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How to build machines that learn and 
think like humans or animals? How to de-
sign machines that pass the Turing Test? 
How to solve the grand problem of artificial 
intelligence, of designing artificial agents 
that interact optimally with real-world envi-
ronments machines, given limited resourc-
es [19] ? How to interpret machine-learning 
models [4, 11] ?

It was another friend who told me about 
the approach of Misha Gromov to these 
questions. Until then, I had known Misha 
Gromov as a mathematician, for his work 
in geometry, and I did not know about his 
interest in artificial intelligence. I looked 
up the article on Gromov’s website, and it 
somehow resonated with me. Over the last 
years, Gromov has posted and updated his 
articles several times [7, 8]. Recently, he 
bundled his thoughts in a book Great Circle 
of Mysteries: Mathematics, the World, the 
Mind, and at the time of writing I am wait-
ing for the translation in English, to read 
Gromov’s new account on what he calls the 
‘ergo project’.

The ergo project revolves around the 
conjecture that inside the human brain 
runs a simple, efficient, universal learning 
algorithm that applies indiscriminately to 
any incoming signal. That is, whether the 
incoming signal originates from the eyes, 

interface, would both try to convince the 
interrogator of their humanity. CleverBot is 
one of the best human-imitating chat pro-
grams around. But it doesn’t pass such a 
Turing test by a long shot. 

It means that Turing was too optimis-
tic when he believed in 1950, that “... in 
about 50 years’ time, it will be possible 
to programme computers, with a storage 
capacity of about 109, to make them play 
the imitation game so well that an average 
interrogator will not have more than 70% 
chance of making the right identification 
after five minutes of questioning” [24].

It intrigues me that, despite the many 
recent successes in machine learning and 
artificial intelligence, humans and animals 
still outperform machines on a large num-
ber of tasks. Humans are much better at 
generalizing from a small number of exam-
ples and carrying skills over from one task 
to another, and they are much more effi-
cient doing so in terms of usage of energy, 
computational power and memory [13].

A few years ago, a friend told me about the 
online chat program CleverBot. The next 
few days I (embarrassingly) spent hours 
chatting with the bot, trying to prove in var-
ious ways that it wasn’t actually a human 
I was chatting with, playing an interrogator 
at a Turing test. The conversations were 
absurd. CleverBot practically only reacted 
to the last sentence I said. I asked for its 
name several times and it gave me differ-
ent answers. But this didn’t rule out the 
possibility of chatting with a human (who 
was joking and couldn’t hold the thread 
of a conversation). I was trying to make 
Clever Bot say something that a human 
would never say. But I was doomed to fail, 
since CleverBot works with a system that 
reuses previous conversations with actual 
humans and so everything CleverBot said 
was basically said by a human at some 
point. 

Surely, a Turing test would be set up 
differently: The human or machine behind 
the screen, or at the other end of the chat 
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interesting, meaningful, informative,
funny, beautiful, curious, amusing,
amazing, surprising, confusing,
perplexing, predictable, nonsensical,
boring.

With this division in ego and ergo comes 
of course a belief that in order to find uni-
versal learning algorithms one needs to 
follow an approach fitting the latter list of 
adjectives.

Let me now describe how we can go 
from metaphors closer to mathematics. 

The ergo-learning conjecture
Gromov’s ergo-learning conjecture states 
that (rephrased):

There exists a simple, efficient, universal 
learning algorithm that finds structure, 
meaning and interpretation in any incom-
ing stream of signals and finally converges 
to  understanding.

Universal means that no matter wheth-
er the signals come from visual, auditory 
or sensory input, or the signals are even 
generated internally, they are all processed 
using the same algorithm. Simple means 
logically simple, of low complexity. Efficient 
means that it can be realized within the 
human limits on computational, memory 
and energy resources.

What the words structure, meaning, 
interpretation and understanding mean is 
at this point unclear. So while working to-
wards proving the conjecture, one needs to 
develop a mathematical theory of structure 
in signals. Similarly, one would need to 
develop mathematical concepts capturing 
the terms understanding, interpretation, 
meaning and learning.

The ultimate aim of the ergo project is 
to prove the conjecture by actually design-
ing and implementing a universal learning 
algorithm. Such an ergo system would, on 
encountering any incoming flow of signals, 
start to interact with the flow and find 
meaning and understanding inside.

How plausible is ergo-learning conjecture?
This question can spawn a discussion that 
fits right into the nature-nurture debate. It 
is the discussion about how much prepro-
gramming there is in an infant’s brain, and 
how much understanding of the world is 
acquired through experience.

The main argument in favor of ergo 
learning is that evolution has not had 

present in the infant’s brain. Without such 
preprogramming, the flow of signals enter-
ing a child’s brain is much like a chaos of 
electrochemical sparks. Yet then, gradually 
and miraculously, an immensely powerful 
universal learning algorithm brain finds 
redundancies, patterns, structure in the 
chaos, starts to autonomously build inter-
pretation, and finally starts understanding 
the incoming flow of signals. 

Ego versus Ergo
Since this process of building understand-
ing seems much stronger in early years 
of life, the expectation is that at least for 
adults, the ergo brain, that powerful uni-
versal learning algorithm, is dominated 
by other processes in the mind. According 
to Gromov, the mind roughly decomposes 
into two competing parts, the ego mind 
and the ergo brain, and this is certainly a 
helpful, and at times inspiring, metaphor.

The ego-mind is responsible for a per-
son’s primary needs, such as the needs for 
survival and reproduction. The ego-mind 
is at the surface of the brain, in our con-
sciousness, and the part that we are most 
used to. 

In the depths of our minds, as if hidden 
behind a wall, runs the ergo brain. Within 
this metaphor, we can explain the extraor-
dinary capabilities of savants and of highly 
gifted mathematicians such as Ramanujan 
by cracks in the wall, through which the 
ergo brain shines through. And finally, chil-
dren are all little Ramanujans, their task of 
finding structure in the chaos of electro-
chemical sparks harder and more abstract 
than the hardest mathematics.

The expectation is therefore that if we 
want to build universal learning algorithms, 
we should mimic how children learn. Chil-
dren explore the world in an active, playful 
and curious manner. Their learning seems 
to be goal-free and independent of external 
rewards. They get bored of situations that 
they understand well, and stay away from 
situations which are too unpredictable.

To get an idea of the competition be-
tween ego and ergo, it is illustrative to 
look at the list of words Gromov associates 
with the ego mind,

intuitive, intelligent, rational, serious,
objective, important, productive,
efficient, successful, useful,

and those that belong to the ergo vocab-
ulary,

the ears, or the sensorimotor system, it 
is processed in the same way. The algo-
rithm finds structure in the incoming sig-
nals, finds meaning and interpretation and 
eventually leads to understanding.

A crucial part of the ergo project is to 
give mathematical incarnations to these 
last concepts. And whereas the idea is not 
new that inside the human brain runs a 
simple, efficient, universal learning algo-
rithm, the vision of capturing a concept 
such as meaning in purely mathematical 
terms is rather original, and I think it is one 
of the aspects that sets the ergo project 
apart.

Another distinguishing factor of the 
ergo project is the big role of mathematics, 
and moreover, for mathematics yet to be 
developed. As such, it holds the promise 
to stimulate the development of a new 
mathematical field.

In this article I will discuss Gromov’s 
ergo project in more detail. I will then 
highlight some closely related research in 
developmental robotics and artificial cu-
riosity. Finally, I will discuss what I think 
are next steps in the search for universal 
learning programs, and in particular I will 
make a case for the study of learning by 
imitating, or analysis by synthesis.

Non-universal versus universal learning
Before I try to explain what universal learn-
ing is, let me first illustrate non-universal 
learning. Suppose we want to program a 
robot with a camera to navigate through 
a room. We could read the signals record-
ed by the robot’s camera and immediate-
ly interpret them as light intensities on 
a grid. When we combine it with all our 
understanding of elementary optics and 
geometry of three-dimensional and projec-
tive space, it will be possible to hardcode 
a fairly successful navigation procedure. 
And this is currently done, of course, in 
many practical and toy robots.

In a theory on human learning called 
nativism, just like we know how to deal 
with the signals coming from the camera, 
the brain of an infant is assumed to be 
already preprogrammed to deal with the 
incoming signals. 

The ergo philosophy is different. It is 
very similar to how Turing envisioned that 
a child’s brain is a rather little mechanism, 
with lots of blank sheets: the ergo proj-
ect is also surrounded by the expectation 
that in fact, very little preprogramming is 
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Ultimate aim
To me, the ultimate outcome of the ergo 
project are good mathematical definitions 
of structure, meaning, interpretation and 
understanding, and a 1  GB USB stick with 
an actual universal learning algorithm Prog. 
We should be able to install the universal 
learning algorithm in the ‘brain’ of an arbi-
trary robot, where the robot-brain is just 
a general-purpose computer with human- 
scale computation and memory capacity.

One robot may have a microphone, an-
other may have a camera, a third may just 
have some pressure sensors. Some may 
produce sound, others images, some can 
move around and maybe others are com-
pletely stationary. We then let the robots 
interact with the environment, in particu-
lar, we expose them to sound recordings 
of text, let them flip through books. By 
running the algorithm Prog, the robots will 
start to find structure in the incoming sig-
nals, start to interact with it through its 
outgoing signals, and, within a few years, 
will converge to a form of understanding of 
language, for instance.

The design of a universal learning pro-
gram is highly challenging, and some will 
believe that it is impossible. It is, in fact, 
even hard to envision at this stage what 
such a program may look like. 

A robot learning to read
In Gromov’s setup, ‘understanding’ is a 
combinatorial structure in itself, by which 

linguistic information. Moreover, some hu-
mans have an ability to learn complicated 
structures, such as how to play chess, by 
pure observation. Many humans have an 
ability to learn mathematics. Since these 
are rather new, it is unimaginable that they 
are somehow encoded in the DNA.

There are also some claims and indi-
cators of non-universality in human signal 
processing. The initial layers responsible 
for processing visual and auditory signals 
seem adapted to the type of signals they 
are processing. For instance, scientists 
such as Petitot claim that the connectivity 
and the geometrical arrangements in the 
first layers of the human visual system are 
crucial in processing the visual signals [17]. 
Moreover, the cochlea in the inner ear per-
forms a type of Fourier transform of the 
incoming sound. Here, preprocessing of 
the signal happens even before the signal 
enters the neuronal system.

In contrast to this observation of 
non-universality, there is the observation 
that the brain shows a remarkable ability 
to adapt itself to new signals, an ability 
often referred to as ‘brain plasticity’. For in-
stance, there have been experiments with 
ferrets where the scientists connected the 
visual input to the auditory cortex. These 
ferrets could still ‘see’. Moreover, the con-
nectivities in the auditory cortex changed 
and formed a structure characteristic for 
the first layer(s) of the visual cortex [15]. 
This could be a reflection of ergo learning. 

enough time to construct targeted learning 
algorithms for every possible signal and 
every possible task. Instead, an infant’s 
brain is endowed with a simple, universal 
program that works for several signals. 
This is very similar to Turing’s vision: he 
wrote that “Our hope is that there is so 
little in the child brain that something like 
it can be easily programmed.”

As a reaction to psychological theories 
that were hard to test experimentally, scien- 
tists in the beginning of the twentieth 
century developed a new approach to 
psychology called behaviorism. It is far 
on the nurture end of the nature-nurture 
spectrum, and environmental factors, and 
in particular reinforcement by rewards and 
punishment, play a huge role [22].

Turing speculated that a learning ma-
chine could also be taught by using rewards 
and punishments and as such reflected the 
behaviorist point of view. Nonetheless, he 
himself indicated that other learning mech-
anisms would be necessary as well.

In 1957, Skinner published his behav-
iorist account on language processing 
[23] which prompted a famous critique by 
Chomsky [2]. Whereas in the behaviorist 
point of view, language is thought to be re-
quired solely through experience, the criti-
cism by Chomsky was that children are not 
exposed to enough linguistic data to learn 
the features of the language, an observa-
tion he later called Poverty of the stimu-
lus. Rather, key linguistic features should 
be innate, should be preprogrammed in 
the genetic structure. In particular, infants 
should have internalized a certain univer-
sal generative grammar.

There is currently no mathematical the-
ory to support either side of the debate, 
but in this context I always think that it 
is astounding that the (naïve?) information 
content of a person’s DNA is about 750  MB: 
it fits on a DVD. (This estimate is based on 
a total length of the human genome of ap-
proximately 3 billion base pairs, with each 
basepair accounting for two bits.) Many 
contemporary software packages will take 
significantly more space on the hard disk 
on your computer than that. It gives some 
indication of the limits on the complexity 
of the ‘start-up’ software of children.

Another strong hint at universality 
is that humans can learn language even 
when they are deaf or deaf-blind. This 
means that language can be learned in-
dependently of the signal carrying the Figure 1
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nals that indicate performance on a cer-
tain task. In that sense it is very (external) 
goal-oriented, task-specific and therefore 
not really universal. 

Artificial curiosity
Reinforcement learning is analogous to 
teaching an animal a trick by giving it food 
in return. In such a case, the reward signal 
is coupled to a primary (or secondary ...) 
drive of the animal.

Around the fifties, psychologists start-
ed to realize that it is hard to explain the 
behavior of children, humans and animals 
by merely goal-oriented behavior. Experi-
ments showed that animals had a craving 
for novel experiences and were behaving 
in exploratory ways even when their pri-
mary needs seemed to be satisfied, when 
exploratory behavior actually led to pun-
ishments, or when there really seemed to 
be no reward for an activity at all [1, 25]. 

If children and animals are not solely 
motivated by external rewards, then how 
do they learn? And how could we mim-
ic such behavior in robots? In particular, 
how can we instill exploratory behavior 
in robots, a craving for novel, surprising, 
funny experiences, and a certain focus 
on situations that are interesting because 
they are not too predictable nor too un-
predictable? How can we artificially gener-
ate curiosity?

Interestingly, very similar suggested an-
swers to these questions come from many 
different directions. The core of these sug-
gestions is as follows: Endow the robot 
with a predictor of its own sensory input 
and choose its actions based on the ac-
curacy of the predictions. The robot can 
measure this accuracy by itself, without the 
need for an external grader.

The above principle comes in many dif-
ferent flavors, as it depends on a particular 
system of prediction used and the particu-
lar quantities that are optimized and how 
the optimization procedure takes place.

A very interesting application was con-
structed by Oudeyer, Kaplan and Hafner 
[16]. Their robot seemed to go through 
various stages of development. If it would 
start to ‘understand’ a certain toy or situa-
tion, it would move on to the next, where 
there still was something new to learn.

Prediction and generation
The predictor is a key component of the 
above setup. It generates a signal that 

matical theory. That is why Gromov expects 
that the time-complexity of a learning pro-
cess is log-linear in the size of the lan-
guage or theory. On the other hand, the 
applications of the understanding to a flow 
of signals is extremely fast, and therefore 
expected to be logarithmic in the size of 
the signal.

Even though some will be skeptical 
about the feasibility of the ergo project, 
closely related research has been going on 
for decades, albeit under different names 
such as artificial curiosity [21], develop-
mental robotics [3, 12] and the Bayesian 
brain hypothesis [5, 6]. (In fact, Jürgen 
Schmidhuber’s survey article on artificial 
curiosity has the surprising title ‘Formal 
theory of creativity, fun, and intrinsic moti-
vation (1990–2010)’.)

Going back in time even further, Turing’s 
original proposal of teaching a machine by 
rewards and punishments was made oper-
ational in a technique called reinforcement 
learning. Reinforcement learning in itself 
is not quite universal, but it can play an 
important role in more universal learning 
algorithms, so we review it first.

Reinforcement learning
Suppose we want to let the robot perform 
a certain task, such as play a game of 
soccer or chess. We could try to hardcode 
rules of play, program the robot to perform 
optimally, but this is a very non-universal 
approach. Instead, we let the robot figure 
out by itself how to play, except we, as ex-
ternal experts, do ‘grade’ the performance 
of the robot, and make our grading acces-
sible to the robot, through a part of its 
input signal.

We can program the robot in such away 
that this part of the input signal gets the 
interpretation of a reward, which the robot 
tries to maximize (often on average). This 
approach goes by the name of reinforce-
ment learning, and is a reflection of the 
behaviorist principle of learning through 
rewards and punishments.

Reinforcement learning has grown into 
an extremely powerful method to teach 
tasks and games to machines and robots 
[18].

Reinforcement learning has both uni-
versal and non-universal aspects. It is uni-
versal in that the same algorithm can be 
used on a large variety of tasks. However, 
reinforcement learning is predominantly 
used with outside-programmed reward sig-

we mean something like (but different 
from) a graph, a simplicial complex or 
an n-category. When the universal learn-
ing program is listening to the incoming 
flow of signals, the ergo-learning program 
will try to incorporate the structure that is 
diluted in the flow, in the combinatorial 
structure of the ‘understanding’.

Suppose that the ergo-learning program 
Prog is connected to a large body of text, 
such as Wikipedia. The program starts by 
identifying textual units, such as words or 
word combinations that are persistent in 
the text. Importantly, we don’t tell the pro-
gram what a word is, or even a ‘space’. 
It should perform the division into units 
purely based on statistical properties of 
the text.

Next, it would attach names or tags to 
some of these words and fragments. One 
can think of such tags being written on 
a line above the original string. One can 
iterate the annotation process and write 
( )l 1+  st order tags on top of the line with 
l th order tags. The number of tags should 
decrease with l.

The next step is the compression of the 
library, that is, the applications of sever-
al structure-preserving reductions, which 
results in a more elaborate combinatorial 
structure. This combinatorial structure re-
flects the grammar. It should be significant-
ly smaller than the original body of text.

The resulting combinatorial structure 
will be a dynamically changing entity, 
which we will denote by Ut. The program 
is iteratively applied to Ut to obtain the 
combinatorial structure at the next time 
point. Eventually, we expect this process 
to approximately converge to a fixed point. 
Then, we would say that the ergo brain 
‘understands’ the language.

Generalizing from the above, the whole 
process of understanding would consist of 
three components:

 – A combinatorial structure U in the mind, 
brain or program that ‘understands’;

 – an ergo-system that implements U, i.e. 
takes U as an input and uses it to pro-
cess and interpret incoming (and inter-
nally generated) signals;

 – the result of applying the implementa-
tion of U to incoming flows of signals.

Developing reasonable understanding of a 
language takes a long time, at least sev-
eral years for humans. A similar timeframe 
holds for the understanding of a mathe-
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the images, the robot uses that same gen-
erative model for its predictor: The robot’s 
predictor generates a sequence of images 
exactly following the same procedure as 
above. After observing images, however, it 
will update its predictor: it uses the exact 
same generating process except for replac-
ing the prior probability distribution for 
picking the original image by the posterior 
probability distribution. This way, after a 
few observations, the predicted signal of 
the robot will be much closer to the true 
signal.

This was a very simple example, but it 
contains the basis of Bayesian inference 
and prediction. Let us now make it a bit 
more complicated.

We are going to generate a sequence 
of images of arrangements of overlapping 
boxes. We first sample a random number 
N, which will be the total number of boxes 
in the picture, and for each of the boxes, 
we choose a random size. We keep both 
the number and the sizes fixed (and will 
sometimes refer to them as the fixed latent 
variables). To generate images, we vary the 

bility that the original image was the black 
image B using Bayes’ formula
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This conditional probability distribution on 
the original picture is called the posterior 
probability distribution.

After viewing more images, the robot 
can in the same way calculate the posteri-
or probability that the original image was 
black, given observations of the images 
, ,Im Imn1 f . The estimate the robot makes 

this way becomes more and more accurate 
(in fact exponentially fast). This is the es-
sential idea of Bayesian inference. 

Let us now look at Bayesian prediction. 
In this simple case, where the robot has 
full knowledge about the model generating 

can be compared to the true input. I first 
want to describe the simplest such predic-
tor, which already contains the key idea of 
much more sophisticated versions.

We think of showing the robot a se-
quence of uniform grayscale images, ac-
cording to the following procedure. To 
begin with, we choose a random ‘original’ 
picture according to a probability distri-
bution that we call the prior probability 
distribution. There are just two choices for 
the original picture: it is either complete-
ly white or completely black. We call this 
picture Or and we keep it hidden from the 
robot. It stays fixed throughout the rest of 
the procedure. 

We then show the robot a sequence of 
‘noisy’ images Im1, ,Im2 f, in which the im-
age is colored in a random gray scale in 
{ , , ..., }0 1 10 , where 0 corresponds to black 
and 10 to white. This means for instance 
(just to give a concrete example) that if 
the original image is black, the probability 
that the grayscale of image j equals m is 
proportional to 

[ | ]m B 10
9P Im Orj

m
+= = a k

and if the original image is white, the prob-
ability that the grayscale of image j equals 
m is proportional to 

[ | ] .m W 10
9P Im Orj

m10
+= =

-a k

The noise for image i is independent of the 
noise for image j if i j! . 

The first ten images may look like shown 
in Figure 2. In inference, it is the task of the 
robot to infer what was the original picture, 
based on such a sequence of pictures. In 
prediction, it is the task of the robot to 
predict how the sequence continues. 

The random picture Or is often called a 
latent variable. It ‘explains’ the sequence 
of images produced.

We first assume that the robot has full 
knowledge about the above procedure, in-
cluding the various probabilities, so it can 
use this knowledge to do inference and 
prediction. Let us first see how inference 
works.

After the robot sees one image with 
gray scale m, it can calculate the proba-

Figure 2

Figure 3



204 NAW 5/19 nr. 3 september 2018 Ergo learning Jim Portegies

issue of computation time [20]. The Gödel 
machine can rewrite its own software, after 
it has proven that such a rewrite is useful 
for rewards and speedup.

Although these learning algorithms are 
universal, even for the Gödel machine the 
computation times seem so large that its 
role in an ergo-learning system is question-
able.

Variational autoencoders
I still believe that analysis by synthesis is 
possible by following the heuristic of Oc-
cam’s razor: if the robot does not know 
the generative model producing the data, 
it tries to search over a whole class of gen-
erative models that best approximates the 
observed signal, but keeping in account 
the complexity.

However, instead of considering about 
every possible generative model as in 
inductive inference, I think it will be nec-
essary to restrict to a class of generative 
models for which it is easier to define and 
compute measures of complexity, which 
are easier to train and easier to analyze 
mathematically, but still are capable of 
encoding efficiently and accurately a wide 
range of signals.

One such restricted class of generative 
models are generative models implement-
ed by deep neural networks, such as the 
Variational Autoencoders introduced by 
Kingma and Welling [10].

In a Variational Autoencoder, one com-
pletely artificially adds a (changing) latent 
variable Z to the system, often with values 
in Rn. One then optimizes over a whole 
class of generative models which gener-
ate signals by sending the latent variable, 
together with a noise variable, through 
a deep neural network; different choices 
of parameters of the neural network give 
rise to different generative models. One 
adapts the parameters of the neural net-
work so that the true signal is approxi-
mated well, but it is not the only quantity 
that is optimized. At the same time, one 
uses a second deep neural network for 
variational inference: that is, one approx-
imates the true posterior distribution by 
the family of distributions that one gets 
by varying the parameters of the second 
network. (This most basic setup of a Varia-
tional Autoencoder takes into account the 
complexity of Z — through the principle of 
minimum description length —, but not 
of the generative model itself. One could, 

using the elevator without swiping my ac-
cess card. Leaving the office, however, was 
never a problem. I stored this rule (and 
this was a golden truth to me) as “in the 
weekend you can go down, but you can’t 
go up”. Until, of course, a visitor who took 
the stairs got stuck on the third floor, and 
it turned out I cannot go down from my 
office to get him. I came up with a new 
rule (you can always go to floor 0 and 1, 
but not to any other floor) and am again 
utterly convinced of its truth, even though 
I never tested whether you can go from 
floor 4 to floor 6. 

There are several layers to this story, 
but the main message is that humans have 
an uncanny ability to generalize from a 
very limited number of examples, favoring 
simpler explanations. The models that we 
build for ourselves are often wrong, but 
it doesn’t matter much until we encounter 
new evidence, and we easily build a new 
simple model. It is a real challenge to get 
robots to do something similar.

One way is by letting the robot perform 
inductive inference. In a way, inductive in-
ference is Bayesian inference taken to an 
extreme: because the robot does not know 
what is the true generative model, it adds 
the model itself as a (fixed) latent variable! 
In this case, the robot’s generator first se-
lects at random any sequence-producing 
model, and then samples from this model 
as before. The robot implements Occam’s 
razor by taking the complexity of the mod-
els into account in the prior probability 
distribution: ‘simpler’ models are selected 
with higher probability.

There are, of course, a few problems 
with this approach. The space of all se-
quence-producing models is too large to 
handle effectively. In addition, one needs 
to have a workable concept of complexity 
of models, and although in this generality 
there are beautiful mathematical defini-
tions such as Kolmogorov complexity, the 
fact that the Kolmogorov complexity can-
not be computed is problematic.

Nonetheless, Hutter introduced a ratio-
nal reinforcement learning agent, called 
AIXI [9], completely based on inductive 
inference. The AIXI algorithm is more like 
an abstract, mathematical object, since 
the model is uncomputable. Hutter also 
introduced a computable procedure, called 
AIXI(t,l), but it suffers from very large com-
putation times. Schmidhuber developed 
the Gödel machine partly to deal with this 

gray-scale, the xy-location, and an order 
parameter h of the boxes at random (and 
will refer to them as changing latent vari-
ables). A box is covering another box if the 
order parameter of the first box is larger 
than that of the second. Finally, we add 
Gaussian noise to every picture. A resulting 
picture may look like Figure 3, can you in-
fer the number of boxes?

The various continuous variables pres-
ent in the problem make it very hard to 
do Bayesian inference directly. For general 
distributions, it is impossible for the robot 
to find a good representation of the poste-
rior distribution. There are several ways to 
deal with this problem, one of which is by 
sampling, and the other is by a technique 
called variational inference, where one ap-
proximates the true posterior distribution 
by an element of a simpler, parametrized 
family of distributions. 

If the robot has full knowledge of the 
model, it can by observing the sequence 
of images obtain ever-more accurate es-
timates of the fixed latent variables: the 
number of boxes in the images and their 
sizes. For every single image, the robot 
can estimate the changing latent variables, 
namely the position of the boxes and their 
grayscale. In general, this procedure works 
quite well. 

Analysis by synthesis
The situation changes drastically when 
the generating model is not known to the 
robot. Then we do not even know which 
variables to infer. Is there a way in which 
the robot may still find out the generative 
process?

My expectation is that this is possible 
if the robot is able to accurately approx-
imate the signal (or rather its statistical 
properties), with a generative model that 
is as simple as possible. In that case, in 
the above example, the robot will in fact 
have encoded a certain number of boxes, 
a concept of size of the boxes, a concept of 
location and a concept of order. This way, 
the robot would have learned by construct-
ing the signal itself, by applying analysis 
by synthesis.

The heuristic applied here is also known 
as Occam’s razor, to select the simplest 
model explaining the observations. In the 
building where I work, there is restricted 
elevator access in the weekend. As my 
office is on the seventh floor, I soon dis-
covered that I cannot go up to my office 
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Conclusion
It is clear that the ergo project is in its 
infancy, but there seem to be a few direc-
tions in which we can try to make small 
steps forward, such as in the search for 
relevant definitions of structure in signals, 
and in the development of theory and un-
derstanding of the process of analysis by 
synthesis, for instance in the context of 
deep generative models.

My personal belief is that in some de-
cades from now, the ergo project and relat-
ed activities will have lead to a new branch 
of mathematics, in which words such as 
structure, meaning, interpretation and un-
derstanding are mathematical concepts, 
and the only reason that we won’t be able 
to construct a 1  GB USB stick with a uni-
versal learning program Prog that can be 
used to let a robot find structure and even-
tually understand a wide range of flows, 
will be that 1  GB USB sticks are no longer 
to be found. s

U from Rn to Rn so that the first, second 
and third component of ( )ZU  correspond 
to the x-coordinate, y-coordinate and the 
gray scale of the box, respectively.

This way, we are naturally led to ques-
tions about when two generative models 
are equivalent, about when there exists a 
translation from one generative model to 
the other and back. This opens the door 
to more mathematical definitions of inter-
pretations of models and structures diluted 
in signals.

Indeed, together with Rostislav Matveev 
we looked at a definition of structure in 
signals for a certain type of translation be-
tween signals relevant for information pro-
cessing [14]. If a signal consists of multiple 
components, the concept of structure we 
define naturally includes the Shannon mu-
tual information between the components. 
However, it also covers finer dependency 
structure relevant for information process-
ing.

instead, incorporate the complexity of the 
generative model by also adding the pa-
rameters of the neural network as fixed 
latent variables in a Bayesian setup. This 
would be closer to inductive inference. 
One can even iterate the procedure, and 
get models similar to the hierarchical mod-
els Friston proposes in his variational-in-
ference approach to the Bayesian brain 
hypothesis [5].)

Together with Vlado Menkovski and Luis 
Pérez, we are currently investigating the 
use of Variational Autoencoders for anal-
ysis by synthesis. For instance, if in the 
example with the pictures with boxes, we 
fix the number of boxes at 1, we expect 
that from the latent variable Z we can read 
off the x-coordinate, the y-coordinate and 
the grayscale of the box.

The x-coordinate will almost certain-
ly not correspond to the first component 
of Z, but (in a slightly idealized case) we 
can find a (linear?) change of coordinates 
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