directly to itself and 
this prevents it from being a paradox.
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The proof of necessity takes the natural 
number d in the learning function and pro-
duces a monotone ( )m m1 "+  compres-
sion scheme with m d2

3= ` j.

Undecidability
At this point the authors turn to the afore-
mentioned special case of the unit interval 
I and its family fin I of finite subsets and 
prove the following.

Theorem 1. There is a monotone ( )m 1 "+  
m compression scheme for fin I for some 
m N!  if and only if the Weak Continuum 
Hypothesis holds.

As the Weak Continuum Hypothesis is 
both consistent with and independent of 
the axioms of ZFC the same holds for the 
existence of a compression scheme and 
for the existence of a ( , )3

1
3
1 -EMX learning 

function. Theorem 1 is an immediate con-
sequence of the set of equivalences in the 
following theorem.

Theorem 2 [1, Theorem 1]. Let k N!  and 
let X be a set. There is a ( ) ( )k k2 1"+ +  
monotone compression scheme for the fi-
nite subsets of X if and only the infinite 
subsets of X are divided into k 1+  (or few-
er) equivalence classes by the relation / .

Indeed, the Weak Continuum Hypothe-
sis holds iff the infinite subsets of I  are 
divided into k 1+  equivalence classes for 
some k N! .

In the next section we take a closer look 
at monotone compression schemes and 
point out a connection with an old result 
of Kuratowski’s.

Compression schemes and decompositions
In the general case considered above the 
function h is important because of its co-
domain F: Bob is required to choose a 
member of that family. It turns out that in 
the case considered by the authors of [1], 
namely the family of all finite subsets of a 
set X, it is the function v that is more inter-
esting. This is borne out by the following 
proposition.

Proposition 1. Let m and d be natural num-
bers and let X be a set. There is an m d"  
monotone compression scheme for the fi-
nite subsets of X if and only if there is 
a finite-to-one function : [ ] [ ]X Xm d"v  such 
that ( )x x3v  for all x.

the existence of maps between finite pow-
ers of X that mention no probabilities at 
all but instead are required to satisfy a few 
simple inclusion relations. These will prove 
to be much more amenable to set-theoretic 
investigations.

A combinatorial translation
The authors of [1] do not waste a lot of 
time and formulate, without much ado, the 
combinatorial statement equivalent to the 
existence of an EMX learner.

This statement involves what the au-
thors call monotone compression schemes. 
Their formulation needs the following 
piece of notation: For a set X and a natural 
number n we use [ ]X n to denote the family 
of n-element subsets of X.

Definition 1. Let m and d be two natural 
numbers with m d> . An m d"  mono-
tone compression scheme for a family F 
of finite subsets of a set X is a function 
: [ ]X Fd "h  such that whenever A is an 

m-element subset of X it has a d-element 
subset B such that ( )A B3 h .

This is slightly different from the formu-
lation of Definition 2 in [1], which leaves 
open the possibility that A m<  and that 
B d< , as it uses indexed sets. It is clear 

from the results and their proofs that our 
definition captures the essence of the no-
tion.

The idea here is that someone, Alice 
say, thinks of an m-element set A and pro-
vides their friend Bob with a d-element 
subset B of A. The function h helps Bob to 
recover some information about A, namely 
that it is a subset of the member ( )Bh  of 
the family F.

There is a second unnamed function 
implicit in Definition 2: the choice of the 
subset B of A; this function we shall call v.

So a scheme consists of a pair of func-
tions: : [ ] [ ]X Xm d"v  and : [ ]X Fd "h ; these 
should satisfy ( )( )A A%3 h v  for all A. In 
fact, as we shall see in the next section, 
the function v is more convenient to work 
with.

The translation is now as follows.

Lemma 1 [1, Lemma 1.1]. For an upward-di-
rected family F of finite sets the existence 
of a ( , )3

1
3
1 -EMX learning function is equiv-

alent to the existence of a natural number 
m and an ( )m m1 "+  monotone compres-
sion scheme for F.

es running shoes then FA contains avid 
runners (or people who just like snazzy 
shoes). Choosing the optimal advertise-
ment to display amounts to choosing a 
finite set from a population while max-
imizing the probability that the visitor is 
actually in that set. The problem is that 
the probability distribution is unknown.

Rather than dwell on this particular ex-
ample the authors make an abstraction: 
Given a set X and a family F of subsets of 
X find a member of F whose measure with 
respect to an unknown probability distri-
bution is close to maximal. This should be 
done based on a finite sample generated 
i.i.d. from the unknown distribution.

The undecidability manifests itself when 
we let X be the unit interval I and F the 
family fin I of finite subsets of I.

Learning functions
In the general situation the abstract prob-
lem described above is made more explicit 
and quantitative as follows.

For the unknown probability distribu-
tion P on X find F F!  such that ( )E FP  is 
quite close to ( )Opt P , which is defined to 
be ( )sup E YY PF! . 

To quantify this further a learning func-
tion for F is defined to be a function

:G X Fk

k N

"
!

'

with certain desirable properties.
Say, if S Xk!  represents a sample of 

visitors then ( )G S  would be a set of visitors 
from which the next visitor is very likely to 
come. As ( )G S  belongs to F, there is an 
advertisement A such that ( )G S FA=  and 
this A will be displayed on the website.

The desirable properties, e.g., the ‘very 
likely’ in the example above, are captured 
in the following definition of an ( , )e d -EMX 
learner for F. This is a function G as above 
such that for some d N! , depending on 
e and d, the following inequality holds

( ) ( )Pr OptE G S P
S P

P
d

G Gf d-
+

^ h6 @

for all distributions P with finite support.
The letters EMX abbreviate ‘estimating 

the maximum’.

Combinatorics
It seems a nigh on hopeless task to say 
anything sensible when there are so many 
possible probability distributions to consid-
er. However, as we shall see, the existence 
of EMX learning functions is equivalent to 
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As mentioned above Kuratowski’s re-
sult works both ways: if Xk 2+  admits a 
decomposition as above for k

k 2~ +  then 
X k"# . This suggests that the necessity 

in Theorem 2 is related to the converse of 
Theorem 3. This is indeed the case: one 
can construct a Kuratowski-type decom-
position from a compression scheme, but 
because of our definition of the schemes 
we only get a decomposition of the sub-
set [ ]k

k 2~ +  of the whole power. This can 
be turned into one for the whole pow-
er but the process is a bit messy so we 
leave it be.

The proof of necessity from [1] closes 
the circle of implications that proves the 
following.

Theorem 4. For a set X and a natural num-
ber k the following are equivalent:
1. X k"# ;
2. Xk 2+  admits a Kuratowski-type decom-

position into k 2+  sets;
3. there is a ( ) ( )k k2 1"+ +  monotone 

compression scheme for the finite sub-
sets of X.

For completeness sake I sketch the 
proof of that last implication. Both it and 
Kuratowski’s necessity proof use a form of 
the following lemma. Its proof uses some 
elementary cardinal arithmetic for infinite 
cardinals numbers.

Lemma 2. Let k, l, and m be natural num-
bers with m l> . Assume : [ ]k

m
1

1 "v ~ +
+  

[ ]k
l
1

1~ +
+  determines an ( ) ( )m l1 1"+ +  

monotone compression scheme. Then 
there is an m l"  monotone compression 
scheme for the finite subsets of k~ .

Proof. We start by determining an or-
dinal d as follows. Let k0d ~= . Given 

nd  use the fact that v is finite-to-one to 
find an ordinal >n n1d d+  such that every 
[ ]x k

m
1

1! ~ +
+  that satisfies ( ) [ ]x n

l 1!v d +  
is in [ ]n

m
1

1d +
+ . 

In the end let supn nd d= . Then d sat-
isfies: every [ ]x k

m
1

1! ~ +
+  that satisfies 

( ) [ ]x l 1!v d +  is in [ ]m 1d + .
We define an m l"  monotone com-

pression scheme for d. If [ ]x m! d  then 
{ }y x , d=  is in [ ]k

m
1

1~ +
+  and so 

( )y y3v . By the choice of d it is not pos-
sible that ( )y x3v  hence ( )y!d v  and so 
setting ( ) ( )\{ }x yw v d=  defines a map 
: [ ] [ ]m l"w d d . This map is finite-to-one and 

satisfies ( )x x3w  for all x. □ 

To decompose 1
3~  into three sets A0, 

A1 and A2 we apply the Axiom of Choice 
to choose (simultaneously) for each in-
finite ordinal a in 1~  a decomposition 
{ ( , ), ( , )}X X0 1a a  of ( )1 2a + , say by choos-
ing well-orders of type ~ and then using 
the decomposition obtained for k 0= .

 – One puts , ,G Ha b c  into A0 if b is the 
largest coordinate and , ( , )X 0! ba c  
or if c is the largest coordinate and 
, ( , )X 0!a b c .

 – One puts , ,G Ha b c  into A1 if a is the 
largest coordinate and , ( , )X 0!b c a  
or if c is the largest coordinate and 
, ( , )X 1!a b c .

 – One puts , ,G Ha b c  into A2 if a is the 
largest coordinate and , ( , )X 1!b c a  
or if b is the largest coordinate and 
, ( , )X 0!a c c .

To see that A0 is finite in the direction 
of the 0th coordinate take , 1

2!b c ~ , 
then , , A0!G Ha b c  implies b is largest 
and , ( , )X 0!a c b , or c is largest and 
, ( , )X 0!a b c ; in either case a belongs 

to a finite set.
A similar argument works for A1 and A2 

of course.
The inductive steps for larger k are 

modeled on this step.  □

We now show how Theorem 3 can be 
used to prove sufficiency in Theorem 2.

Here and in later sections it will be con-
venient to identify [ ]X m, the family of m- 
element subsets of X, with a subset of the 
product Xm. In the cases of interest the set 
X has a (natural) linear order '; we use 
this to let a set correspond with its mono-
tone enumeration:

[ ] { : ( ) ( )}X x X i j m x x< <m m
i j"! '=

Constructing a compression scheme from 
a decomposition. From a decomposition as 
in Theorem 3 we construct a finite-to-one 
function : [ ] [ ]k

k
k

k2 1"v ~ ~+ +  such that 
( )x x3v  for all x. We assume, without loss 

of generality, that the sets Ai are disjoint.
Let [ ]x k

k 2! ~ +  (so i j k 2< < +  implies 
x x<i j). Take (the unique) i such that x Ai!  
and let ( )xv  be the point in k

k 1~ +  that is 
x but without its coordinate xi. In terms of 
sets we would have set ( ) \{ }x x xiv = .

This function is finite-to-one: if y ! 
[ ]k

k 1~ +  then for each i k 2< +  there are 
only finitely many x in Ai with ( )y xv= . □ 

Proof. If the pair ,h v  determines an m d"  
monotone compression scheme then v is 
finite-to-one. For let [ ]y X d!  then ( )x yv =  
implies ( )x y3 h , hence there are at most 

M
m
e o such x, where ( )M yh= .

Conversely, if v is as in the statement 
of the proposition then we can let ( )yh = 
{ : ( ) }x x yv =' . □

Kuratowski’s decompositions
To do justice to Kuratowski’s results and 
because the proofs require it we will use 
standard set theoretic notions and nota-
tions. We shall need the first countably 
many infinite cardinal numbers k"  (k N! ) 
and the ordinal numbers k~ . What we also 
need to know is that k~  is the ‘standard’ 
well-ordered set of cardinality k" .

Above I formulated Kuratowski’s 1951 
result in terms of the equivalence relation 
“there is a bijection’’ but as the title of [6] 
indicates the original formulation involved 
the cardinal numbers k" . To be precise the 
papers characterizes when a set has cardi-
nality at most k"  in terms of its (k 2+ )-nd 
power. The very definition of the cardinal 
numbers k"  makes it clear that a set has 
cardinality at most k"  if and only if there 
are at most k 1+  equivalence classes un-
der the equivalence relation / . From now 
on we let X  denote the cardinality of the 
set X, so that X k"G  abbreviates that the 
cardinality of X is at most k" .

It should come therefore as no big sur-
prise that Kuratowski’s results and Theo-
rem 2 are related.

We start by quoting the following the-
orem from [6], it provides one direction in 
the aforementioned characterization. 

Theorem 3. The power k
k 2~ +  can be written 

as the union of k 2+  sets, { : }A i k 2<i + , 
such that for every i k 2< +  and every 
point :x j k 2<jG H+  in k

k 2~ +  the set of 
points y in Ai that satisfy y xj j=  for j i!  
is finite.

In Kuratowski’s words “Ai is finite in the 
direction of the ith axis’’.

Sketch of the proof. The case k 0=  is 
easy: 0~  is the first infinite ordinal, 
therefore , :A m n m n0 #= " , and A1 = 
, :m n m n>" , are as required.
The rest of the proof proceeds by in-

duction on k. We give the step from k 0=  
to k 1=  in some detail and leave the other 
steps to the reader.



K. P. Hart Machine learning and the Continuum Hypothesis NAW 5/20 nr. 3 september 2019 217

family of finite subsets of I. We can call 
such a function continuous or Borel mea-
surable if its restriction to each individual 
power is.

In the construction of an ( )m m1 "+  
compression scheme from a learning func-
tion the authors use its restriction to just 
one of these powers Id, where d mG . The 
definition of ( )Sh  involves taking the union 
of ( )G T  for all d-element subsets T of S, 
hence a union of m

d
e o many sets.

The definition of v involves choosing 
one m-element subset with a certain prop-
erty from of a given m 1+ -element set.

The latter choice can be made explicit 
using a Borel linear order on the family of 
all finite subsets of I, or just on [ ]I m.

An analysis of this procedure shows 
that if G is Borel measurable then so are v 
and h. The results of this section then im-
ply that a Borel measurable learning func-
tion does not exist. In this author’s opinion 
that means that the title of [1] should be 
emended to “EMX learning is impossible’’.

On the other hand...
One may argue that the choice of the unit 
interval in [1] is a bit of a red herring. None 
of the arguments in the paper use the 
structure of I in any significant way.

In the step from the problem of the ad-
vertisements to the more abstract problem 
there is no real need to go to the unit in-
terval. One may equally well use the set 
of rational numbers to code or rank the 
elements of the learning set.

In that case there is, as we have seen, 
a 2 1"  monotone compression scheme 
for the finite subsets of N: simply let 
( ) maxx xv = ; the corresponding function 
h is defined by ( ) { : }n i i nGh = .

It is an easy matter to transfer this 
scheme to the family of finite subsets of 
the rational numbers. Whether this scheme 
gives rise to a useful EMX learning function 
remains to be seen. s

ural number and let : [ ] [ ]I Im m1 "v +  be a 
function such that ( )x x3v  for all x.

If v is continuous then v is not finite-
to-one To see this let [ ]x I m 1! +  and as-
sume for notational convenience that 
( ) :x x i m<iG Hv = , i.e., that the coordinate 

xm is left out of x when forming ( )xv .
Let { : }min x x i m<i i3

1
1f = -+  and 

let 0>d  be such that #d f and for all 
[ ]y I m 1! +  with y x < d-  we have 
( ) ( )y x <v v f- .
Now if [ ]y I m 1! +  and y x < d-  

then y x <i i f-  for all i m# . Also, when 
i j<  we have x x 3>j i f- . It follows that 
y x >m i f-  for all i m< . This implies that 
( ) :y y i m<iG Hv =  for all y with y x < d- .

This shows that for every i the set 
[ ] : ( ) \{ }O x x x xIi

m
i

1! v= =+# - is open. 
Because [ ]I m 1+  is connected there is one 
i such that [ ]O Ii

m 1= + . This shows that v 
cannot be finite-to-one. □ 

The above proof can be used/adapted 
to show that if v is Borel measurable it is 
not finite-to-one either.

If v is Borel measurable then v is not fi-
nite-to-one. There is a dense Gd-set G in 
[ ]I m 1+  such that the restriction of v to G is 
continuous, see [7, Section 31 II].

Let x G! . As in the previous proof we 
assume ( ) :x x i m<iG Hv =  and we obtain 
a 0>d  such that ( ) :y y i m<iG Hv =  for all 
y G!  that satisfy y x < d- .

By the Kuratowski–Ulam theorem [8] we 
can find a point y in G with y x < d-  
such that the set of points t in the interval 
( , )x xm md d- +  for which ( )y y tt ) G Hv=  
belongs to G is co-meager. But for every 
such point we have ( ) ( )y ytv v=  and this 
shows that v is not finite-to-one. □ 

EMX learning is impossible
As we saw above a learning function is a 
function G from the union Ikk N!

'  to the 

To finish the proof of necessity we ar-
gue by induction and contradiction. If 
X k 1"= +  and there is a finite-to-one 
: [ ] [ ]X Xk k2 1"v + +  with ( )x x3v  for all x 

then there is a subset Y of X with Y k"=  
and a finite-to-one : [ ] [ ]Y Yk k1 "w +  with 
( )x x3w  for all x. This would contradict the 

obvious inductive assumption. We leave it 
as an exercise to the reader to ponder what 
absurdity would arise in the case k 0=  and 
provide the basis for the induction.

Algorithmic considerations
In this section we address a point already 
raised by the authors in [1]: the functions 
that are used in the previous sections 
are quite arbitrary and not related to any 
recognizable algorithm. Indeed, the con-
structions of the compression schemes 
for uncountable sets blatantly applied the 
Axiom of Choice: once by assuming that 
the underlying sets were well-ordered and 
again when in every step of the induction 
a choice of well-orders of type k~  needed 
to be made.

One may therefore wonder what hap-
pens if we impose some structure on the 
maps in question. One possible way of 
separating out ‘algorithmic’ functions is 
by requiring them to have nice descriptive 
properties. If ‘nice’ is taken to mean ‘Borel 
measurable’ then the desired functions do 
not exist.

Continuity and Borel measurability
Here we show, for arbitrary m N! , that 
there does not exist an ( )m m1 "+  mono-
tone compression scheme for the finite 
subsets of I where the function v is Borel 
measurable. Remember that we identify 
[ ]I k with the open subset of the k-cube Ik 
consisting of its strictly increasing ele-
ments. As such it inherits a metric and a 
Borel structure from that cube. We consid-
er continuity and Borel measurability with 
respect to these structures. Let m be a nat-
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