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variable with bounded support [a,b] is 
( ) /b a 42- -sub-Gaussian. For independent 
ti-sub-Gaussian Si, the sum Sii

/  is tii
/ - 

sub-Gaussian. For any R!a  the scaling 
Sa  is t2a -sub-Gaussian. The canonical 

t-sub-Gaussian random variable in applica-
tions is ( )S Xii

t

1 n= -=
/  where the Xi n-  

are independent 1-sub-Gaussian.
Next, we will review the game-theoretic- 

probability interpretation of our assump-
tion (1).

Game-theoretic probability
Following [3], we interpret the sub-Gauss-
ian condition (1) as a collection of bets 
that are offered regarding S. Namely, for 
each R!h  we can buy any positive num-
ber of h-tickets that cost e /t 22h  and pay out 
e Sh . In other words, each unit capital in-
vested in h-tickets yields e /S t 22h h- . A strat-
egy for the learner is a portfolio, specified 
by a positive measure ( )p 0$h , indicating 
how much capital should be invested in h- 
tickets for each R!h . (Our strategies are 
relatively simple as we are considering just 
a single round. See [3] for general multi-
round protocols. We will use the notation 
for densities throughout for simplicity, al-
though we will find we need both contin-
uous and discrete measures.) The cost of 
the portfolio ( )p h  is hence

( ) ,p dh h#

Setup
The goal is to showcase the game-theoretic 
probability framework and techniques, and 
the associated way of thinking in terms of 
intuitive bets. Moreover, as we will see the 
constructions will come with natural certif-
icates of tightness.

A minimal assumption
In this article we will not commit to a sin-
gle distribution, but instead work with a 
(non-parametric) class of distributions. 
Here, the assumption that we are willing 
to make is that of sub-Gaussianity. Let’s 
review the definition.

Definition. A variable S is t-sub-Gaussian if 
for each R!h ,

.e eE /S t 22#h h6 @ (1)

Sub-Gaussian random variables are 
ubiquitous. They are often used as models 
for noise (sub-Gaussianity implies mean 
zero). The centred Gaussian distribution 
with variance t satisfies (1) with equal-
ity, hence the name. Moreover, by Hoeff-
ding’s Inequality, any zero-mean random 

The purpose of this article is threefold. 
First, I will derive deviation inequalities 
for sub-Gaussian random variables. Such 
statements find application in statistics 
and machine learning, for example in hy-
pothesis tests, confidence intervals and 
optional stopping. So if you have not 
seen sub-Gaussian variables or deviation 
inequalities (or both) before, this will be 
useful. Second, these results will illustrate 
how one can systematically exploit the 
(weak) assumption that the distribution 
belongs to a given set. And finally, the uni-
fied way in which the results are derived 
illustrates the power and intuitiveness of 
the game-theoretic probability framework.

The article is structured as follows. We 
will first review the sub-Gaussianity as-
sumption, and investigate its game-theo-
retic interpretation as a collection of avail-
able bets. Subsequently, assuming that S 
is sub-Gaussian, we will construct betting 
strategies that lead to upper bounds on 

S cP $! +, S cP 2 $" ,, eE Sm6 @, eE S2m7 A as 
well as on i 1={ }S cP i

2 $K/  for independent 
sub-Gaussian Si. Each of these bounds ex-
presses the intuition that S cannot be ex-
treme with high probability.
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Let’s first check dual feasibility,
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And let’s check primal feasibility,
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For exact Gaussian ( , )S t0N+ , we have 
( / )S c c t2P 2 $ W= -" , .

Moment Generating Function
In the previous two sections we quantified 
that S cannot be extreme by giving upper 
bounds on probabilities of its tail events. 
Another way of expressing that S cannot 
be extreme is to bound its moment gen-
erating function. (Tail bounds would then 
follow by Chernoff’s method). Fix R!m . 
Let’s consider

.Y e S|= m

For a centred Gaussian ( , )S t0N+  with vari-
ance t, we would find [ ]e eE S 2

=m /t 2m . Here we 
show that [ ]Y eE

2
= /t 2mr  for t-sub-Gaussian S 

as well. The following is a witnessing sad-
dle point

.p e b eandt t
S t2 2

2 2

d d= =
m

h m

m

m= =* *

Dual feasibility follows by

,max e e 1t t t2 2

2 2

=
m

h m
h
-

h

while primal feasibility is established by

: .S e e eR t S t S2 2

2 2

6 ! =
m

m
m

m-

We find that the upper moment-generating 
function [ ]eE Smr  is exactly that of a Gauss-
ian. Hence the generalisation to sub-Gauss-
ian comes for free.

Moment generating function of square
Now it gets interesting. Fix [ , ]0 1!m . Let’s 
consider

.Y e t
S
2

2

|= m (6)

In contrast to what happened before, here 
the supports of the components of the 
saddle point are continuous measures. We 
claim the value is

We will be using duality to certify optimal-
ity. A pair ( )p 0$h*  and ( )b S 0$*  satisfy-
ing the constraints (2b) and (3b) for which 
the values (2a) and (3a) coincide simulta-
neously solves (2) and (3) to optimality. 
We will call such a pair a saddle point.

Applications in the univariate case
We now use the above duality relationship 
to compute the sub-Gaussian upper price 
[ ]YEr  of the five variables Y of interest from 

the introduction. Throughout we assume 
that S is t-sub-Gaussian.

One-sided tail
Fix a threshold c 0$ , and let

.Y S c1| $= ! +
We claim that the upper price is [ ]Y eE t

c
2

2

= -r ,
as witnessed by the following saddle point:

,p e b eandt
c
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c t
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where we write S cd =  for the Dirac point-
mass at c. Primal feasibility (2b) follows 
from

min e e 1t
c S2

S c
t
c

t
c2

2

2

=- -
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and dual feasibility (3b) from

.max e e 1t
c c t2 2
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(Exercise: what are upper price [ ]YEr  and 
saddle point for c 0< ?)

Primal optimality tells us that S cP $! + 
e t

c
2

2

# - , while dual optimality tells us that 
we cannot prove a tighter bound without 
changing the assumptions or technique. 
For example, if we know that ( , )S t0N+  is 
Gaussian, we find ( / )S c c tP $ W= -! + .

Two-sided tail
Fix c 0$ . Let’s look at the two-sided 
threshold

.Y S c1 2| $= " , (4)

It would be natural to conjecture that the 
upper price [ ]YEr  is just twice that of a sin-
gle tail. But in actuality it is less, especially 
so for small c. To say what it is exactly, let 
v and z be the value and optimiser of

.max coshv z c e
z t2

z

2

= -^ h
We claim that the value is [ ]YE v

1=r , as wit-
nessed by the saddle point

.

p v

b v
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and for each possible outcome S R! , its 
payoff is

( ) .p e d/S t 22h hh h-#
We will use portfolios to price arbitrary 
variables.

Upper price
Our goal is to show that S cannot be ex-
treme with high probability. Our approach 
will be to fix a function ( )Y S , expressing 
how extreme we deem S to be. The mech-
anism is then to construct a portfolio of 
tickets such that we end up with payoff at 
least ( )Y S  no matter the outcome S. Giv-
en that all bets are fair at best, it will be 
highly unlikely that the strategy pays off 
significantly more than its cost. Formally, 
we define the upper price of Y to be the 
minimum cost portfolio

[ ] ( )minY p dE
( )p 0

| h h=
h $

r # (2a)

subject to the ‘super-replication’ constraint 

: ( ) ( ) .S p e d Y SR /S t 226 ! $h hh h-# (2b)

As the name suggests, the upper price 
bounds the expectation from above. To see 
why, fix any optimiser p* of (2). Taking ex-
pectation of (2b) under any t-sub-Gaussian 
distribution on S, we find

[ ] ( )

( ) [ ] .

Y p e d

p d Y

E E

E

/S t 22#

#

h h

h h =

h h-*

* r

7 A#
#

Now how to approach the optimisation 
problem above?

Duality
As the objective and constraint in (2) are 
linear in the portfolio ( )p h , this is an (in-
finite) linear program. Like finite linear 
programs, this problem has an associated 
dual problem where the role of variables 
and constrains are swapped. (Duality is a 
rich concept in mathematical optimisation, 
see for example [1]. A useful analogy is per-
haps the simplest duality relation, namely 
that the maximum over a set is also the 
minimum number that is larger than each 
member.) In our case the dual problem 
asks for a positive measure ( )b S  on out-
comes S that maximises

( ) ( )max b S Y S dS
( )b S 0$
# (3a)

subject to the ‘fair ticket pricing’ constraint

: ( ) .e b S dS 1R S
t
2

2

6 ! #h h
h

-# (3b)
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is the confluent hypergeometric limit func-
tion, for which computer support is readily 
available. For example, Mathematica calls 
it Hypergeometric0F1, Matlab calls it hy-
pergeom and Octave has gsl_sf_hyper-
g_0F1 in package gsl.

We found [ ]YE v
1=r , and hence Z cP $! + 

v
1# . We can also reason backwards and 

find the threshold c corresponding to a giv-
en confidence v

1 d= . We obtain

,

min max
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which can be implemented numerically 
using a binary search for the zero of the 
derivative.

Conclusion
We illustrated the power of the game-the-
oretic probability framework by deriving 
in a uniform fashion a series of deviation 
inequalities for sub-Gaussian random vari-
ables. We covered just the tip of a giant 
(and partially unexplored) iceberg. In more 
advanced sequential settings, taking bets 
and observing outcomes are interleaved, 
and more elaborate strategies beyond 
mixtures are possible and necessary, nat-
urally leading to martingales. Analogues 
of the methods showcased here can be 
used to prove more advanced deviation 
inequalities that e.g. hold for arbitrary 
exponential families, and hold uniformly 
over time [2]. s
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Self-normalised sums of squares
We finally consider thresholding Z in the 
form of

.Y Z c1| $= ! +
The upper price [ ]YEr  and witnessing strat-
egies will need to generalise those below 
(4), which cover the case K 1= . This in-
deed happens, but in a curious way. Name-
ly, the general pattern is to have ( )p h  and 
( )b S  mix over certain ellipses. In the spe-

cial case K 1=  we indeed recover the mix-
tures over 2 symmetrically placed points 
that we found in (5). To express the result, 
let v and d be the value and optimiser of

maxv e eE
d

d
q

cd q

0

2=
$

- 6 @

where [ , ]q 1 1! -  has density

,q1K
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which we may recognise as the marginal 
density of a point drawn uniformly from 
the unit sphere SK in RK. The final claim 
is that the upper price is [ ]YE v

1=r , as wit-
nessed by the saddle point

: ,
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where X and Y are uniformly distributed 
on the unit sphere. Here ( )L $  denotes the 
law of the sampling procedure specified in 
the argument.

First, let’s check dual feasibility. For all 
h, abbreviating z ti ii2

1 2h= /  and q X1=  
(which has the density given in (7) above),

.
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Okay, good. Now primal feasibility. We have

.

v e v e

v e

v e

1 1

1

1 1

E E

E

E

S t d Y d

d t
S

Y d

q
cd q d

Y

Y

2

2 2

2

i i ii t

S

i i

i

i
i

2 2

2

1

i

i

i
2

$

=

=

=

h
h

- -

-

-

hb l

6

9

:
@

C

D

/ /

/

In both cases the crucial step is to use 
rotational symmetry: for c RK! , the inner 
product c Xi ii

/  has the same distribution 
as c X1. Finally, note that

, .e F K s2Eq
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0 1= a k6 @
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Let’s check primal feasibility. For all S,
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Now let’s check dual feasibility. For all h,
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Finally, the values indeed agree and are 
equal to

[ ] ( )

( ) .

Y p d

e b S dS
1
1

E

t
S
2

2

h h

m

=

= =
-

m *

*r #

#

Interestingly, if S is Gaussian then /S t2

has a 2|  distribution, and hence the mo-
ment-generating function of t

S
2

2
 is equal to 

( )1 /1 2m- - . So we are not losing anything 
by generalising to sub-Gaussian.

Application in the multivariate case
We conclude the exposition by looking at 
the simplest multi-variate case. For here 
something very interesting happens. The 
setup will be as follows. We consider inde-
pendent , ,S SK1 f  where Si is ti-sub-Gauss-
ian. The joint outcome ( , , )S SS K1 f=  
will be revealed at once, so there is no 
sequentiality to the problem. Before it is 
revealed, we can engage in a collection of 
bets on the outcome. For every RK!h , 
we will be able to buy any number of h- 
ticket, which each pay off e S

i

K

1
i ih

=
%  and 

cost ei

K

1
i2

i
2

=

h
t% . So now a strategy for the 

learner is a positive measure ( )p h  on RK. 
We will be interested in the statistic

.Z t
S
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K 2

1
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/

This statistic arises for example as the 
maximum log-likelihood value when com-
paring arbitrary mean models with mean 
zero models.

Products
The univariate price for e t

S
2

2

m  developed be-
low (6) immediately gives us a price for the 
product e ei

K Z
1 t

S
2 i

i
2

= m
=

m% , namely

( ) .e 1E /Z K 2m= -m -r6 @
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