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in SAT solvers. However, we were able to 
implement a checker that is reasonably ef-
ficient. The SAT community started to use 
the proof system in various settings. For 
example, participants in the international 
SAT competitions are required since 2013 
to certify that a claim that a problem has 
no solutions. Such a claim is only consid-
ered correct if the certificate, known as a 
proof of unsatisfiability, can be checked. 
Also, when Boris Konev and Alexei Lisitsa 
solved the Erdős discrepancy problem 
using SAT, they produced and checked a 
proof of unsatisfiability of their result.

In 2015 I wanted to show that proofs 
of unsatisfiability are a viable option to 
show correctness of SAT solving results no 
matter how many computational resources 
were required to solve the problem. Ini-
tially, I looked at the Schur number five 
problem. This problem dates back to the 
early 20th century, when Issai Schur asked 
whether coloring the positive integers with 
a finite number of colors would result in 
a monochromatic solution of the equation 
a b c+ = . Schur proved in 1916 that this is 
indeed the case. Schur number ( )S k  de-
notes the largest positive integer such that 
the numbers [ , ( )]S k1  can be colored with k 
colors such that there is no monochromatic 
solution of the equation a b c+ = . Early on, 
the first three Schur numbers were deter-
mined. However, it took five decades to 
compute that ( )S 4 65=  (by Leonard Bau-
mert in 1965).

Victor Marek from the University of Ken-
tucky has been encouraging me to com-
pute ( )S 5  since the day we met at a work-
shop in Baltimore back in 2008. Over the 
years I have been trying to compute this 
number, but it appeared too hard. Victor 
suggested to tackle a related challenge: 
Will any coloring of the positive integers 

countering a discrepancy. However, after a 
few weeks of studying the code, I was able 
to manually produce a formula with a solu-
tion, while his implementation of blocked 
clause addition would claim there is none.

The bug turned out to be a deep concep-
tual error. In their quest to further improve 
performance, developers of state-of-the-art 
SAT solvers have been adding techniques 
that go beyond the classical proof system 
for propositional logic, known as resolu-
tion. Examples of such techniques are sym-
metry breaking, Gaussian elimination, and 
the earlier mentioned blocked clause addi-
tion. The ability to remove solutions makes 
validation challenging: instead of checking 
whether no solution is removed (as in res-
olution), one needs to check whether not 
all remaining solutions are removed.

In the following years I have been work-
ing with various colleagues on new proof 
systems for propositional logic that al-
low compact expression of all techniques 
used in state-of-the-art solvers — including 
those that cannot be succinctly expressed 
using resolution. These proof systems rea-
son about the absence of facts. We call 
them interference-based proof systems, as 
learning one fact may block learning an-
other one. In contrast, most proof systems 
for propositional logic, including resolu-
tion, reason about the presence of facts.

The design goal of the new proof sys-
tem was to have a single redundancy cri-
terion that covers all techniques and is 
computable in polynomial time. This does 
not imply that checking is cheap since the 
criterion is more complex and general com-
pared to most reasoning techniques used 

An important trade-off in automated rea-
soning is efficiency versus correctness. Re-
search and development of fully automatic 
tools focus primarily on performance, while 
the interactive theorem proving community 
deeply cares about the trusted core of their 
tools. Interactive tools have been success-
ful in constructing a formal proof of famous 
problems, such as the four color theorem. 
Fully automatic tools, which are frequently 
used in industry to find bugs in hardware 
or software, have become significantly 
more powerful in the last two decades, 
thereby allowing to solve long-standing 
open problems. However, their effective-
ness also raised questions whether we can 
trust these results as computer-generated 
solutions typically cannot be understood 
by humans.

My roots lie in highly automated tools 
for propositional logic, known as satis-
fiability (SAT) solvers. These solvers deter-
mine whether there exists a satisfying as-
signment (or, equivalently, a solution) for a 
propositional formula. My interest in cor-
rectness originates from my post-doc with 
Armin Biere at the Johannes Kepler Univer-
sity in Linz, Austria. His solvers have been 
among the strongest and most reliable 
ones in the community for over a decade. 
However, we worried about the correctness 
of one of the techniques in his top solver. 
This technique, called blocked clause addi-
tion, can remove solutions while ensuring 
that at least one solution remains (if the 
initial formula has one). Armin considered 
the implementation of the technique ‘ex-
perimentally correct’ as he tested the solv-
er on a million small problems without en-
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can be optimized by proof checking tools. 
From the optimized proof one can extract 
a subgraph that has chromatic number 5. 
This method is more successful than ran-
domly dropping vertices that do not lower 
the chromatic number. The proof checking 
tools allowed me to find a unit-distance 
graph with chromatic number 5 that has 
only 553 vertices.

Although a graph with 553 vertices is 
still hard to comprehend for humans, this 
reduction is substantial and represents a 
step towards understanding why coloring 
the plane requires at least 5 colors. In fact, 
the techniques based on optimizing proofs 
of unsatisfiability may eventually produce 
the most elegant argument. This would be 
an interesting twist in the discussion on 
the usefulness of mechanized mathematics 
as computers might be able to give the 
shortest and clearest proofs of theorems. 
Some computer-generated proofs may be 
large, because there exists no short proof.

In the coming years, automated reason-
ing techniques are poised to solve hard 
problems that have been open for many 
decades. Mathematical challenges that may 
be feasible for an automated approach are 
Ramsey number five, the Collatz conjecture 
and the chromatic number of the plane. 
The proofs may reveal crucial insights that 
might otherwise be overlooked by mathe-
maticians. However, even if the proofs do 
not provide any understanding, we can be 
confident that they are correct, as we have 
highly trustworthy systems that can vali-
date them. s

would have been ( !)120 5=  times larger. 
That would have made it impossible to 
check the proof, even with the vast num-
ber of resources at my disposal. The ex-
istence of efficient, formally verified proof 
checkers also raised the bar for validation. 
The proof was eventually verified using the 
ACL2 checker, which required 35 CPU years. 
Schur number five is arguably the hardest 
problem ever solved using SAT solvers. 
We can be confident that this immense 
proof is correct since it can and has been 
checked using highly trustworthy systems 
by independent parties.

Recently, an unexpected application for 
proof checking tools emerged: computing 
the chromatic number of the plane. This 
problem asks how many colors are re-
quired to color all points of the plane such 
that no two points at distance 1 from each 
other have the same color. Early on, two el-
egant proofs were found to show that the 
number of colors is at least 4 and at most 
7. However, hardly any progress has been 
made since the 1950’s. A breakthrough was 
announced in April 2018: Aubrey de Grey 
found a 1581-vertex unit-distance graph 
with chromatic number 5, thereby improv-
ing the lower bound. A Polymath project 
was started to find a smaller graph with 
this property. Proof checking tools turned 
out to be useful here. To validate that a 
graph has chromatic number 5, one needs 
to show that there exist no valid 4-coloring. 
SAT solvers are arguably the fastest meth-
od to achieve this. The proof of unsatis-
fiability showing that no 4-coloring exists 

with two colors result in a monochromatic 
solution of the equation a b c2 2 2+ = ? In 
1980, Ronald Graham offered an award 
of $100 for the first person to solve this 
Boolean Pythagorean Triples problem. We 
teamed up with Oliver Kullmann from 
Swansea University and determined that 
the numbers [ , ]1 7824  can be colored with 
two colors while avoiding a monochromat-
ic solution of a b c2 2 2+ = , while this is im-
possible for [ , ]1 7825 .

The paper about the solution of the 
Boolean Pythagorean Triples problem was 
mostly a demonstration that
1. SAT solvers are now able to solve hard 

problems by linear time speedups even 
when using thousands of cores; and

2. that we can produce a proof of such 
hard problems that can be validated by 
third parties.

Quite unexpectedly, we were contacted by 
an editor of Nature regarding the solution 
and the proof. In the interview I tried to 
convince her of the importance of the main 
contributions. However, she appeared only 
interested (and worried about) the size of 
the proof: 200 terabytes. Her article on the 
‘Largest Math Proof Ever’ focussed on the 
lack of understanding of the computer-gen-
erated solution. Moreover, according to the 
article, the clever algorithms were only 
‘ticking off possibilities’.

Yet there is no such thing as bad pub-
licity. The aftermath of solving the Bool-
ean Pythagorean Triples problem and the 
article in Nature was very positive. On a 
personal note, I had the honor of meeting 
several great mathematicians, including 
Ronald Graham (who gave me the $100 
check), Alfred Hales, Timothy Gowers and 
Tom Hales. Professionally, it was great that 
the interactive theorem proving commu-
nity significantly improved the trust story 
by developing formally verified checkers 
of proofs of unsatisfiability. There are now 
verified checkers in three main theorem 
provers: ACL2, Coq, and Isabelle.

Meanwhile, I was finally able to solve 
Schur number five: ( )S 5 160= . The Texas 
Advanced Computing Center made this 
possible by allowing me to use 2400 CPUs 
for weeks on end. The size of the resulting 
proof of unsatisfiability was 2 petabytes, 
roughly ten times larger than the proof 
of the Boolean Pythagorean Triples prob-
lem. The use of the new proof system was 
crucial as it allowed to compactly express 
symmetry breaking. Without it, the proof 
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Marijn Heule, with in the background an illustration of the Boolean Pythagorean Triples problem


