
Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 175

computer science aims to understand how
such a large collection of connected ele-
ments can produce useful computations,
such as vision and speech recognition, and
also motor control, like using perception
to catch a ball.

Artificial neural networks
Artificial neural networks (ANNs) are ab-
stractions of the computation believed to be
carried out by real neurons. A ‘real’ neuron
receives pulses from many other neurons.
These pulses are processed in a manner
that may result in the generation of puls-

relate to the brain, and what more we can
learn from the brain.

The human brain consists of an intri-
cate web of billions of interconnected cells
called ‘neurons’, where each neuron typical-
ly makes connections to up to 10,000 other
neurons. The study of neural networks in

A central goal of Artificial Intelligence (AI)
is to develop algorithms that match the hu-
man ability to perceive, plan and act, be it
vision, hearing, smelling, or touching. The
human brain shows a remarkable ability to
deal with the difficult task of making sense
of the external world. This task is difficult
in many ways: perception itself is by defi-
nition noisy and ambiguous, and muscles
are notoriously hard to control as factors
like fatigue, growth and atrophication alter
the effect of motor commands given by the
brain.

Loosely modeled after the neuronal net-
works of the brain, so-called deep neural
networks have revolutionised AI in recent
years, delivering breakthrough perfor-
mance on such diverse tasks like image
recognition, speech recognition, and su-
perhuman performance playing Go and
Chess: we have truly entered the age where
computers are better at certain ‘intelligent’
tasks than humans. Here, we will give
some intuition into the question of what
these deep neural networks are, how they

Adapting spiking neural
networks

Understanding how neurons are able to efficiently encode information is a topic with ap-
plications ranging from more efficient neural network chips, to robot control, and also to
future prosthetics that directly communicate with neurons. To understand how the brain
is able to operate efficiently and asynchronously, Sander Bohté and Davide Zambrano
describe models of biological neurons and examine how the spiking nature of neuronal
communication relates this question.

Sander M. Bohté
Machine Learning Group
Centrum Wiskunde & Informatica, Amsterdam
s.m.bohte@cwi.nl

Davide Zambrano
Machine Learning Group
Centrum Wiskunde & Informatica, Amsterdam
d.zambrano@cwi.nl

output spike

input spikes
(b)

(c)

(a)

Figure 1 (a) Staining of just some of the neurons in a piece of cortex. A singly (pyramidal) neuron is shown as well. Notice
the many synapses where the neuron receives input from other neurons. (b) Neurons communicate with each other using
spikes, which each influence the internal state (typically the membrane potential) of the target neuron. (c) Abstracted
representation of spike-based communication, where synapses between neurons are taken as ‘weights’.

176 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

So-called convolutional neural networks
take their inspiration from filters used in
computer vision: a filter is specified as a
matrix of weights which is convolved with
an image to, for instance, detect edges
in figures. The benefit of this approach is
that a single small filter, like a 3 3# , 4 4#
or 5 5# matrix of weights, can be applied
to the entire image: detecting edges thus
needs only few parameters (the weights).
Applying the same filter to the entire im-
age also makes sense, as edges can be
anywhere in the image.

Convolutional neural networks (CNNs)
exploit this principle, having small filters
that are convolved with the image, how-
ever, rather than handcrafted, the filters
are learned. The convolutional neural net-
works, as illustrated in Figure 3a, moreover
contains many filters in a layer, and a layer
of filters connects to a next layer of filters,
to learn filters-of-filters. In deep CNNs,
many of these layers are used successively.
The resultant filters-of-filters become sen-
sitive to progressively complex features in
the image, like from edges to lines, to fea-
tures like noses, mouths and eyes, to fac-
es. It was this type of neural network, de-
veloped already in the late 1980’s by Yann
LeCun, that achieved the breakthrough in

number of (positively weighted) spikes, a
neuron is naturally more likely to emit an
increasing number of spikes itself.

Neural networks are sets of connected
artificial neurons. Remarkably, networks
of such simple, connected computational
elements can implement a range of math-
ematical functions relating input states to
output states, where its computational
power is derived from the connectivity pat-
tern and clever choices for the values of
the connection weights.

Learning rules for neural networks
prescribe how to adapt the weights to
improve performance given some task.
An example of a neural network is the
multi-layer perceptron (MLP, Figure 2c).
Learning rules like error backpropagation
[23] compute the gradient of each weight
with respect to a pre-defined loss function
that captures the cost of deviations from
desired behavior. The weights in the net-
work are adjusted along this gradient to
minimize the loss, which enables the neu-
ral networks to learn and perform many
tasks associated with intelligent behavior,
like learning, memory, pattern recognition,
and classification [1, 22].

Different types of neural networks have
been developed over the last two decades.

es in the receiving neuron, which are then
transmitted to other neurons (Figure 1b, c).
The neuron thus ‘computes’ by transform-
ing input pulses into output pulses.

ANNs try to capture the essence of this
computation: as depicted in Figure 2, the
rate at which a neuron fires pulses is ab-
stracted to a scalar ‘activity value’, or out-
put, assigned to the neuron. Directional
connections determine which neurons are
input to other neurons. Each connection
has a weight, and the output of a partic-
ular neuron is a function of the sum of
the weighted outputs of the neurons it
receives input from. The applied function
is called the transfer function, ()F R . Bi-
nary ‘thresholding’ neurons have as out-
put a ‘1’ or a ‘0’, depending on whether
or not the summed input exceeds some
threshold. Sigmoidal neurons apply a sig-
moidal transfer function, and have a re-
al-valued output, and so-called ‘rectified
linear’ neurons, or ‘ReLU’) neurons apply
a rectified linear function (inset Figure 2b,
solid respectively dotted and dashed line).
Abstracted in the sigmoidal transforma-
tion function is the idea that real neurons
communicate via firing rates: the rate at
which a neuron generates action poten-
tials (spikes). When receiving an increasing

(a) (b) (c) output

input

Figure 2 (a) A neuron computes output from inputs. (b) Artificial neuron modeling input–output computation. Inset: transfer functions ()f R . Plotted are examples of a binary (solid
line), sigmoidal (dotted line) and ReLU (dashed line) transfer function. (c) Stringing neurons together to obtain a multilayer perceptron network.

(a) (b)

Figure 3 (a) Deep convolutional neural networks. Feature layers extract features from previous maps, while subsampling layer compress features maps to create more position-invariant
features. (b) A neural network that writes captions to describe an image: an image is parsed by a CNN and the output of the CNN is parsed by an LSTM to select a sequence of words (taken
from [8]).

Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 177

signal; an example of this phenomenon is
shown in Figure 4.

Spike times carrying significant informa-
tion is attractive, as in theory it increases
the amount of information carried by each
spike. Information theoretic measurements
on the entropy of in-vivo (real-world) neu-
rons have also shown significant informa-
tion in the precise spike timing [16].

Spiking neuron models
The prototypical model of a spiking neuron
is the Hodgkin–Huxley model. Experiment-
ing on the squid’s giant axon, Hodgkin and
Huxley [13] found that three ionic currents
determined most of the axon’s behavior: the
sodium and potassium currents, and a leak
current. Ion channels in the neuron’s cell
membrane control the flow of ions in a volt-
age-dependent manner, where the interior of
the cell acts as a capacitor. This leads them
to propose a relatively simple electrical cir-
cuit as a model of the neurons response to
a current entering the cell (Figure 5a), where
the current partly charges the capacitor and
partly leaks through the ion-channels.

according to a synchronised paradigm of
computation, where in a single pass all
neurons exchange their activation values
and update their internal state. In contrast,
the brain operates in an asynchronous
fashion: real neurons only exchange infor-
mation when they receive sufficient inputs,
and they do so only rarely. Understanding
how neurons are able to efficiently encode
information is a topic with applications
ranging from more efficient neural network
chips, to robot control, and also to future
prosthetics that directly communicate with
neurons — neuroprosthetics. Thus, to un-
derstand how the brain is able to operate
efficiently and asynchronously, we return
to our models of biological neurons, and
in particular examine how the spiking na-
ture of neuronal communication relates
this question.

The question of how neurons encode in-
formation in the spikes they emit is a hotly
debated one in neuroscience. At the heart
of the argument is the issue to what de-
gree neurons respond in a stochastic man-
ner to received inputs: on the one hand,
many experimental findings show that neu-
ronal firing is highly unreliable, and can
be reasonably described as a rate-driven
Poisson process. On the other hand, we
know that individual spiking neurons can
be highly reliable, emitting reproducible
spikes at a very high time resolution [15].
Part of the reason for this finding seems
to be that spike-time reliability is related
to the temporal properties of the received

object classification by Alex Krizhevsky and
Geoffrey Hinton in 2012.

Convolutional neural networks are com-
plemented with neural network structures
capable of learning to maintain informa-
tion-memory structures. Many tasks have
a sequential nature where information has
to be integrated and maintained to make
the right inferences or choices: from read-
ing a text to driving from home to work.
While recurrent network structures can in
principle (learn to) maintain relevant in-
formation, it was found in the late 1980’s
that such structures are notoriously hard
to train. In 1998 then, Sepp Hochreiter and
Jürgen Schmidhuber developed a mem-
ory structure with more tractable learn-
ing properties, so-called Long Short-Term
Memory, or LSTM. Such networks, and vari-
ants thereof, are the workhorse of mod-
ern neural networks for sequential tasks.
Figure 3b shows an impressive example
of how convolutional neural networks and
LSTMs are combined to create remarkably
accurate captions for images.

Much of the magic of modern neural
networks is enabled by the development
of very powerful hardware for computing
the matrix multiplications that underly
the computations in neural networks. The
star here are GPUs: initially developed for
high-end gaming, it turned out that the
massively parallel hardware was an ex-
cellent fit for computing neural networks.
Only the last few years has dedicated AI
hardware started to emerge, ranging from
ultra-high performance tensor processing
units (TPUs) developed by Google, to ded-
icated ‘AI’ blocks in cell-phone chips like
Huawei’s Kirin 970. Exploiting this powerful
hardware has also become feasible by the
development of high-level neural network
frameworks, like Tensorflow and PyTorch,
that make it easy to implement and train
neural networks in an almost hardware ag-
nostic manner.

Back to the brain
While deep neural networks are achiev-
ing huge successes, in many aspects they
still pale in comparison to their biological
source of inspiration, the brain. For exam-
ple, the brain needs vastly fewer examples
to learn tasks and is massively more en-
ergy efficient, while it’s ability to control
hundreds of flexible and variable muscles
for motion remains unsurpassed. In par-
ticular, artificial neural networks operate

Figure 4 Reliability of firing of real spiking neurons when inject by either a constant (a) or fluctuating current (b). Top:
overlapped voltage traces from 25 trials obtained from a single neuron repeatedly injected with a either a fixed or variable
current profile (middle). Bottom: raster-plot of individual spike-times for each of the 25 trials. Note the dispersion in
spike-times for a fixed current injection and the reliability of spike-timing for the fluctuating current profile. Graph taken
from [15].

I(t)

C R K Na

I(t)

CR

(a) (b)

Figure 5 (a) Electrical circuit for the Hodgkin–Huxley
neuron model. (b) Electrical circuit for the leaky integrate-
and-fire neuron model.

178 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

brane potential is reset to a new value
u <r j. This combination of leaky integra-
tion of incoming current and a reset at the
time of spiking characterises LIF neuron
models.

Many different variations of LIF neurons
can be created, including versions that in-
clude refractory effects at the time of spik-
ing, where the threshold is stochastic and
where the threshold is dynamic. Such more
elaborate models of LIF neurons have been
shown to predict neural behavior to a re-
markable degree when compared to exper-
imental data; a wonderful and accessible
treatise on this topic has been written by
Gerstner and Kistler [10].

Synaptic currents
So far, spiking neurons have been de-
scribed in terms of their response to
currents ()I t injected into the neuron. In
reality, these currents are caused by neuro-
transmitters arriving through synapses trig-
gered by spikes from the sending neuron
(presynaptic spikes).

Synapses are complicated beasts:
broadly, neurotransmitters are released in
quantiles, contained in small vesicles that
release their content by fusing with the
synapse’ membrane. This process seems to
be both stochastic and history-dependent:
the amount of neurotransmitter released at
a synapse in response to the arrival of a
spike can vary dramatically.

Ignoring this complexity, we can model
the current that a presynaptic spike at time
tj contributes to a postsynaptic neuron i
as a post-synaptic current (PSC) with time
course ()t t ja - weighted by a particular
weight, or ‘synaptic efficacy wij. A neuron i
thus receives as input currents:

() () .I t w t tij
j

j
t j

a= -/ /

The most simple model for the postsynaptic
current ()sa is a Dirac d-pulse, () ()s q sa d= ,
for a total current contribution q. More real-
istic models let the current a have a finite
duration, for example an exponential de-
cay with time constant sx :

() (),exps
q s s
s s

a x x H= -` j

where ()sH denotes the Heaviside step
function.

Spike Response Model (SRM)
Wulfram Gerstner [11] developed the Spike

are often preferred. Such models capture
both the dynamics of the membrane po-
tential as a function of impinging spikes
and current injections while also prescrib-
ing the conditions for a neuron to generate
an action potential.

Broadly, the transmission of a single
spike from one neuron to another is me-
diated by synapses at the point where the
two neurons interact. An input, or presyn-
aptic spike arrives at the synapse, which in
turn releases neurotransmitter which then
influences the state, or membrane poten-
tial of the target, or postsynaptic neuron.
When the value of this state crosses some
threshold j, the target neuron generates a
spike, and the state is reset by a refractory
response. The size of the impact of a pre-
synaptic spike is determined by the type
and efficacy (weight) of the synapse (this
is illustrated in Figure 6).

The electrical circuit describing a Leaky-
Integrate-and-Fire (LIF) neuron is a simple
version of the Hodgkin-Huxley neuron: as
illustrated in Figure 5b, it consists of a cur-
rent I(t) driving a capacitor C in parallel
with a resistor R. The current again splits
in a component that charges the capaci-
tor and one that passes through the resis-
tor: ()I t I Icap R= + . Substituting /I u RR =
(Ohm’s Law) and /C q u= , where u is the
voltage and q is the charge, we get:

()
()

.I t R
u t

C dt
du= +

With RCmx = , we can rewrite this as:

() (),dt
du u t RI tmx =- +

where we identify ()u t as the membrane
potential of the neuron, and mx as the
membrane time constant.

The neuron emits a spike when the
membrane potential reaches a threshold j
from below. When this happens, the mem-

In this model, mathematically, we split
an applied current I(t) into a current
charging the capacitor Icap and components
Ik leaking trough the ion channels:

() ()I t I I tcap k
k

= +/

For a voltage u across the capacitor, we
can substitute /I Cdu dtcap = , rewriting:

() () .C dt
du I t I tk

k
=- +/

For the leakage currents ()I tk , Hodgkin and
Huxley formulated differential equations
for the three main components, the volt-
age dependent Na+, K+ channels and a
generic leakage channel:

()

() (),

I g m h u E

g n u E g u E

Na Na

K K L L

k
k

3

4

= -

+ - + -

/

where ,E ENa K and EL are the respective
reversal potentials; ,g gNa K and gL are the
respective maximum channel conductanc-
es. The variables ,m h and n are the gat-
ing variables that control the Na+ and K+
channels, and that evolve as:

()() () ,dt
dm u m u m1m ma b= - - (1)

()() () ,dt
dn u n u m1n na b= - - (2)

()() () .dt
dh u h u m1h ha b= - - (3)

Hodgkin and Huxley then fitted the func-
tions ()ua and ()ub to the experimental
data.

The Hodgkin and Huxley equations
provide an accurate description of many
dynamical responses of the squid axon,
and by choosing different values for the
various variables, many types of observed
neural responses can be fitted. For ex-
ample, a current injection may result in a
moderate disturbance of the membrane
potential, the generation of a single spike,
or even trigger a burst of spikes per-
sisting for much longer than the current
injection.

Still, while the equations can be studied
with the tools of mathematics, the behav-
ior of such high-dimensional and non-linear
equations is both hard to analyze and hard
to visualize.

Leaky integrate-and-fire (LIF)
To study topics like memory and neural
coding, simple phenomenological models

Figure 6 Impact of spikes on the potential of a target
neuron.

Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 179

adaptive spike-time coding, weighted in-
put spikes contribute linearly to the mem-
brane potential, and when this sum of in-
puts reaches (positive) threshold, a spike
is generated while a refractory reset is
subtracted from the membrane potential.
Since both refractory reset and the contri-
bution of impinging spikes are temporally
extended, intuitively, the (smoothed) sum
of refractory resets corresponds to the sig-
nal conveyed to the next neuron; this pro-
cess is illustrated in Figure 8a.

Adaptive spiking neuron using multiplica-
tive adaptive spike-time coding
To create artificial spiking neural networks
based on adaptive spike-time coding, we
address the limited dynamic range of stan-
dard LIF or corresponding Spike Response
Model (SRM) neurons. We note that it is the
fixed size refractory resets that limit the dy-

Adaptive spike coding
We can combine the APSDM scheme with
a spiking neuron model that dynamically
adapts to the (varying) dynamic range of
the computed internal activation value.
Inspired by [5] and [3], we use a multi-
plicative model of adaptation to obtain a
spiking neuron that is capable of encod-
ing and decoding a wide dynamic range
of activation values with a limited firing
rate. We show that we can thus compose
computationally efficient adaptive spiking
neural networks through drop-in replace-
ment of analog neurons in artificial neural
networks (ANNs), which achieve identical
performance to these ANNs without addi-
tional modifications.

A spiking neural network is defined by
the relationship between spikes and the
quantity that is computed in the neuron
as the result of impinging spikes. With

Response Model (SRM) as a non-linear in-
tegrate-and-fire model that expresses the
membrane potential at time t as an integral
over the past, as opposed to a formulation
in terms of dynamical systems. Specifically,
the membrane potential is modelled as a
sum of (weighted) impinging post-synaptic
potentials, ()te , and refractory responses

()th :

() () (,),u t t t w t t t ti i
t j

i j
ti

ij

j

h e= - + - -/ / /

where e and h are response kernels. The
threshold, that determines when a neu-
ron fires, can be dynamical: ()t ti$j j - .
Many phenomenological models include
such dynamical thresholds to explain the
spiking behavior of many different neu-
rons. The main benefit of the SRM formu-
lation is that in many ways, SRM formula-
tions of LIF-neurons are much more easily
interpretable. We will rely on this in our
formulation of a spike-time-based neural
code later on.

Neural networks
As an artificial neuron models the relation-
ship between the inputs and the output
of a neuron, artificial spiking neurons de-
scribe the input in terms of single spikes,
and how such input leads to the genera-
tion of output spikes. For this, we need
to relate spikes to information and com-
putation.

As noted, the exact nature of neural cod-
ing by biological neurons is still unresolved
in neuroscience and subject to much debate.
A recent line of work suggests that spik-
ing neurons may implement adaptive on-
line analog-to-digital and digital-to-analog
(AD/DA) conversion [2, 3, 4, 6, 26]: the key
observation is that when a neuron spikes,
the refractory reset removes a part of the
internally computed analog voltage sig-
nal, which the spike, through the synapse,
delivers to the next neuron. Young [26]
recently demonstrated a direct correspon-
dence between simple leaky integrate-and-
fire (LIF) models and the AD/DA encoding/
decoding scheme in electrical engineering
called asynchronous pulse sigma-delta
modulation (APSDM). The APSDM scheme
however presumes a fixed dynamic range
for the encoded analog values, as signals
are ‘chopped’ into fixed-size pieces, and
requires that a neuron fires at a very high
firing rate to obtain a good signal approx-
imation.

Figure 7 (a) Generalized leaky integrate-and-fire and (b) the asynchronous pulse sigma-delta modulation (APSDM) [26].
The APSDM scheme consists of an encoder (analog-to-digital), a channel, and a decoder (digital-to-analog), where signals
are encoding using uni-polar pulses (spikes). A signal is first passed through a filter R and added to the internal state.
Then a non-linearity is applied in the form of a thresholding function with threshold D/2. When the threshold is exceeded,
a pulse is sent to the decoder through the channel, while a response kernel D is subtracted from the internal state of the
neuron. At the decoder, each pulse is decoded with a fixed response kernel and then smoothed. Note the close similarities
between the APSDM scheme and the LIF neuron on the left.

Figure 8 (a) Illustration of signal encoding with the ASN. It denotes the smoothed sum of (weighted) postsynap-
tic currents in the post-synaptic target neuron, proportionally approximating the encoded presynaptic signal ()S t .
(b,c) Limited dynamic range: approximations fail when the signal ()S t is too small relative to the neurons’ threshold 0j (no
spikes), or, (c) too large: then, due to absolute refractoriness and corresponding maximum firing rate, the ‘high’ parts of
the signal ()S t cannot be encoded.

(a) (b)

(c)

180 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

one or two for ()tc . The neuron state up-
date can thus be efficiently computed by
updating these exponential functions as
simple (memory-less) dynamical systems.

As noted, the signal approximation ()S tt
is computed as a sum of variable height
kernels: it is this signal that is commu-
nicated through a sequence of spikes to
the next, postsynaptic, neuron. At the
postsynaptic neuron, a filter ()tz smooths
the (weighted) h kernels, which suppress-
es high frequency noise and reconstructs
the signal as in the APSDM receiver [26].
In the network, for each arriving spike the
corresponding h kernel is multiplied by
the weight of the connection and added
to the current I(t) in the post-synaptic
neuron. Since the height of the h kernel
is adaptive, in this treatment each spike
ti effectively has a height ()tij . Thus, the
ASN communicates spikes with an analog
‘height’ rather than binary valued spikes.

Adaptive signal encoding and decoding
The (unsmoothed) signal approximation

()S tt computed by the spiking mechanism
in the adaptive spiking neuron computes a
ReLU function: plotted in Figure 9a is both
the firing rate (dashed) and the mean and
standard deviation of the signal approxi-
mation ()S tt (solid) for increasing signal
values S, for two different ratios of 0j and
mf. While the firing rate saturates, the ap-
proximation ()S tt remains linearly growing
with increasing S, albeit with increasing
variance as the number of spikes used to
encode the signal remains the same.

Since the ratio of the baseline threshold

0j and the multiplicative factor mf deter-
mines the saturating firing rate, this ratio
also determines the precision of the en-

aptic neurons i, is then computed as:

() (),I t w t tj ij i
ti i

h= -//

where wij is the weight between presyn-
aptic neuron i and postsynaptic neuron j.
The refractory response kernel ()th is adap-
tive and controlled through the dynamic
threshold ()tj :

() () (),t t t t ti i ih j l- = -

where ()tij is the effective threshold at the
time of spiking, ()t til - is a spike-triggered
exponentially decaying response kernel
shaping the refractory response due to the
spike at ti with normalised height ()0 1l = .
Thus computed, the average of the sum
of h kernels approximates the mean of the
(rectified positive) signal ()S t .

We model the dynamic threshold ()tj as
multiplicative adaptation after [3]:

() () (),t m t t tf
t

i i0
i

j j j c= + -/ (6)

where 0j is the baseline threshold set
to some (small) fixed value. A multiplica-
tive factor mf of fixed size regulates the
threshold dynamics, where the ratio be-
tween 0j and mf determines the asymp-
totic firing rate of the neuron for large
activation values. The adaptation kernel

()tc is computed as a sum of exponentials:
() (/)expt tnn n
c c x= - c/ with weights nc
normalised to one such that ()0 1c = . A
few components are sufficient to mimic
limited long-memory adaption as experi-
mentally reported in e.g. [21]; here we use
either one or two components. Note that
the internal state of the neuron is fully de-
termined by the two kernels ()th and ()tc ,
and both of these kernels can be expressed
as sum of exponentials: one for ()tl and

namic range of the internal activation that
a neuron can encode [3, 6]. Effectively, ac-
tivation values that are either too small or
too large relative to the threshold cannot
be encoded. We use the solution proposed
in [3] based on fast adaptation: by dynam-
ically adjusting the threshold, the size of
the refractory responses can be controlled
and the dynamic range can be increased,
drastically even when a multiplicative form
of threshold adjustment is used. Such mul-
tiplicative adaptation effectively allows a
neuron to assign a fixed ‘budget’ of spikes
to a given dynamic range, also when that
range changes drastically. Such a model of
adaptation also explains various adaptive
behaviour in real biological neurons [3, 5, 9].

We implement adaptive spike-time cod-
ing using multiplicative adaptation in an
SRM [10]. A spiking neuron computes a
smoothed internal activation value ()S t on
the input current:

() ()(),S t I t)z=

where ()tz is the (exponential) smoothing
filter with time constant smoothx and ()I t is
the input current that the neuron receives.
This current ()I t can be injected directly
into the spiking neuron (for inputs), or be
the result of impinging (weighted) spikes
causing post-synaptic currents (PSCs)
(specified below). The spiking mechanism
approximates the ReLU activation of S(t)
with ()S tt using a sum of spike-triggered
kernels ()t tih - :

() (),S t t ti
ti

h= -t /
(4)

where a spike is added in an online and
incremental fashion when the difference
between the input signal and the signal
approximation exceeds a positive dynamic
threshold ()tj from below:

() () () (),u t S t S t t> j= - t (5)

where ()u t denotes the neuron’s membrane
potential. Upon emitting a spike at ti, the
spike-triggered refractory response ()t tih -
is subtracted from ()S t and added to ()S tt .
The part of ()S t larger than the minimal
value of the threshold ()tj is thus encoded
as ()S tt in a spike train ti. It is decoded at
the postsynaptic target neuron where the
resultant postsynaptic currents are add-
ed as weighed versions of the refractory
response ()th . The resultant postsynaptic
current in target neuron j, ()I tj induced by
presynaptic spikes ti from multiple presyn-

(a)

Input Current S(t)

A
p
p
r
o
x
i
m
a
t
e
d

F
i
r
i
n
g

R
a
t
e

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

12

0

50

100

150

200

250

300

350

400

Input Current S(t)

F
i
r
i
n
g

R
a
t
e

S
T
D

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

(b)

(c)

Figure 9 (a) Firing rates (dashed lines, right axis, computed over a 1 s time window), output signal ()S tt with stan-
dard deviation (solid lines, left axis) of an ASN ReLU neuron for two firing rate regimes (.0 10j = , mf 0j= (yellow),

.m 0 1f 0j= (purple)). Colors are the same for firing rate and corresponding signal St. (b) Firing rate for 5 different values of

. , . , . , . , .m 0 01 0 025 0 05 0 075 0 1f = and .0 10j = . (c) Standard deviation (std) for 5 different values of mf. Colors correspond
between (b) and (c).

Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 181

ms100 and respective weights .0 11c = and
.0 012c = . Adding additional components

increases the long-memory adaptation be-
haviour of the ASN, but two components
suffice here as we are not considering
time-varying signals. We use a time con-
stant of ms.2 5smoothx = for the signal re-
constructing exponential smoothing filter

()tz in all ASN units except for the out-
put neurons. In the output units activity
was filtered with an exponential filter with
a longer time constant of ms50routx = , to
compare activations between outputs for
classification purposes. The simulations
are computed with time steps of size 1 ms.

Adaptive spiking neural networks (ASNN)
We implement adaptive spiking neural net-
works where the units are comprised of
the ASNs described above. Inherently, the
ASNNs compute over time-continuous in-
put signals; most straightforward and stan-
dard applications of deep neural networks
are concerned with classification tasks,
such as determining the digit in an im-
age (Figure 12a). To compare classification
performance between a standard ANN and
an SNN, an image is presented for 500 ms
to the network, and we record from the
output neurons to determine the classifi-
cation. The image is thus taken as input to
the network for every time step in the SNN,
which may be as small as 1 ms (1000 Hz)
(illustrated in the inset in Figure 12b).

Since our ASNs communicate analog
valued spikes rather than binary spikes,
the question is how the classification prob-
lem thus phrased compares to a standard
ANN which also communicates with analog
values. For an image, an ANN can obvious-
ly compute the classification in one go, es-
sentially using just one ‘analog spike’. We
argue that the correct comparison between
SNNs, ASNNs and ANNs is to treat the clas-
sification problem as a time-continuous
problem. While the stimulus is present the
network has to compute classifications.
For both SNNs and ASNNs this is inherent
to the operation of the network, while an
ANN would need to sample the input at a
certain frame rate. This is illustrated in Fig-
ure 12b: the ANN computes the classifica-
tion for each frame for the entire network,
and the computational complexity scales
linearly with the frame rate (illustrated in
the right part of Figure 12b). In contrast,
the SNN and ASNN implement an asynchro-
nous model of ongoing neural computa-

lower value. Plotted also (orange line, right
axis) is the time it takes before the signal
approximation is below 0.05 after stepping
down.

Implementation
In the examples and in our network imple-
mentations, we use time constants that are
roughly of the order of the corresponding
values in biological spiking neurons, such
as time constants of PSCs, membrane time
constant and refractory response kernels,
to obtain firing rates for active neurons in
the range of 1-100 Hz, compatible with
what is observed in biology. We use a time
constant of ms50x =l for the exponential
decay of the l kernel. The c kernel was
approximated as either a single decaying
exponential or the sum of two exponential-
ly decaying functions,

() (/),t e t1
1

c x= - c

or

() (/) (/) ,t e t e t2 1
1 2

1 2 1 2c c x c x= - + -
c c c c+ 7 A

with time constants ms15
1
x =c and

2
x =c

coding. The inverse relationship between
saturating firing rate and coding precision
is plotted in Figure 9b, c for five different
values of /mf 0j . We observe that the stan-
dard deviation linearly increases with sig-
nal magnitude, and inversely relates to the
saturating firing rate.

In Figure 10, we illustrate signal encod-
ing with the ASN with more or less spikes.
In the top row we plot the encoding of
a step function ()S t (red) with a sum of
adaptive kernels, ()S tt (blue). The black
dashes denote the spikes: the variance of

()S tt decreases when more spikes are used.
In the middle row, the membrane poten-
tial ()u t is plotted for both cases, and in
the bottom row the dynamical threshold

()tj . As can be seen, a lower firing rate
is achieved by a higher average threshold
and correspondingly larger refractory re-
sets ()th .

The time constant of the refractory re-
sponse ()th is determined by xl: the val-
ue of this constant determines how much
‘future’ signal each spike transmits. To en-
code step functions as in Figure 10, a decay
constant that better matches the temporal
correlation in the approximated signal will
yield a better approximation. For a step
function, this effect is plotted in Figure 11.
Shown is the sum squared error (SSE) ap-
proximating a 1 second segment of a step
function with a fixed firing rate (35 Hz) for
various values of xl. Increasing xl strongly
reduces the SSE (blue line, left axis). The
lower SSE however comes at the expense
of responsiveness: when the step function
steps back to 0, it takes longer before the
approximation correctly matches the new,

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

0 500 1000 1500 2000 2500 3000
-1.5

-1

-0.5

0

0.5

1

1.5

0 500 1000 1500 2000 2500 3000

Time (ms) Time (ms)

S
i
g
n
a
l

u
(
t
)

0

0.5

1

1.5

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

0 500 1000 1500 2000 2500 3000
-1.5

-1

-0.5

0

0.5

1

1.5

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

S
i
g
n
a
l

u
(
t
)

Figure 10 Encoding of two fixed size step functions for S(t), illustrating the decreasing variance of the signal approxima-
tion ()S tt for increasing firing rates. Parameters: m 1f 0j= (left) and .0 1 0j (right) for .0 10j = .

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

SS
E

0

100

200

300

400

500

600

re
co

ve
ry

 ti
m

e

Figure 11 Error and responsiveness when encoding a step
function with different ()th (or EPSP) time constants xl.
Left axis: sum-squared error. Right axis: responsiveness
when switching back.

182 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

XOR: the network, using about a 15 Hz av-
erage firing rate, computes XOR from the
two inputs. The bottom panel shows per-
formance, and demonstrates that the net-
work is still capable of responding faster
to changes in input (ms25.) than a corre-
spondingly synchronous sample rate.

Computational complexity
An examination of the computational cost
and bandwidth requirements demonstrates
the mixed ANN and SNN properties of the
ASNN. In Table 1, these costs are specified.
The ASNN shares the firing rate dependent
network bandwidth cost with the SNN, but
at an ANN-like cost per spike, and network
delay is determined by the spike-decay
time constant xl, (presumably) the same
as in the SNN (not demonstrated in the
literature). Since spike impact is computed
as the product of spike height and con-
nection weight, the ASNN shares the ANN’s
cost in terms of multiplications per spike/
update, and the neuron update cost of the
ASNN scales as an SNN.

This analysis ignores the fact that spikes
in the ASNN (and SNN) are heavily local-
ized to a subset of neurons: many neurons
are silent while a few are active. Sparse
and localised communication potentially
offers a benefit to deep neural networks,
as densely connected neural networks
tend to be limited by the bandwidth re-
quired to read and write the appropriate
weights from memory [24]. Thus reasoned,
for an ASNN that incurs a 100 ms delay to
compete in terms of bandwidth used with
an ANN, it can use at most a firing rate
of 10 Hz on average per neuron, since an
ANN sampled with 10 Hz would achieve
the same worst case delay. This ignores
the benefit of the ASNN being able to pro-
cess in principle a 1000 Hz frame rate. The
exact benefit of sparse activity depends
on the degree of sparseness and the de-
gree to which parallel hardware can exploit
sparseness.

neural updating and network updating
decoupled, sensory inputs (and actuator
outputs) can be sampled at the high neu-
ral update frequency. This avoids the well
known problem of synchronized process-
ing [18]; the ASNN however cannot respond
much faster to changing inputs than the
xl time constant. This is illustrated in Fig-
ure 13 for the simple problem of streaming

tion where the neurons are updated each
small time step (1 ms), and communication
between neurons is both localised (to ac-
tive neurons), and a function of desired
neural coding precision rather than frame-
rate. Another benefit of the ASNN imple-
mentation is illustrated in Figure 12c: when
no features are present in the frame, the
spiking neural network does not generate
spikes, or only very sparingly, whereas the
ANN still computes the entire network ev-
ery frame. The downside of asynchronous
neural computation is that there is an in-
herent latency between input presentation
and output: in each layer, the ASN applies
an averaging filter to the spike-triggered
input currents it receives.

Asynchronous neural computation of-
fers benefits both for computing and
for processing sensory motor data: with

I1

2I

O

I1

2I

O

time time (ms)
0 100 200 300 400 500

0

50

100

(a) (b)

pe
rf

or
m

an
ce

Figure 13 Asynchronously computing XOR: (a) illustration with inputs arriving asynchronously (dotted green lines), and
XOR computed synchronously with the top (fastest) input rate. Due to the synchronous nature of computing, additional
errors are made, like the shaded areas in the bottom figure. Processing the input asynchronously at their respective sample
rates, the right shaded area would be avoided. (b) Asynchronous processing of XOR in a 2-5-1 ASNN network capable of
computing XOR with about 15 Hz average firing rate and neurons using ms25x =l . Novel input is processed at the update
rate of the neurons (1 ms); the delay in classification when patterns switch is now determined by xl (shaded areas).

ANN SNN ASNN

Network bandwidth []C P O Ha$ $+ C O Fs$ $ []C P O Fp$ $+

Network delay /H1 a c L$? x +l c L$? x +l

Network multiplications C P Ha$ $ — C P Fp$ $

Neuron multiplications ()ReH f LUa $ ()ReU f LUs $ [()]U f3 thresholdp +

Table 1 Computational Cost. C: number of connections, P: pulse precision, Ha : ANN update frequency, O: addressing
overhead, Fs : SNN firing rate, Fp : ASNN average firing rate, L: network depth (layers), Us : update frequency of SNN, Up :
update frequency of ASNN, c: a constant.

Figure 12 (a) deep convolutional neural network. (b) ANN versus ASNN classification. The ANN is computed
for every frame, for the ASNN the neuron are updated at a fine resolution (inset), but network activity is asynchro-
nous and sparse. Right part of the sequence: increasing the frame-rate increases ANN computations and not ASNN.
(c) Flanked noise classification. The ANN computes at a fixed frame rate, also for noise input that activates feature neurons
only slightly. For the ASNN, the input neurons rarely cross threshold and the network firing rate is very low for noise; spikes
are only emitted when frames with features are presented.

Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 183

networks, we find that performance is
stable over a much greater range of firing
rates. For each simulation we computed
the time to which 101% of the minimum
classification error is reached (Matching
Time, MT), e.g., for MNIST-cnn this is when
the performance exceeds 99.13%. Giv-
en parameters 0j and mf, we considered
the ASNN network as having performance
identical to the corresponding ANN if, in
the time window from MT to the end of
the simulation (500 ms), the performance
stays, on average, above the 101% error
threshold. The variance is computed over
the same time window, while the firing rate
is computed in a time window of 100 ms
at the end of the simulation. At low firing
rates, the ANN performance is exceeded for
some ranges by chance; the high neural
coding precision for higher firing rates re-
sults in more stable performance, as can
be seen in the low variance of the perfor-
mance on the right part of Figure 14.

For all four ASNNs, we noted both
the required minimum firing rate (as set
through the ratio of mf and 0j) to reach
the 101% error threshold, and the corre-
sponding simulation time when this per-
formance is first reached. We refer to these
values as the Matching Firing Rate (FR)
and the Matching Time (MT), and the re-
sults are shown in Table 2 in the column
‘Lowest FR’. For MNIST, we find that the
response time for the FF-ASNN is substan-
tially faster as compared to the C-ASNN.
This is likely caused by the fact that the
C-ASNN is a deeper network. Additionally,
we determined the lowest Matching Time
and corresponding Firing Rate (Table 2 in
the column ‘Lowest MT’). We see that for
the large MNIST networks, Matching Time

Computing with spikes
For all three datasets and the correspond-
ing four network architectures, we comput-
ed the ANN performance and compared
that to the ASNN performance. Figure 14
shows classification performance obtained
for IRIS, SONAR and MNIST by the various
ASNNs as a function of average firing rate
in the network (and hence neural coding
precision) during classification, obtained
by varying the ratio of mf and 0j . We find
that for all benchmarks we achieve per-
formance with the ASNN identical to that
of the corresponding ANN once a certain
minimum firing rate is used, corresponding
to the minimal required neural coding pre-
cision in the network. The networks that
classify the IRIS and SONAR benchmarks
require fairly high firing rates compared
to the two MNIST architectures. Since the
former architectures are comprised of far
fewer neurons as compared to the MNIST
networks, this suggests that in such small-
er networks the coding precision needs to
be quite high.

The different firing rate regimes were
obtained by varying the multiplicative fac-
tor mf as a function of 0j , between .0 1 0j
and 3 0j , with .0 01280j = for the IRIS data-
set, in 30 different simulations. The thresh-
old .0 01280j = was selected such that
the smallest positive input values in the
training set were still encoded. For SONAR,
we carried out simulations with mf ranging
between .0 1 0j and 3 0j , using e10

4j = - .
For the MNIST dataset we simulated both
an FF-ASNN and C-ASNN architecture. For
the FF-ASNN we carried out 35 simulations
with mf ranging between .0 1 0j and .3 5 0j ,
using . e3 9 30j = - . For the MNIST net-
works, compared to the IRIS and SONAR

Experimental networks
We demonstrate the ASNNs described
above in fully connected feed-forward
neural networks (FFNNs) and in a convo-
lutional neural network (CNN) [14]. These
architectures were first trained on standard
datasets — IRIS, SONAR, and MNIST — with
standard ANNs comprised of rectified linear
(ReLu) neurons. The corresponding spiking
neural networks were created by using the
same weights and network connectivity as
the trained architectures, and replacing the
ReLU neurons with ASN units — this ap-
proach allows us to focus on spike-based
coding and for now side steps the ques-
tion of spike-based learning.

We selected well-known benchmark
datasets of increasing complexity to
demonstrate the robustness of the pre-
sented approach. The IRIS dataset is a
classical non-linearly separable ‘toy’ data-
set containing three classes — three types
of plants — with fifty instances each, to be
classified from four input attributes. Simi-
larly, the SONAR dataset [12] contains 208
entries of sonar signals divided in 60 ener-
gy measurements in a particular frequency
band, to be classified in metal cylinder or
simple rocks classes. Lastly, we use the
MNIST dataset [14], which has been a stan-
dard testbed for novel image classification
methods. It is composed of 60,000 entries
of handwritten digits for the training set
and 10,000 entries for the validation set.

To carry out classification, for each in-
stance the input neurons receive input cur-
rent ()I t corresponding to the respective
feature values, for a simulation duration of
500 ms. During this period, input neurons
generate spikes that are instantaneously
transmitted to the next layer. There, the
corresponding weighted PSCs are added
to the membrane potential ()u t through
the smoothing filter ()tz ; note that the
smoothing filter effectively causes a delay
in signal transmission of order smoothx per
layer. This process is repeated for each suc-
cessive layer in the network. Output values
as used for classification are computed as
internal current ()I t in the output neurons,
smoothed with longer time constant routx
for stable performance. At every 1 ms time
step t of the simulation, classification per-
formance is computed over all instances
of the respective dataset from the outputs
()I t at that time step t. Details for the archi-

tecture, training and parameters used are
given in a box at the end of this article.

0 20 40 60 80 100 120 140 160 180 200
Firing Rate [Hz]

85

90

95

100

F
i
n
a
l

s
p
i
k
i
n
g

a
c
c
u
r
a
c
y

[
%
]

IRIS
SONAR
MNIST - nn
MNIST - cnn

Figure 14 Classification performance on IRIS, SONAR, MNIST (MNIST-nn for FF-ASNN and MNIST-cnn for C-ASNN) for
various average firing rates. Dashed: performance of original ANN.

184 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

due to xl. Switching time can be improved
by decreasing xl, but at the expense of an
increase in firing rate.

Discussion and conclusion
We introduced deep neural networks and
explained how they are presumed to re-
late to biology. Given some of the deficien-
cies of present deep neural networks, we
focused on the question of efficient and
asynchronous neural coding with spiking
neurons.

Spiking neuron models like the ASN pre-
sented here capture many important adap-
tation phenomena in real neurons, and by
coupling the synaptic plasticity model, we
ensure that downstream neurons appropri-
ately account for adaptation in presynap-
tic neurons. Thus, it is a prediction of this
work that a tight coupling exists between
neural adaptation and synaptic plasticity.

At the same time, we demonstrated that
the resulting neural network model can re-
place a standard ANN in a one-to-one man-
ner, without loss of performance, while us-
ing an asynchronous and sparse model of
spike-based neural computation. As such,
the presented ASNN can be considered as
a novel paradigm for neural coding with
spiking neurons, with an almost direct cor-
respondence to biological spiking neurons.

In particular, we show that the pro-
posed ASNNs can carry out neural com-
putation with performance identical to
the corresponding ANN for a number of
classical benchmark datasets of increasing
network size and complexity. Compared
to an otherwise identical SNN that uses
Poisson spiking neurons the presented ap-
proach has better or identical performance
while using a much lower firing rate in
the network. Additionally, due to the large
dynamic range of the ASNs, no reweight-
ing or normalization of the network was
necessary: the ASNs function as drop-in
spiking neuron replacements for the ReLU
neurons in the standard ANNs. Effectively,
the ASN computes using adaptive asyn-
chronous sigma-delta pulse modulation,
which is necessary because — unlike elec-
trical circuit signals — the signals inside a
neural network with ReLU neurons are not
bounded to some fixed dynamic range.
Note that though we focus here on stan-
dard neural networks without recurrence or
memory, we recently showed that a similar
approach can be applied to networks with
memory [20], to learn cognitive tasks, like

each layer of the MNIST-cnn (. e3 9 30j = - ,
m 3f 0j=) for 1000 random stimulus switch-
es, as well as the average activation ()S t
in the output neurons and the classifica-
tion performance. White noise has been
reproduced by presenting a (different)
Gaussian-noise sampled image with 0n =
and .0 5 0v j= , at each ms frame. We see
that noise only stimulates the first layer,
and fails to substantially activate subse-
quent layers. Once the first actual digit is
presented, the network rapidly and correct-
ly recognizes this digit. After 200 ms the
permuted images are presented: the clas-
sification performance for the new dataset
reaches the 101% error threshold after a
switching time of msST 186= . This switch
from one digit to another is determined
by — substantially longer — recovery time

improves substantially at limited cost in
terms of FR. In general, we find that the
Matching Time increases with lower firing
rates (not shown).

Switching
We also computed the Matching Time to
determine that time that input needs to be
presented to the network before the out-
put classification reaches ANN performance
(101% of the minimum classification error).
A more general streaming setting however
is one where one stimulus is presented,
followed by another stimulus. We illustrate
this case in Figure 15: first, white noise is
presented to the network for 100 ms, fol-
lowed by the presentation of a digit, which
after 100 ms is then switched to another
digit. Shown is the average activation in

Figure 15 Switching example with C-ASNN. Top: an example of the switching images provided to the network. Middle,
rows 1-6: the firing rate of the network’s 5 layers plus the read-out layer. Middle, row 7: the average activity of the read-out
layer, computed by filtering the internal state of the neurons. Note that, during the noise presentation, although a firing
activity in the read-out layer is present, the internal state is silent — a rapid increase in the average activity signals that
a classification is made. Bottom: the classification performance through time showing the switch between two test sets
of a 1000 digits each.

DataSet ANN ASNN Lowest FR Lowest MT

P(%) FR MT FR MT

IRIS 97.33 97.33 36 107 41.4 46

SONAR 88.46 88.46 59.7 80 77.1 71

MNIST-nn 98.84 98.84 14.6 15 17.3 12

MNIST-cnn 99.14 99.14 8.6 87 10 8.9

Table 2 Performance (%), Matching Firing Rate (FR) (Hz) and Matching Time (MT) (ms).

Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 185

We showed how we can relate spike-
based coding to the analog signals that
standard artificial neural networks com-
pute with. Such a translation allows us
to design sparsely active neural networks
while using the existing frameworks (like
Tensorflow and PyTorch) to train the an-
alog counterparts of these spiking net-
works. This is of course sufficient when
the aim is to deploy a trained network on
low-power hardware. To include learning,
we have to develop spike-based learn-
ing algorithms. A straightforward solu-
tion there is to note that the error that
is backpropagated in the error backprop-
agation learning rule could potential-
ly be carried by a separated network of
spiking neurons. Peter O’Connor recently
showed some work in that direction [17],
but in general the problem with this ap-
proach is that the approximation error in
the ‘spiking’ AD/DA conversion becomes
too large when the neural networks be-
come very deep. To overcome this, dif-
ferent approaches to learning in deep
networks may need to be found, where
biology will again be a source of inspi-
ration as most are convinced that the
brain does not use error-backpropagation
but rather relies on smart and data-effi-
cient forms of learning that learn the nat-
ural structure of the world without being
given explicit examples, as is needed for
error-backpropagation. s

like Intel’s Loihi chip are eminently suitable
for exploiting the efficiency of spike based
computation.

Our adapting neurons effectively use
analog spikes: each spike is associated
with a refractory kernel of different height.
In principle, the analog value of a spike
can be reconstructed at the postsynaptic
neuron from just the time since the pre-
vious spike, but at considerable compu-
tational expense. Compared to standard
(analog) ANNs, the ASNNs compute in an
asynchronous and localized manner: input
information can be presented to the net-
work at the precision with which neurons
are updated, while the rate of information
exchange in the network is determined by
the neural coding precision required for
classification. The network can thus pro-
cess for instance 1000 Hz input frames
when neural updates are carried out with
1 ms time steps: in this manner, new input
can be processed almost immediately —
albeit with the delay incurred in the con-
secutive layers. The neural activity is also
localized, in that only a subset of neurons
is really activated, emitting many spikes,
and most neurons are silent or only very
sparsely active. Since bandwidth, as used
for reading weights from memory, is typi-
cally the limiting factor when computing an
ANN, the sparse and localized neural com-
putation offers a potentially more efficient
way of time-continuous neural computing.

tasks that require remembering a value for
a number of steps and then being able to
act on this value.

Compared to classical ANNs, the com-
putations of the ASNNs are asynchronous,
event driven and sparse. To truly exploit the
efficiency of sparsely active asynchronous
spiking neural networks, efficient GPU or
ASIC implementations need to be created.
Current CNN implementations are heavily
optimized for carrying out convolutions on
GPUs, an operation which closely fits the
GPUs parallel architecture. For sparsely ac-
tive neural networks, where most neurons
are not active at any given time step, novel
approaches need to be developed: since
typically for any stimulus only a subset of
neurons is active, fast caching methods
are likely to hold promise. As most net-
works of spiking neurons, the reduction
in communication between the neurons is
traded against more complex dynamics in
the neuron; since there are typically orders
of magnitude fewer neurons than connec-
tions, this trade-off can be worthwhile
provided that the neuron model requires
limited memory and computation. The ASN
model presented here can be computed
with only a few variables (principally the
components of the c and h kernels), which
when formulated as simple dynamical sys-
tems can be computed in a memory-less
fashion, without tracking previous spike-
times. Emerging hardware architectures

Feed-forward neural networks
We trained fully connected FFNNs using
dropout [25] to approximately match per-
formance with state-of-the-art. We trained
a four layer FFNN of size [4 - 30 - 30 - 3]
on the classical IRIS dataset with a drop-
out rate of 0.5, learning rate of 0.1, for
800 epochs. We used half of the dataset
for training, and we obtained 97.33% on
the validation set. For the SONAR data-
set, we trained a four layer FFNN of size
[60 - 50 - 50 - 2], using the training set
division reported in [12] for the angle-de-
pendent experiment. We used a dropout
rate of 0.5, learning rate of 0.2, and we
trained for 1000 epochs to obtain 88.46%
accuracy on the validation set. For the
MNIST dataset, we used the trained net-
work reported in [7] to directly compare

with the method there. In [7], the authors
trained a [784 - 1200 - 1200 - 10] net-
work, with a dropout rate of 0.5, learn-
ing rate of 1 and momentum of 0.5. With
this network, we obtained 98.84% accu-
racy on the MNIST validation set (code
and trained network were available on-
line [27] using a modified version of the
Deep LearnToolbox [19, 28]. As in [7], for all
datasets the input values were scaled to
the range [0,1]. We refer to the FFNNs that
use ASN ReLU units as feed-forward adap-
tive spiking neural networks (FF-ASNN).

Convolutional neural networks
CNNs have become a standard tool for
image classification tasks [14], and they
generally outperform classical FFNNs. In
[7] a competitive ReLU CNN implementa-

tion for MNIST was presented: we apply
the ASN network to this architecture and
compare our results to those obtained in
[7]. The pre-trained network consists of
a []c s c s o28 28 12 5 2 64 5 2 10# - - - - -
CNN, where 28 28# corresponds to the
input image size, N, c, K are the N-con-
volutional kernels of size K, M, s, J are
the M-averaging pooling filters of size
J, and o is the size of the output layer;
note that this network is available online
[27]. Neurons in each of these layers use
the ReLu activation function, and we can
again map the ANN directly to our ASNN
by substituting each ReLU unit with the
adaptive spiking neuron. We refer to the
CNNs equipped spiking neurons as con-
volutional adaptive spiking neural net-
works (C-ASNN).

186 NAW 5/19 nr. 3 september 2018 Adapting spiking neural networks Sander M. Bohté, Davide Zambrano

1 Ch. M. Bishop, Neural Networks for Pattern
Recognition, Clarendon Press, 1995.

2 M. Boerlin and S. Denève, Spike-based pop-
ulation coding and working memory, PLoS
Computational Biology 7(2), February 2011,
e1001080.

3 S. M. Bohte, Efficient spike-coding with mul-
tiplicative adaptation in a spike response
model, in NIPS 25, MIT Press, 2012, pp.
1844–1852.

4 S. M. Bohte and J. O. Rombouts, Fractionally
predictive spiking neurons, in NIPS 23, MIT
Press, 2010, pp. 253–261.

5 R. Brette, Spiking models for level-invariant
encoding, Front. in Comp. Neurosc. 5 (2011).

6 D. B. Chklovskii and D. Soudry, Neuronal
spike generation mechanism as an over-
sampling, noise-shaping a-to-d converter, in
NIPS 25, MIT Press, 2012, pp. 503–511.

7 P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C.
Liu and M. Pfeiffer, Fast-classifying, high-ac-
curacy spiking deep networks through
weight and threshold balancing, IEEE IJCNN,
July 2015, pp. 1–8.

8 Jeffrey Donahue, Lisa Anne Hendricks, Sergio
Guadarrama, Marcus Rohrbach, Subhash-
ini Venugopalan, Kate Saenko and Trevor
Darrell, Long-term recurrent convolutional
networks for visual recognition and descrip-
tion, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
2015, pp. 2625–2634.

9 A. L. Fairhall, G. D. Lewen, W. Bialek and R. R.
de Ruyter van Steveninck, Efficiency and
ambiguity in an adaptive neural code, Na-
ture, 412(6849) (2001), 787–792.

10 W. Gerstner and W. Kistler, Spiking Neuron
Models: Single Neurons, Populations, Plas-
ticity, Cambridge University Press, 2002.

11 Wulfram Gerstner, A framework for spiking
neuron models: The spike response model,
Handbook of Biological Physics, Volume 4,
Elsevier, 2001, pp. 469–516.

12 R. P. Gorman and T. J. Sejnowski, Analysis of
hidden units in a layered network trained to
classify sonar targets, Neural Networks 1(1)
(1988), 75–89.

13 Alan L. Hodgkin and Andrew F. Huxley, A
quantitative description of membrane cur-
rent and its application to conduction and
excitation in nerve, The Journal of physiolo-
gy 117(4) (1952), 500–544.

14 Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,
Gradient-based learning applied to docu-
ment recognition, Proceedings of the IEEE
86(11) (1998), 2278–2324.

15 Zachary F. Mainen and Terrence J. Sejnowski,
Reliability of spike timing in neocortical neu-
rons, Science 268(5216) (1995), 1503–1506.

16 Ilya Nemenman, Geoffrey D Lewen, William
Bialek and Rob R de Ruyter van Steveninck,
Neural coding of natural stimuli: information
at submillisecond resolution, PLoS Compu-
tational Biology 4(3) (2008), e1000025.

17 Peter O’Connor, Efstratios Gavves and Max
Welling, Temporally efficient deep learning
with spikes, arXiv:1706.04159, 2017.

18 E. Olson, A passive solution to the sensor
synchronization problem, in Int. Conference
on Intelligent Robots and Systems (IROS),
IEEE/RSJ, IEEE, 2010, pp. 1059–1064.

19 R. B. Palm, Prediction as a candidate for
learning deep hierarchical models of data,
2012.

20 Isabella Pozzi, Roeland Nusselder, Davide
Zambrano and Sander Bohté, Gating sen-
sory noise in a spiking subtractive LSTM,
submitted, 2018.

21 Ch. Pozzorini, R. Naud, S. Mensi and W.
Gerstner. Temporal whitening by power-law
adaptation in neocortical neurons, Nature
Neuroscience 16(7) (2013), 942–948.

22 B. D. Ripley, Pattern Recognition and Neural
Networks, Clarendon Press, 1996.

23 D. E. Rumelhart, G. E. Hinton and R. J. Wil-
liams, Learning representations by back-
propagating errors, Nature 325 (1986),
533–536.

24 L. Ślażyński and S. Bohte, Streaming paral-
lel gpu acceleration of largescale filter-based
spiking neural networks, Network: Com-
putation in Neural Systems 23(4) (2012),
183–211.

25 N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever and R. Salakhutdinov. Dropout: a
simple way to prevent neural networks from
overfitting, J. Mach. Learn. Res. 15(1) (2014),
1929–1958.

26 Y. C. Yoon. LIF and simplified SRM neurons
encode signals into spikes via a form of
asynchronous pulse sigma-delta modula-
tion, in IEEE TNNLS, 2016, pp. 1–14.

27 http://github.com/dannyneispikingJelu_conver
sion.

28 https://github.com/rasmusbergpalm/DeepLearn
Toolbox.

References

