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to [ ]dZ  an invariant called the (ordinary) 
class group Cld and defined as the quo-
tient of the group of all non-zero ideals of 

[ ]dZ  by the subgroup of those that are 
principal. Hence, if every ideal happens to 
be principal, this quotient is trivial, and so 
unique factorization in [ ]dZ  is equivalent 
to the statement that the class group Cld is 
the trivial group of one element.

A closely related invariant is the narrow 
class group Cld

+, defined as the quotient of 
the group of all non-zero ideals of [ ]dZ  
by the subgroup of those that are principal 
and have a generator m n d+  of positive 
norm, i.e., satisfying ( )( )m n d m n d+ -  

m dy 0>2 2= - . Since the norm is multipli-
cative, and since the element d has norm 

d 0<- , one deduces that the class group 
Cld coincides with the narrow class group 
Cld

+ exactly when [ ]dZ  has an element of 
norm -1; in other words, Cl Cld d= + if and 
only if the negative Pell equation (1) is 
solvable with ,x y Z! .

A burgeoning area of research in num-
ber theory is arithmetic statistics, the 
study of how various arithmetic invari-
ants behave on average. In our case, one 
might be interested in knowing how often 
(1) is solvable over the integers, that is, 
how often the ordinary and the narrow 
class groups coincide. This is a very dif-
ficult question. To get a first sense of its 
intricacies, notice that (1) cannot have 

and

( )( )

( ) ( ) .

m n d m n d

m m dn n m n m n d
1 1 2 2

1 2 1 2 1 2 2 1

+ +

= + + +

However, the resulting arithmetic in [ ]dZ  
can be quite tricky. Unlike in the case of Z, 
an element in [ ]dZ  need not have unique 
factorization into irreducible elements. For 
instance, in [ ]10Z , the element 6 has two 
essentially distinct factorizations, namely 
2 3$  and ( )( )4 10 4 10+ - .

Unique factorization is recovered after 
passing to ideals. An ideal in [ ]dZ  (or in 
any ring) is a set of elements a closed un-
der addition and contagious under multi-
plication; more precisely, for all elements 
a1 and a2 of a and any element b of [ ]dZ , 
the elements 1 2a a+  and 1a b belong to a. 
In this language, unique factorization in 

[ ]dZ  is equivalent to the statement that 
every ideal in [ ]dZ  is principal, i.e., that it 
is the set of multiples of some a in [ ]dZ  
(in which case we say that a is a generator 
of that principal ideal). To measure the fail-
ure of ideals to be principal, one attaches 

The negative Pell equation
In number theory, an important generaliza-
tion of the ring of rational integers

{ , , , , , , }2 1 0 1 2Z f f= - -

is the ring of integers of a number field. 
One of the main applications of such rings 
of integers is that they help us study in-
tegral solutions to polynomial equations 
over the usual integers Z. For example, 
let d be a positive squarefree integer, and 
for simplicity assume that d is even. As we 
will see, the existence of integral solutions 

,x y Z!  to the negative Pell equation

x dy 12 2- =- (1)

is intricately related to certain arithmetic 
invariants of the quadratic number ring

[ ] : , .d m n d m nZ Z!= +# -

Addition and multiplication in [ ]dZ  is 
straightforward, defined exactly as one 
would expect:

( ) ( )

( ) ( )

m n d m n d

m m n n d
1 1 2 2

1 2 1 2

+ + +

= + + +
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One can view the method of proof in this case as a special case 
of a method developed by Stevenhagen [16], where one constructs 
an auxiliary number field M, called a governing field, where the 
divisibility by 8 of the size of Cl p2-  is related to how the principal 
ideal generated by p factors into ideals in the ring of integers of M. 
In this case, one can take

( , ) .M 2 2 2Q= +

Once a governing field is constructed, one can apply the Che-
botarev Density Theorem, which counts the natural density of 
primes p giving rise to a specified factorization type. Subsequent 
progress came to a halt as no one could construct any analogous 
governing fields for divisibility by 16. Far from constructing a gov-
erning field, [15] took an entirely different approach. The novelty 
was to apply a sieving technique originally due to Vinogradov [20] 
and subsequently improved by Vaughan [19] and Friedlander, 
Iwaniec, Mazur and Rubin [6], among others. This sieving tech-
nique, which we call here the method of sums of type I and type II, 
produces qualitatively different results from the Chebotarev Density 
Theorem, and its successful application to the aforementioned 
problems about class groups already suggests a drastic change in 
behavior between divisibility by 8 and divisibility by 16.

The main theorem is as follows. The condition that 8 divides the 
size of Cl p2-  for a prime modp 3 4/  turns out simply to be that 

modp 15 16/ . One can write such a prime as

, .modp u v u v u2 0 1 16with and>2 2 /= - (3)

Leonard and Williams [13] then proved in 1982 that

.h u
v16 1divides the Jacobi symbol is equal top2 +- ` j (4)

The Jacobi symbol is an extension of the Legendre symbol; in this 
case, it can take the values 1 and -1, and, if u were a prime itself, 
the symbol u

v^ h would equal 1 if and only if there existed an integer 
n with modv n u/ 2 . The main theorem of [15] is the following.

Theorem 1. For each prime modp 15 16/ , choose rational integers 
u and v as in (3). Then there exists an absolute constant C 0>  
such that for every real number X 1> , we have

u
v

,
mod

p X p
p 15 16

200
199

prime#

/

.CX#
` j/

Since the number of primes modp 15 16/  up to X is approxi-
mately logX

X
8
1 , and since 

,lim CX 0
logX

X
8
1X

200
199

=
"3

colloquially the theorem says that the Jacobi symbol u
v^ h is equal-

ly often 1 and -1 as one traverses the primes modp 15 16/ , 
which in turn implies that

#{ , }
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an integral solution whenever d has a prime factor mod3 4, / ; 
for in that case, reducing the equation modulo , (i.e., comparing 
remainders upon division by ,) would give modx 12 ,/- , which 
cannot happen when mod3 4, / . The set of even squarefree in-
tegers with no prime factors congruent to 3 modulo 4 has natural 
density 0 in the set of all even squarefree integers, so to ask in 
a meaningful way how often (1) is solvable, one has to restrict 
attention to a very thin subset of squarefree integers. Despite 
these and other challenges, in 1993, Stevenhagen [18] managed 
to formulate a precise conjecture as to what the answer should 
be and backed it up with both a convincing heuristic argument 
and carefully collected numerical data. About a decade ago, Fou-
vry and Klüners [4, 5] actually proved first cases of Stevenhagen’s 
conjecture.

Consider now a negative Pell equation of a very particular 
shape, namely the equation

,x py2 12 2- =- (2)

where p is an odd prime number. In this case, the 2-part of the 
narrow class group Cl p2

+  is cyclic, so it becomes somewhat easier 
to analyze whether or not Cl Clp p2 2=+ . Stevenhagen’s conjecture for 
negative Pell equations of this shape states that if

( )
#{ }

#{ , , ( ) }
,X

p p X
p p X 2

prime,
prime is solvable over Z

#

#
d =

then the limit ( )lim XX d"3  exists and is equal to 3
1 . It was already 

known to Stevenhagen in 1993 that 

( ) ( ) .lim inf lim supX X16
5

8
3

X X
# # #d d

" "3 3

While these are still the best known unconditional bounds, Koy-
mans and the author [10] recently improved the upper bound to 32

11  
conditional on a standard technical conjecture in analytic number 
theory, and a forthcoming work of the author will improve the 
lower bound to 64

21 . The path to these results passes through class 
groups of certain imaginary quadratic number fields. The connec-
tion between Cl p2

+  and class groups Cl p-  and Cl p2-  of the quadratic 
number rings [ ]pZ -  and [ ]p2Z - , respectively, has been known 
for quite some time [12,17]. In this article, we will focus on the 
class group Cl p2-  for primes modp 3 4/ . Although information 
about these class groups has no direct bearing on the negative 
Pell equation (2), the method first developed to study these class 
groups [15] has since been applied in several settings, including in 
the aforementioned work [10].

The main theorem and basic strategy
The 2-part of the class group Cl p2-  is also cyclic, i.e., of the form 

/2Z Zk  for some positive integer k, and so the 2-part of Cl p2-  is 
entirely determined by the highest power of 2 dividing the size of 
Cl p2- , called the class number and denoted by h p2- . In practice, to 
get better and better bounds for the solvability of (2), one has to 
obtain results about the natural density of primes for which higher 
and higher powers of 2 divide the size of Cl p2- . Again, although it 
has no applications to the solvability of (2), one can study these 
questions for the groups Cl p2-  for primes modp 3 4/  (and it turns 
out that methods developed in this setting were later applicable 
to (2)). The best previous result was due to Hasse in 1969 [7], who 
proved that
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[ , , ] [ ,

,

]

a b c ar brt ct

ars bru bst ctu

as bsu cu

2 2

2 2

2 2

= + +

+ + +

+ +

whenever r, s, t, and u are integers satis-
fying ru st 1- = . Equivalent forms always 
have the same discriminant. We denote set 
of equivalence classes of primitive forms 
of a non-square discriminant D by Cl( )D . 
Gauss proved that the set Cl( )D  is actually 
an abelian group — in other words, there 
is a commutative composition law on the 
set of classes of forms of discriminant D. 
For a beautiful modern proof of this fact, 
we encourage the reader to read about 
Bhargava’s cubes of integers [1]. The class 
group of interest Cl p2-  is isomorphic to the 

tially tantamount to a linear change of co-
ordinates. To be precise, if

SL ( ),
r
t

s
u

Z2!c = e o

then we define the right action of c on a 
form ( , )f x y ax bxy cy2 2= + +  by setting

( , ) ( )

( )( )

( ) .

f x y a rx sy

b rx sy tx uy

c tx uy

2

2

= +

+ + +

+ +

c

Two forms ( , , )a b c  and ( , , )' ' 'a b c  are said to 
be equivalent if there exists SL ( )Z2!c  
such that ( , , ) ( , , )' ' 'a b c a b c$c = . We write 
[ , , ]a b c  for the equivalence class of the form 
( , , )a b c ; hence

The new qualitative behavior that we men-
tioned above is exemplified by the power- 
saving bound in Theorem 1 — the savings 
of / logX X100

1

 is substantially larger than 
the savings of log X that one would get 
from the Chebotarev Density Theorem.

The proof of Theorem 1 proceeds by 
applying the methods of sums of type I 
and type II not over the usual integers 
Z, as is the case in most applications in 
the literature, but over the quadratic ring 

[ ]2Z . In this setting, the method relies in 
an essential way on the construction of a 
(well-behaved) sequence { }sa a indexed by 
non-zero ideals of [ ]2Z  such that

s u
v

p = ` j (5)

when p is the principal prime ideal generat-
ed by u v 2+  or u v 2-  with u and v as 
in (3). One immediate reason that this may 
be a challenging task is that the choice of 
u and v in (3) is not unique — the read-
er can check that one gets another valid 
choice for u and v by multiplying u v 2+  
by 577 408 2+ .

Some ideas of the proof
Class groups of quadratic number rings 
were first studied by Gauss, albeit in the 
language of binary quadratic forms. Al-
though this language has largely fallen out 
of fashion in favor of the modern notions 
of number rings and ideals, we will never-
theless present several key ideas used in 
the proof of Theorem 1 in the setting of bi-
nary quadratic forms, both because these 
ideas can thus be expressed in an elemen-
tary way and because it is in this setting 
that these ideas were first discovered.

A binary quadratic form over Z is a ho-
mogeneous quadratic polynomial with in-
teger coefficients; in other words, it is a 
polynomial of the type

( , ) , , , .f x y ax bxy cy a b c Z2 2 != + + (6)

We sometimes call ( , )f x y  a form for 
short. The form f is said to be primitive if 
gcd( , , )a b c 1= . The discriminant of f is the 
integer b ac42D = - . The set of all binary 
quadratic forms over Z, which we denote 
by VZ, is in one-to-one correspondence 
with the set of ordered triples of integers; 
in fact, we will sometimes use the short-
hand ( , , )a b c  to denote the form in (6).

The set VZ is acted on by the group 
SL ( )Z2  of 2-by-2 matrices of determinant 1 
with integer entries. This action is essen-

Djordjo Milovic



Djordjo Milovic	 Divisibility by 16 of class numbers in families	 NAW 5/19  nr. 4  december 2018	 257

form ( , , )' ' 'u v u16 32 . The upshot of Theorem 
2 is that if a is a principal ideal of [ ]2Z  
that has an odd and totally positive gener-
ator a, then the quantity

[ ] [ ( ) ]

[ ( ) ]

[ ( ) ]

3 2 2

3 2 2

3 2 2

1

2

3

a a

a

a

+ +

+ +

+ +

depends only on a and not on the choice of 
odd and totally positive generator a. After 
attaching proper weights to the four sum-
mands above, one obtains a well-defined 
sequence sa satisfying the property (5) 
and conducive to the method of sums of 
type I and type II [15, (3.5), p. 993].

Concluding remarks
The method used in Theorem 1 has since 
been used by Koymans and the author to 
prove analogous theorems for the class 
groups Cl p2-  with modp 1 4/  as well as 
for the class groups Cl p-  [9, 10]. The latter 
result relies on a conjecture about short 
character sums, although Koymans recent-
ly published an unconditional proof [8]. 
Under a similar short character sum con-
jecture, however, one can prove much 
more — a governing field for divisibility by 
16 of h p-  does not exist [11]. This confirms 
the suspicions first brought up in [15] that 
a genuinely new type of behavior enters 
into play when studying class group ele-
ments of order 16.	 s

quence { }sa a. For the method to work well, 
this needs to be done for all non-zero ide-
als in [ ]2Z  and not just for prime ideals 
p as in (5). First, we say that an element 
m n 2+  in [ ]2Z  is odd and totally posi-
tive if and only if

, .m m m n0 2 0is odd and> >2 2- (7)

So suppose that a is a principal ideal of 
[ ]2Z  that has an odd and totally positive 

generator u v 2+ . To obtain the desired 
property (5), we wish to define s u

v
a = ^ h 

(possibly up to some well-controlled fac-
tors). However, as ( )( )3 2 2 3 2 2 1+ - = , 
the elements u v 2+  and

( )( )

( ) ( )

u v

u v u v

2 3 2 2

3 4 2 3 2

+ +

= + + +

both generate the same principal ide-
al in [ ]2Z . Moreover, if u v 2+  is 
odd and totally positive, then so is 
( ) ( )u v u v3 4 2 3 2+ + + . However, it is not 
always true that the corresponding Jacobi 
symbols u

v^ h and u v
u v

3 4
2 3

+
+_ i are equal. Hence, 

as stated, the value of sa is not well- 
defined! To overcome this, we proved the 
following result [15, Proposition 2, p. 979]. 
For an odd and totally positive element 

m n 2a = +  of [ ]2Z , we define [ ]a  to be 
the Jacobi symbol m

n^ h.

Theorem 2. Suppose u v 2+  is an odd 
and totally positive element of [ ]2Z . Then
[ ] [( )( ) ] .u v u v2 2 3 2 2 4+ = + +  In other 
words, 

.u
v

u v
u v

577 816
408 577= +

+` aj k

The proof of Theorem 2 was initially 
discovered using a surprising identity in-
volving binary quadratic forms. The Jacobi 
symbols are first interpreted as Artin sym-
bols via class field theory, and the claim in 
the theorem is ultimately reduced to the 
claim that, if

( )

( )

( )( ) ,

' 'u v u v

u v

u v

2 577 816

408 577 2

2 3 2 2 4

+ = +

+ +

= + +

then [ , , ] [ , , ]' ' 'u v u u v u16 32 16 32= . This last 
claim follows immediately upon noticing 
that the matrix 

17
3

96
17

e o

transforms the form ( , , )u v u16 32  into the 

group Cl( )p8-  corresponding to discrimi-
nant -8p.

Since Cl( )D  is an abelian group, we will 
denote the group operation induced by the 
composition law by +. In other words, if A 
and B are two classes of discriminant D, 
we will denote their composition simply by 
A B+ ; similarly, given an integer n 1$ , we 
will write nA to denote the composition of 
A by itself n times. The identity element in 
Cl( )D , which we denote by I, is

[ , , / ] ,
[ , , ( )/ ] ,

mod
mod

I
1 0 4 0 4
1 1 1 4 1 4

if
if
/

/

D D

D D
=

-
-

)

and the inverse of the class [ , , ]a b c  is 
[ , , ]a b c- , so that

[ , , ] [ , , ] .a b c a b c I+ - =

Dirichlet gave a simple formula for the 
composition law for forms of a certain 
type: if , , ,a a b c Z1 2 ! , then 

[ , , ] [ , , ] [ , , ] .a b a c a b a c a a b c1 2 2 1 1 2+ =

Leonard and Williams [13] made use of 
this formula for certain forms of discrim-
inant p8D =- , where p is a prime num-
ber congruent to 15 modulo 16. If p is 
such a prime and u and v are as in (3), 
we set [ , , ]A u v u4 2= . Then the discrim-
inant of A is indeed v u p16 8 82 2- =- . 
Dirichlet’s composition law implies that 

[ , , ]A A A u v2 4 22= + = . Acting on the form 
( , , )u v4 22  by 

SL ( ),
v0

1
1

0
1
0 1

Z2!
-e eo o

we see that [ , , ] [ , , ]A u v p2 4 2 2 02= = . Now, 
since 0 0=- , we see that A A A I4 2 2= + = . 
After checking that A I! , one deduc-
es that A is an element of order 4 in 
Cl( ) Clp8 p2,- - . This is significant be-
cause the machinery to check that a class 
is a 4th power is well-developed (see for 
instance [17] ), while checking if a class is 
an 8th power is generally out of reach (see 
[14] for one place where it can be done). 
By checking if an element of order 4 is a 
4th power, one can check for the existence 
of elements of order 16 and thereby obtain 
the crucial criterion (4).

We finish by presenting the other key 
application of the theory of binary quadrat-
ic forms in the proof of Theorem 1. As we 
mentioned before, a significant obstacle to 
using the method of sums of type I and 
type II is to construct an appropriate se-
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