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computer science aims to understand how 
such a large collection of connected ele-
ments can produce useful computations, 
such as vision and speech recognition, and 
also motor control, like using perception 
to catch a ball.

Artificial neural networks
Artificial neural networks (ANNs) are ab-
stractions of the computation believed to be 
carried out by real neurons. A ‘real’ neuron 
receives pulses from many other neurons. 
These pulses are processed in a manner 
that may result in the generation of puls-

relate to the brain, and what more we can 
learn from the brain.

The human brain consists of an intri-
cate web of billions of interconnected cells 
called ‘neurons’, where each neuron typical-
ly makes connections to up to 10,000 other 
neurons. The study of neural networks in 

A central goal of Artificial Intelligence (AI) 
is to develop algorithms that match the hu-
man ability to perceive, plan and act, be it 
vision, hearing, smelling, or touching. The 
human brain shows a remarkable ability to 
deal with the difficult task of making sense 
of the external world. This task is difficult 
in many ways: perception itself is by defi-
nition noisy and ambiguous, and muscles 
are notoriously hard to control as factors 
like fatigue, growth and atrophication alter 
the effect of motor commands given by the 
brain.

Loosely modeled after the neuronal net-
works of the brain, so-called deep neural 
networks have revolutionised AI in recent 
years, delivering breakthrough perfor-
mance on such diverse tasks like image 
recognition, speech recognition, and su-
perhuman performance playing Go and 
Chess: we have truly entered the age where 
computers are better at certain ‘intelligent’ 
tasks than humans. Here, we will give 
some intuition into the question of what 
these deep neural networks are, how they 
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Figure 1 (a) Staining of just some of the neurons in a piece of cortex. A singly (pyramidal) neuron is shown as well. Notice 
the many synapses where the neuron receives input from other neurons. (b) Neurons communicate with each other using 
spikes, which each influence the internal state (typically the membrane potential) of the target neuron. (c) Abstracted 
representation of spike-based communication, where synapses between neurons are taken as ‘weights’.
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So-called convolutional neural networks 
take their inspiration from filters used in 
computer vision: a filter is specified as a 
matrix of weights which is convolved with 
an image to, for instance, detect edges 
in figures. The benefit of this approach is 
that a single small filter, like a 3 3# , 4 4#  
or 5 5#  matrix of weights, can be applied 
to the entire image: detecting edges thus 
needs only few parameters (the weights). 
Applying the same filter to the entire im-
age also makes sense, as edges can be 
anywhere in the image.

Convolutional neural networks (CNNs) 
exploit this principle, having small filters 
that are convolved with the image, how-
ever, rather than handcrafted, the filters 
are learned. The convolutional neural net-
works, as illustrated in Figure 3a, moreover 
contains many filters in a layer, and a layer 
of filters connects to a next layer of filters, 
to learn filters-of-filters. In deep CNNs, 
many of these layers are used successively. 
The resultant filters-of-filters become sen-
sitive to progressively complex features in 
the image, like from edges to lines, to fea-
tures like noses, mouths and eyes, to fac-
es. It was this type of neural network, de-
veloped already in the late 1980’s by Yann 
LeCun, that achieved the breakthrough in 

number of (positively weighted) spikes, a 
neuron is naturally more likely to emit an 
increasing number of spikes itself.

Neural networks are sets of connected 
artificial neurons. Remarkably, networks 
of such simple, connected computational 
elements can implement a range of math-
ematical functions relating input states to 
output states, where its computational 
power is derived from the connectivity pat-
tern and clever choices for the values of 
the connection weights.

Learning rules for neural networks 
prescribe how to adapt the weights to 
improve performance given some task. 
An example of a neural network is the 
multi-layer perceptron (MLP, Figure 2c). 
Learning rules like error backpropagation 
[23] compute the gradient of each weight 
with respect to a pre-defined loss function 
that captures the cost of deviations from 
desired behavior. The weights in the net-
work are adjusted along this gradient to 
minimize the loss, which enables the neu-
ral networks to learn and perform many 
tasks associated with intelligent behavior, 
like learning, memory, pattern recognition, 
and classification [1, 22]. 

Different types of neural networks have 
been developed over the last two decades. 

es in the receiving neuron, which are then 
transmitted to other neurons (Figure 1b, c). 
The neuron thus ‘computes’ by transform-
ing input pulses into output pulses.

ANNs try to capture the essence of this 
computation: as depicted in Figure 2, the 
rate at which a neuron fires pulses is ab-
stracted to a scalar ‘activity value’, or out-
put, assigned to the neuron. Directional 
connections determine which neurons are 
input to other neurons. Each connection 
has a weight, and the output of a partic-
ular neuron is a function of the sum of 
the weighted outputs of the neurons it 
receives input from. The applied function 
is called the transfer function, ( )F R . Bi-
nary ‘thresholding’ neurons have as out-
put a ‘1’ or a ‘0’, depending on whether 
or not the summed input exceeds some 
threshold. Sigmoidal neurons apply a sig-
moidal transfer function, and have a re-
al-valued output, and so-called ‘rectified 
linear’ neurons, or ‘ReLU’) neurons apply 
a rectified linear function (inset Figure 2b, 
solid respectively dotted and dashed line). 
Abstracted in the sigmoidal transforma-
tion function is the idea that real neurons 
communicate via firing rates: the rate at 
which a neuron generates action poten-
tials (spikes). When receiving an increasing 

(a) (b) (c) output

input

Figure 2 (a) A neuron computes output from inputs. (b) Artificial neuron modeling input–output computation. Inset: transfer functions ( )f R . Plotted are examples of a binary (solid 
line), sigmoidal (dotted line) and ReLU (dashed line) transfer function. (c) Stringing neurons together to obtain a multilayer perceptron network.

(a) (b)

Figure 3 (a) Deep convolutional neural networks. Feature layers extract features from previous maps, while subsampling layer compress features maps to create more position-invariant 
features. (b) A neural network that writes captions to describe an image: an image is parsed by a CNN and the output of the CNN is parsed by an LSTM to select a sequence of words (taken 
from [8]).
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signal; an example of this phenomenon is 
shown in Figure 4.

Spike times carrying significant informa-
tion is attractive, as in theory it increases 
the amount of information carried by each 
spike. Information theoretic measurements 
on the entropy of in-vivo (real-world) neu-
rons have also shown significant informa-
tion in the precise spike timing [16].

Spiking neuron models
The prototypical model of a spiking neuron 
is the Hodgkin–Huxley model. Experiment-
ing on the squid’s giant axon, Hodgkin and 
Huxley [13] found that three ionic currents 
determined most of the axon’s behavior: the 
sodium and potassium currents, and a leak 
current. Ion channels in the neuron’s cell 
membrane control the flow of ions in a volt-
age-dependent manner, where the interior of 
the cell acts as a capacitor. This leads them 
to propose a relatively simple electrical cir-
cuit as a model of the neurons response to 
a current entering the cell (Figure 5a), where 
the current partly charges the capacitor and 
partly leaks through the ion-channels.

according to a synchronised paradigm of 
computation, where in a single pass all 
neurons exchange their activation values 
and update their internal state. In contrast, 
the brain operates in an asynchronous 
fashion: real neurons only exchange infor-
mation when they receive sufficient inputs, 
and they do so only rarely. Understanding 
how neurons are able to efficiently encode 
information is a topic with applications 
ranging from more efficient neural network 
chips, to robot control, and also to future 
prosthetics that directly communicate with 
neurons — neuroprosthetics. Thus, to un-
derstand how the brain is able to operate 
efficiently and asynchronously, we return 
to our models of biological neurons, and 
in particular examine how the spiking na-
ture of neuronal communication relates 
this question.

The question of how neurons encode in-
formation in the spikes they emit is a hotly 
debated one in neuroscience. At the heart 
of the argument is the issue to what de-
gree neurons respond in a stochastic man-
ner to received inputs: on the one hand, 
many experimental findings show that neu-
ronal firing is highly unreliable, and can 
be reasonably described as a rate-driven 
Poisson process. On the other hand, we 
know that individual spiking neurons can 
be highly reliable, emitting reproducible 
spikes at a very high time resolution [15]. 
Part of the reason for this finding seems 
to be that spike-time reliability is related 
to the temporal properties of the received 

object classification by Alex Krizhevsky and 
Geoffrey Hinton in 2012.

Convolutional neural networks are com-
plemented with neural network structures 
capable of learning to maintain informa-
tion-memory structures. Many tasks have 
a sequential nature where information has 
to be integrated and maintained to make 
the right inferences or choices: from read-
ing a text to driving from home to work. 
While recurrent network structures can in 
principle (learn to) maintain relevant in-
formation, it was found in the late 1980’s 
that such structures are notoriously hard 
to train. In 1998 then, Sepp Hochreiter and 
Jürgen Schmidhuber developed a mem-
ory structure with more tractable learn-
ing properties, so-called Long Short-Term 
Memory, or LSTM. Such networks, and vari-
ants thereof, are the workhorse of mod-
ern neural networks for sequential tasks. 
Figure 3b shows an impressive example 
of how convolutional neural networks and 
LSTMs are combined to create remarkably 
accurate captions for images.

Much of the magic of modern neural 
networks is enabled by the development 
of very powerful hardware for computing 
the matrix multiplications that underly 
the computations in neural networks. The 
star here are GPUs: initially developed for 
high-end gaming, it turned out that the 
massively parallel hardware was an ex-
cellent fit for computing neural networks. 
Only the last few years has dedicated AI 
hardware started to emerge, ranging from 
ultra-high performance tensor processing 
units (TPUs) developed by Google, to ded-
icated ‘AI’ blocks in cell-phone chips like 
Huawei’s Kirin 970. Exploiting this powerful 
hardware has also become feasible by the 
development of high-level neural network 
frameworks, like Tensorflow and PyTorch, 
that make it easy to implement and train 
neural networks in an almost hardware ag-
nostic manner.

Back to the brain
While deep neural networks are achiev-
ing huge successes, in many aspects they 
still pale in comparison to their biological 
source of inspiration, the brain. For exam-
ple, the brain needs vastly fewer examples 
to learn tasks and is massively more en-
ergy efficient, while it’s ability to control 
hundreds of flexible and variable muscles 
for motion remains unsurpassed. In par-
ticular, artificial neural networks operate 

Figure 4 Reliability of firing of real spiking neurons when inject by either a constant (a) or fluctuating current (b). Top: 
overlapped voltage traces from 25 trials obtained from a single neuron repeatedly injected with a either a fixed or variable 
current profile (middle). Bottom: raster-plot of individual spike-times for each of the 25 trials. Note the dispersion in 
spike-times for a fixed current injection and the reliability of spike-timing for the fluctuating current profile. Graph taken 
from [15].
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Figure 5 (a) Electrical circuit for the Hodgkin–Huxley 
neuron model. (b) Electrical circuit for the leaky integrate- 
and-fire neuron model.
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brane potential is reset to a new value 
u <r j. This combination of leaky integra-
tion of incoming current and a reset at the 
time of spiking characterises LIF neuron 
models. 

Many different variations of LIF neurons 
can be created, including versions that in-
clude refractory effects at the time of spik-
ing, where the threshold is stochastic and 
where the threshold is dynamic. Such more 
elaborate models of LIF neurons have been 
shown to predict neural behavior to a re-
markable degree when compared to exper-
imental data; a wonderful and accessible 
treatise on this topic has been written by 
Gerstner and Kistler [10].

Synaptic currents
So far, spiking neurons have been de-
scribed in terms of their response to 
currents ( )I t  injected into the neuron. In 
reality, these currents are caused by neuro-
transmitters arriving through synapses trig-
gered by spikes from the sending neuron 
(presynaptic spikes). 

Synapses are complicated beasts: 
broadly, neurotransmitters are released in 
quantiles, contained in small vesicles that 
release their content by fusing with the 
synapse’ membrane. This process seems to 
be both stochastic and history-dependent: 
the amount of neurotransmitter released at 
a synapse in response to the arrival of a 
spike can vary dramatically.

Ignoring this complexity, we can model 
the current that a presynaptic spike at time 
tj contributes to a postsynaptic neuron i 
as a post-synaptic current (PSC) with time 
course ( )t t ja -  weighted by a particular 
weight, or ‘synaptic efficacy wij. A neuron i 
thus receives as input currents:

( ) ( ) .I t w t tij
j

j
t j

a= -/ /

The most simple model for the postsynaptic 
current ( )sa  is a Dirac d-pulse, ( ) ( )s q sa d= , 
for a total current contribution q. More real-
istic models let the current a have a finite 
duration, for example an exponential de-
cay with time constant sx :

( ) ( ),exps
q s s
s s

a x x H= -` j

where ( )sH  denotes the Heaviside step 
function. 

Spike Response Model (SRM)
Wulfram Gerstner [11] developed the Spike 

are often preferred. Such models capture 
both the dynamics of the membrane po-
tential as a function of impinging spikes 
and current injections while also prescrib-
ing the conditions for a neuron to generate 
an action potential. 

Broadly, the transmission of a single 
spike from one neuron to another is me-
diated by synapses at the point where the 
two neurons interact. An input, or presyn-
aptic spike arrives at the synapse, which in 
turn releases neurotransmitter which then 
influences the state, or membrane poten-
tial of the target, or postsynaptic neuron. 
When the value of this state crosses some 
threshold j, the target neuron generates a 
spike, and the state is reset by a refractory 
response. The size of the impact of a pre-
synaptic spike is determined by the type 
and efficacy (weight) of the synapse (this 
is illustrated in Figure 6).

The electrical circuit describing a Leaky-
Integrate-and-Fire (LIF) neuron is a simple 
version of the Hodgkin-Huxley neuron: as 
illustrated in Figure 5b, it consists of a cur-
rent I(t) driving a capacitor C in parallel 
with a resistor R. The current again splits 
in a component that charges the capaci-
tor and one that passes through the resis-
tor: ( )I t I Icap R= + . Substituting /I u RR =  
(Ohm’s Law) and /C q u= , where u is the 
voltage and q is the charge, we get:

( )
( )

.I t R
u t

C dt
du= +

With RCmx = , we can rewrite this as:

( ) ( ),dt
du u t RI tmx =- +

where we identify ( )u t  as the membrane 
potential of the neuron, and mx  as the 
membrane time constant.

The neuron emits a spike when the 
membrane potential reaches a threshold j 
from below. When this happens, the mem-

In this model, mathematically, we split 
an applied current I(t) into a current 
charging the capacitor Icap and components 
Ik leaking trough the ion channels:

( ) ( )I t I I tcap k
k

= +/

For a voltage u across the capacitor, we 
can substitute /I Cdu dtcap = , rewriting:

( ) ( ) .C dt
du I t I tk

k
=- +/

For the leakage currents ( )I tk , Hodgkin and 
Huxley formulated differential equations 
for the three main components, the volt-
age dependent Na+, K+ channels and a 
generic leakage channel:

( )

( ) ( ),

I g m h u E

g n u E g u E

Na Na

K K L L

k
k

3

4

= -

+ - + -

/

where ,E ENa K and EL are the respective 
reversal potentials; ,g gNa K and gL are the 
respective maximum channel conductanc-
es. The variables ,m h and n are the gat-
ing variables that control the Na+ and K+ 
channels, and that evolve as:

( )( ) ( ) ,dt
dm u m u m1m ma b= - - (1)

( )( ) ( ) ,dt
dn u n u m1n na b= - - (2)

( )( ) ( ) .dt
dh u h u m1h ha b= - - (3)

Hodgkin and Huxley then fitted the func-
tions ( )ua  and ( )ub  to the experimental 
data.

The Hodgkin and Huxley equations 
provide an accurate description of many 
dynamical responses of the squid axon, 
and by choosing different values for the 
various variables, many types of observed 
neural responses can be fitted. For ex-
ample, a current injection may result in a 
moderate disturbance of the membrane 
potential, the generation of a single spike, 
or even trigger a burst of spikes per-
sisting for much longer than the current 
injection.

Still, while the equations can be studied 
with the tools of mathematics, the behav-
ior of such high-dimensional and non-linear 
equations is both hard to analyze and hard 
to visualize.

Leaky integrate-and-fire (LIF)
To study topics like memory and neural 
coding, simple phenomenological models 

Figure 6 Impact of spikes on the potential of a target 
neuron.
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adaptive spike-time coding, weighted in-
put spikes contribute linearly to the mem-
brane potential, and when this sum of in-
puts reaches (positive) threshold, a spike 
is generated while a refractory reset is 
subtracted from the membrane potential. 
Since both refractory reset and the contri-
bution of impinging spikes are temporally 
extended, intuitively, the (smoothed) sum 
of refractory resets corresponds to the sig-
nal conveyed to the next neuron; this pro-
cess is illustrated in Figure 8a.

Adaptive spiking neuron using multiplica-
tive adaptive spike-time coding
To create artificial spiking neural networks 
based on adaptive spike-time coding, we 
address the limited dynamic range of stan-
dard LIF or corresponding Spike Response 
Model (SRM) neurons. We note that it is the 
fixed size refractory resets that limit the dy-

Adaptive spike coding
We can combine the APSDM scheme with 
a spiking neuron model that dynamically 
adapts to the (varying) dynamic range of 
the computed internal activation value. 
Inspired by [5] and [3], we use a multi-
plicative model of adaptation to obtain a 
spiking neuron that is capable of encod-
ing and decoding a wide dynamic range 
of activation values with a limited firing 
rate. We show that we can thus compose 
computationally efficient adaptive spiking 
neural networks through drop-in replace-
ment of analog neurons in artificial neural 
networks (ANNs), which achieve identical 
performance to these ANNs without addi-
tional modifications. 

A spiking neural network is defined by 
the relationship between spikes and the 
quantity that is computed in the neuron 
as the result of impinging spikes. With 

Response Model (SRM) as a non-linear in-
tegrate-and-fire model that expresses the 
membrane potential at time t as an integral 
over the past, as opposed to a formulation 
in terms of dynamical systems. Specifically, 
the membrane potential is modelled as a 
sum of (weighted) impinging post-synaptic 
potentials, ( )te , and refractory responses 

( )th :

( ) ( ) ( , ),u t t t w t t t ti i
t j

i j
ti

ij

j

h e= - + - -/ / /

where e and h are response kernels. The 
threshold, that determines when a neu-
ron fires, can be dynamical: ( )t ti$j j - . 
Many phenomenological models include 
such dynamical thresholds to explain the 
spiking behavior of many different neu-
rons. The main benefit of the SRM formu-
lation is that in many ways, SRM formula-
tions of LIF-neurons are much more easily 
interpretable. We will rely on this in our 
formulation of a spike-time-based neural 
code later on. 

Neural networks
As an artificial neuron models the relation-
ship between the inputs and the output 
of a neuron, artificial spiking neurons de-
scribe the input in terms of single spikes, 
and how such input leads to the genera-
tion of output spikes. For this, we need 
to relate spikes to information and com-
putation.

As noted, the exact nature of neural cod-
ing by biological neurons is still unresolved 
in neuroscience and subject to much debate. 
A recent line of work suggests that spik-
ing neurons may implement adaptive on-
line analog-to-digital and digital-to-analog 
(AD/DA) conversion [2, 3, 4, 6, 26]: the key 
observation is that when a neuron spikes, 
the refractory reset removes a part of the 
internally computed analog voltage sig-
nal, which the spike, through the synapse, 
delivers to the next neuron. Young [26] 
recently demonstrated a direct correspon-
dence between simple leaky integrate-and- 
fire (LIF) models and the AD/DA encoding/
decoding scheme in electrical engineering 
called asynchronous pulse sigma-delta 
modulation (APSDM). The APSDM scheme 
however presumes a fixed dynamic range 
for the encoded analog values, as signals 
are ‘chopped’ into fixed-size pieces, and 
requires that a neuron fires at a very high 
firing rate to obtain a good signal approx-
imation.

Figure 7 (a) Generalized leaky integrate-and-fire and (b) the asynchronous pulse sigma-delta modulation (APSDM) [26]. 
The APSDM scheme consists of an encoder (analog-to-digital), a channel, and a decoder (digital-to-analog), where signals 
are encoding using uni-polar pulses (spikes). A signal is first passed through a filter R and added to the internal state. 
Then a non-linearity is applied in the form of a thresholding function with threshold D/2. When the threshold is exceeded, 
a pulse is sent to the decoder through the channel, while a response kernel D is subtracted from the internal state of the 
neuron. At the decoder, each pulse is decoded with a fixed response kernel and then smoothed. Note the close similarities 
between the APSDM scheme and the LIF neuron on the left.

Figure 8 (a) Illustration of signal encoding with the ASN. It denotes the smoothed sum of (weighted) postsynap-
tic currents in the post-synaptic target neuron, proportionally approximating the encoded presynaptic signal ( )S t . 
(b,c) Limited dynamic range: approximations fail when the signal ( )S t  is too small relative to the neurons’ threshold 0j  (no 
spikes), or, (c) too large: then, due to absolute refractoriness and corresponding maximum firing rate, the ‘high’ parts of 
the signal ( )S t  cannot be encoded.

(a) (b)

(c)
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one or two for ( )tc . The neuron state up-
date can thus be efficiently computed by 
updating these exponential functions as 
simple (memory-less) dynamical systems.

As noted, the signal approximation ( )S tt  
is computed as a sum of variable height 
kernels: it is this signal that is commu-
nicated through a sequence of spikes to 
the next, postsynaptic, neuron. At the 
postsynaptic neuron, a filter ( )tz  smooths 
the (weighted) h kernels, which suppress-
es high frequency noise and reconstructs 
the signal as in the APSDM receiver [26]. 
In the network, for each arriving spike the 
corresponding h kernel is multiplied by 
the weight of the connection and added 
to the current I(t) in the post-synaptic 
neuron. Since the height of the h kernel 
is adaptive, in this treatment each spike 
ti effectively has a height ( )tij . Thus, the 
ASN communicates spikes with an analog 
‘height’ rather than binary valued spikes. 

Adaptive signal encoding and decoding
The (unsmoothed) signal approximation 

( )S tt  computed by the spiking mechanism 
in the adaptive spiking neuron computes a 
ReLU function: plotted in Figure 9a is both 
the firing rate (dashed) and the mean and 
standard deviation of the signal approxi-
mation ( )S tt  (solid) for increasing signal 
values S, for two different ratios of 0j  and 
mf. While the firing rate saturates, the ap-
proximation ( )S tt  remains linearly growing 
with increasing S, albeit with increasing 
variance as the number of spikes used to 
encode the signal remains the same.

Since the ratio of the baseline threshold 

0j  and the multiplicative factor mf deter-
mines the saturating firing rate, this ratio 
also determines the precision of the en-

aptic neurons i, is then computed as:

( ) ( ),I t w t tj ij i
ti i

h= -//

where wij is the weight between presyn-
aptic neuron i and postsynaptic neuron j. 
The refractory response kernel ( )th  is adap-
tive and controlled through the dynamic 
threshold ( )tj :

( ) ( ) ( ),t t t t ti i ih j l- = -

where ( )tij  is the effective threshold at the 
time of spiking, ( )t til -  is a spike-triggered 
exponentially decaying response kernel 
shaping the refractory response due to the 
spike at ti with normalised height ( )0 1l = . 
Thus computed, the average of the sum 
of h kernels approximates the mean of the 
(rectified positive) signal ( )S t .

We model the dynamic threshold ( )tj  as 
multiplicative adaptation after [3]:

( ) ( ) ( ),t m t t tf
t

i i0
i

j j j c= + -/ (6)

where 0j  is the baseline threshold set 
to some (small) fixed value. A multiplica-
tive factor mf of fixed size regulates the 
threshold dynamics, where the ratio be-
tween 0j  and mf determines the asymp-
totic firing rate of the neuron for large 
activation values. The adaptation kernel 

( )tc  is computed as a sum of exponentials: 
( ) ( / )expt tnn n
c c x= - c/  with weights nc  
normalised to one such that ( )0 1c = . A 
few components are sufficient to mimic 
limited long-memory adaption as experi-
mentally reported in e.g. [21]; here we use 
either one or two components. Note that 
the internal state of the neuron is fully de-
termined by the two kernels ( )th  and ( )tc , 
and both of these kernels can be expressed 
as sum of exponentials: one for ( )tl  and 

namic range of the internal activation that 
a neuron can encode [3, 6]. Effectively, ac-
tivation values that are either too small or 
too large relative to the threshold cannot 
be encoded. We use the solution proposed 
in [3] based on fast adaptation: by dynam-
ically adjusting the threshold, the size of 
the refractory responses can be controlled 
and the dynamic range can be increased, 
drastically even when a multiplicative form 
of threshold adjustment is used. Such mul-
tiplicative adaptation effectively allows a 
neuron to assign a fixed ‘budget’ of spikes 
to a given dynamic range, also when that 
range changes drastically. Such a model of 
adaptation also explains various adaptive 
behaviour in real biological neurons [3, 5, 9].

We implement adaptive spike-time cod-
ing using multiplicative adaptation in an 
SRM [10]. A spiking neuron computes a 
smoothed internal activation value ( )S t  on 
the input current:

( ) ( )( ),S t I t)z=

where ( )tz  is the (exponential) smoothing 
filter with time constant smoothx  and ( )I t  is 
the input current that the neuron receives. 
This current ( )I t  can be injected directly 
into the spiking neuron (for inputs), or be 
the result of impinging (weighted) spikes 
causing post-synaptic currents (PSCs) 
(specified below). The spiking mechanism 
approximates the ReLU activation of S(t) 
with ( )S tt  using a sum of spike-triggered 
kernels ( )t tih - :

( ) ( ),S t t ti
ti

h= -t /
(4)

where a spike is added in an online and 
incremental fashion when the difference 
between the input signal and the signal 
approximation exceeds a positive dynamic 
threshold ( )tj  from below:

( ) ( ) ( ) ( ),u t S t S t t> j= - t (5)

where ( )u t  denotes the neuron’s membrane 
potential. Upon emitting a spike at ti, the 
spike-triggered refractory response ( )t tih -  
is subtracted from ( )S t  and added to ( )S tt . 
The part of ( )S t  larger than the minimal 
value of the threshold ( )tj  is thus encoded 
as ( )S tt  in a spike train ti. It is decoded at 
the postsynaptic target neuron where the 
resultant postsynaptic currents are add-
ed as weighed versions of the refractory 
response ( )th . The resultant postsynaptic 
current in target neuron j, ( )I tj  induced by 
presynaptic spikes ti from multiple presyn-
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Figure 9 (a) Firing rates (dashed lines, right axis, computed over a 1  s time window), output signal ( )S tt  with stan-
dard deviation (solid lines, left axis) of an ASN ReLU neuron for two firing rate regimes ( .0 10j = , mf 0j=  (yellow), 

.m 0 1f 0j=  (purple)). Colors are the same for firing rate and corresponding signal St. (b) Firing rate for 5 different values of 

. , . , . , . , .m 0 01 0 025 0 05 0 075 0 1f =  and .0 10j = . (c) Standard deviation (std) for 5 different values of mf. Colors correspond 
between (b) and (c).



Sander M. Bohté, Davide Zambrano Adapting spiking neural networks NAW 5/19 nr. 3 september 2018 181

ms100  and respective weights .0 11c =  and 
.0 012c = . Adding additional components 

increases the long-memory adaptation be-
haviour of the ASN, but two components 
suffice here as we are not considering 
time-varying signals. We use a time con-
stant of ms.2 5smoothx =  for the signal re-
constructing exponential smoothing filter 

( )tz  in all ASN units except for the out-
put neurons. In the output units activity 
was filtered with an exponential filter with 
a longer time constant of ms50routx = , to 
compare activations between outputs for 
classification purposes. The simulations 
are computed with time steps of size 1  ms. 

Adaptive spiking neural networks (ASNN)
We implement adaptive spiking neural net-
works where the units are comprised of 
the ASNs described above. Inherently, the 
ASNNs compute over time-continuous in-
put signals; most straightforward and stan-
dard applications of deep neural networks 
are concerned with classification tasks, 
such as determining the digit in an im-
age (Figure 12a). To compare classification 
performance between a standard ANN and 
an SNN, an image is presented for 500  ms 
to the network, and we record from the 
output neurons to determine the classifi-
cation. The image is thus taken as input to 
the network for every time step in the SNN, 
which may be as small as 1  ms (1000  Hz) 
(illustrated in the inset in Figure 12b). 

Since our ASNs communicate analog 
valued spikes rather than binary spikes, 
the question is how the classification prob-
lem thus phrased compares to a standard 
ANN which also communicates with analog 
values. For an image, an ANN can obvious-
ly compute the classification in one go, es-
sentially using just one ‘analog spike’. We 
argue that the correct comparison between 
SNNs, ASNNs and ANNs is to treat the clas-
sification problem as a time-continuous 
problem. While the stimulus is present the 
network has to compute classifications. 
For both SNNs and ASNNs this is inherent 
to the operation of the network, while an 
ANN would need to sample the input at a 
certain frame rate. This is illustrated in Fig-
ure 12b: the ANN computes the classifica-
tion for each frame for the entire network, 
and the computational complexity scales 
linearly with the frame rate (illustrated in 
the right part of Figure 12b). In contrast, 
the SNN and ASNN implement an asynchro-
nous model of ongoing neural computa-

lower value. Plotted also (orange line, right 
axis) is the time it takes before the signal 
approximation is below 0.05 after stepping 
down.

Implementation
In the examples and in our network imple-
mentations, we use time constants that are 
roughly of the order of the corresponding 
values in biological spiking neurons, such 
as time constants of PSCs, membrane time 
constant and refractory response kernels, 
to obtain firing rates for active neurons in 
the range of 1-100 Hz, compatible with 
what is observed in biology. We use a time 
constant of ms50x =l  for the exponential 
decay of the l kernel. The c kernel was 
approximated as either a single decaying 
exponential or the sum of two exponential-
ly decaying functions,

( ) ( / ),t e t1
1

c x= - c

or

( ) ( / ) ( / ) ,t e t e t2 1
1 2

1 2 1 2c c x c x= - + -
c c c c+ 7 A

with time constants ms15
1
x =c  and 

2
x =c

coding. The inverse relationship between 
saturating firing rate and coding precision 
is plotted in Figure 9b, c for five different 
values of /mf 0j . We observe that the stan-
dard deviation linearly increases with sig-
nal magnitude, and inversely relates to the 
saturating firing rate.

In Figure 10, we illustrate signal encod-
ing with the ASN with more or less spikes. 
In the top row we plot the encoding of 
a step function ( )S t  (red) with a sum of 
adaptive kernels, ( )S tt  (blue). The black 
dashes denote the spikes: the variance of 

( )S tt  decreases when more spikes are used. 
In the middle row, the membrane poten-
tial ( )u t  is plotted for both cases, and in 
the bottom row the dynamical threshold 

( )tj . As can be seen, a lower firing rate 
is achieved by a higher average threshold 
and correspondingly larger refractory re-
sets ( )th .

The time constant of the refractory re-
sponse ( )th  is determined by xl: the val-
ue of this constant determines how much 
‘future’ signal each spike transmits. To en-
code step functions as in Figure 10, a decay 
constant that better matches the temporal 
correlation in the approximated signal will 
yield a better approximation. For a step 
function, this effect is plotted in Figure 11. 
Shown is the sum squared error (SSE) ap-
proximating a 1 second segment of a step 
function with a fixed firing rate (35  Hz) for 
various values of xl. Increasing xl strongly 
reduces the SSE (blue line, left axis). The 
lower SSE however comes at the expense 
of responsiveness: when the step function 
steps back to 0, it takes longer before the 
approximation correctly matches the new, 
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XOR: the network, using about a 15  Hz av-
erage firing rate, computes XOR from the 
two inputs. The bottom panel shows per-
formance, and demonstrates that the net-
work is still capable of responding faster 
to changes in input ( ms25. ) than a corre-
spondingly synchronous sample rate.

Computational complexity
An examination of the computational cost 
and bandwidth requirements demonstrates 
the mixed ANN and SNN properties of the 
ASNN. In Table 1, these costs are specified. 
The ASNN shares the firing rate dependent 
network bandwidth cost with the SNN, but 
at an ANN-like cost per spike, and network 
delay is determined by the spike-decay 
time constant xl, (presumably) the same 
as in the SNN (not demonstrated in the 
literature). Since spike impact is computed 
as the product of spike height and con-
nection weight, the ASNN shares the ANN’s 
cost in terms of multiplications per spike/
update, and the neuron update cost of the 
ASNN scales as an SNN.

This analysis ignores the fact that spikes 
in the ASNN (and SNN) are heavily local-
ized to a subset of neurons: many neurons 
are silent while a few are active. Sparse 
and localised communication potentially 
offers a benefit to deep neural networks, 
as densely connected neural networks 
tend to be limited by the bandwidth re-
quired to read and write the appropriate 
weights from memory [24]. Thus reasoned, 
for an ASNN that incurs a 100  ms delay to 
compete in terms of bandwidth used with 
an ANN, it can use at most a firing rate 
of 10  Hz on average per neuron, since an 
ANN sampled with 10  Hz would achieve 
the same worst case delay. This ignores 
the benefit of the ASNN being able to pro-
cess in principle a 1000  Hz frame rate. The 
exact benefit of sparse activity depends 
on the degree of sparseness and the de-
gree to which parallel hardware can exploit 
sparseness.

neural updating and network updating 
decoupled, sensory inputs (and actuator 
outputs) can be sampled at the high neu-
ral update frequency. This avoids the well 
known problem of synchronized process-
ing [18]; the ASNN however cannot respond 
much faster to changing inputs than the 
xl time constant. This is illustrated in Fig-
ure 13 for the simple problem of streaming 

tion where the neurons are updated each 
small time step (1  ms), and communication 
between neurons is both localised (to ac-
tive neurons), and a function of desired 
neural coding precision rather than frame-
rate. Another benefit of the ASNN imple-
mentation is illustrated in Figure 12c: when 
no features are present in the frame, the 
spiking neural network does not generate 
spikes, or only very sparingly, whereas the 
ANN still computes the entire network ev-
ery frame. The downside of asynchronous 
neural computation is that there is an in-
herent latency between input presentation 
and output: in each layer, the ASN applies 
an averaging filter to the spike-triggered 
input currents it receives.

Asynchronous neural computation of-
fers benefits both for computing and 
for processing sensory motor data: with 
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Figure 13 Asynchronously computing XOR: (a) illustration with inputs arriving asynchronously (dotted green lines), and 
XOR computed synchronously with the top (fastest) input rate. Due to the synchronous nature of computing, additional 
errors are made, like the shaded areas in the bottom figure. Processing the input asynchronously at their respective sample 
rates, the right shaded area would be avoided. (b) Asynchronous processing of XOR in a 2-5-1 ASNN network capable of 
computing XOR with about 15  Hz average firing rate and neurons using ms25x =l . Novel input is processed at the update 
rate of the neurons (1  ms); the delay in classification when patterns switch is now determined by xl (shaded areas).

ANN SNN ASNN

Network bandwidth [ ]C P O Ha$ $+ C O Fs$ $ [ ]C P O Fp$ $+

Network delay /H1 a c L$? x +l c L$? x +l

Network multiplications C P Ha$ $ — C P Fp$ $

Neuron multiplications ( )ReH f LUa $ ( )ReU f LUs $ [ ( )]U f3 thresholdp +

Table 1 Computational Cost. C: number of connections, P: pulse precision, Ha : ANN update frequency, O: addressing 
overhead, Fs : SNN firing rate, Fp : ASNN average firing rate, L: network depth (layers), Us : update frequency of SNN, Up : 
update frequency of ASNN, c: a constant.

Figure 12 (a) deep convolutional neural network. (b) ANN versus ASNN classification. The ANN is computed 
for every frame, for the ASNN the neuron are updated at a fine resolution (inset), but network activity is asynchro-
nous and sparse. Right part of the sequence: increasing the frame-rate increases ANN computations and not ASNN. 
(c) Flanked noise classification. The ANN computes at a fixed frame rate, also for noise input that activates feature neurons 
only slightly. For the ASNN, the input neurons rarely cross threshold and the network firing rate is very low for noise; spikes 
are only emitted when frames with features are presented.
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networks, we find that performance is 
stable over a much greater range of firing 
rates. For each simulation we computed 
the time to which 101% of the minimum 
classification error is reached (Matching 
Time, MT), e.g., for MNIST-cnn this is when 
the performance exceeds 99.13%. Giv-
en parameters 0j  and mf, we considered 
the ASNN network as having performance 
identical to the corresponding ANN if, in 
the time window from MT to the end of 
the simulation (500  ms), the performance 
stays, on average, above the 101% error 
threshold. The variance is computed over 
the same time window, while the firing rate 
is computed in a time window of 100  ms 
at the end of the simulation. At low firing 
rates, the ANN performance is exceeded for 
some ranges by chance; the high neural 
coding precision for higher firing rates re-
sults in more stable performance, as can 
be seen in the low variance of the perfor-
mance on the right part of Figure 14.

For all four ASNNs, we noted both 
the required minimum firing rate (as set 
through the ratio of mf and 0j ) to reach 
the 101% error threshold, and the corre-
sponding simulation time when this per-
formance is first reached. We refer to these 
values as the Matching Firing Rate (FR) 
and the Matching Time (MT), and the re-
sults are shown in Table 2 in the column 
‘Lowest FR’. For MNIST, we find that the 
response time for the FF-ASNN is substan-
tially faster as compared to the C-ASNN. 
This is likely caused by the fact that the 
C-ASNN is a deeper network. Additionally, 
we determined the lowest Matching Time 
and corresponding Firing Rate (Table 2 in 
the column ‘Lowest MT’). We see that for 
the large MNIST networks, Matching Time 

Computing with spikes
For all three datasets and the correspond-
ing four network architectures, we comput-
ed the ANN performance and compared 
that to the ASNN performance. Figure 14 
shows classification performance obtained 
for IRIS, SONAR and MNIST by the various 
ASNNs as a function of average firing rate 
in the network (and hence neural coding 
precision) during classification, obtained 
by varying the ratio of mf and 0j . We find 
that for all benchmarks we achieve per-
formance with the ASNN identical to that 
of the corresponding ANN once a certain 
minimum firing rate is used, corresponding 
to the minimal required neural coding pre-
cision in the network. The networks that 
classify the IRIS and SONAR benchmarks 
require fairly high firing rates compared 
to the two MNIST architectures. Since the 
former architectures are comprised of far 
fewer neurons as compared to the MNIST 
networks, this suggests that in such small-
er networks the coding precision needs to 
be quite high.

The different firing rate regimes were 
obtained by varying the multiplicative fac-
tor mf as a function of 0j , between .0 1 0j  
and 3 0j , with .0 01280j =  for the IRIS data-
set, in 30 different simulations. The thresh-
old .0 01280j =  was selected such that 
the smallest positive input values in the 
training set were still encoded. For SONAR, 
we carried out simulations with mf ranging 
between .0 1 0j  and 3 0j , using e10

4j = - . 
For the MNIST dataset we simulated both 
an FF-ASNN and C-ASNN architecture. For 
the FF-ASNN we carried out 35 simulations 
with mf ranging between .0 1 0j  and .3 5 0j , 
using . e3 9 30j = - . For the MNIST net-
works, compared to the IRIS and SONAR 

Experimental networks
We demonstrate the ASNNs described 
above in fully connected feed-forward 
neural networks (FFNNs) and in a convo-
lutional neural network (CNN) [14]. These 
architectures were first trained on standard 
datasets — IRIS, SONAR, and MNIST — with 
standard ANNs comprised of rectified linear 
(ReLu) neurons. The corresponding spiking 
neural networks were created by using the 
same weights and network connectivity as 
the trained architectures, and replacing the 
ReLU neurons with ASN units — this ap-
proach allows us to focus on spike-based 
coding and for now side steps the ques-
tion of spike-based learning.

We selected well-known benchmark 
datasets of increasing complexity to 
demonstrate the robustness of the pre-
sented approach. The IRIS dataset is a 
classical non-linearly separable ‘toy’ data-
set containing three classes — three types 
of plants — with fifty instances each, to be 
classified from four input attributes. Simi-
larly, the SONAR dataset [12] contains 208 
entries of sonar signals divided in 60 ener-
gy measurements in a particular frequency 
band, to be classified in metal cylinder or 
simple rocks classes. Lastly, we use the 
MNIST dataset [14], which has been a stan-
dard testbed for novel image classification 
methods. It is composed of 60,000 entries 
of handwritten digits for the training set 
and 10,000 entries for the validation set. 

To carry out classification, for each in-
stance the input neurons receive input cur-
rent ( )I t  corresponding to the respective 
feature values, for a simulation duration of 
500  ms. During this period, input neurons 
generate spikes that are instantaneously 
transmitted to the next layer. There, the 
corresponding weighted PSCs are added 
to the membrane potential ( )u t  through 
the smoothing filter ( )tz ; note that the 
smoothing filter effectively causes a delay 
in signal transmission of order smoothx  per 
layer. This process is repeated for each suc-
cessive layer in the network. Output values 
as used for classification are computed as 
internal current ( )I t  in the output neurons, 
smoothed with longer time constant routx  
for stable performance. At every 1  ms time 
step t of the simulation, classification per-
formance is computed over all instances 
of the respective dataset from the outputs 
( )I t  at that time step t. Details for the archi-

tecture, training and parameters used are 
given in a box at the end of this article.
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Figure 14 Classification performance on IRIS, SONAR, MNIST (MNIST-nn for FF-ASNN and MNIST-cnn for C-ASNN) for 
various average firing rates. Dashed: performance of original ANN.
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due to xl. Switching time can be improved 
by decreasing xl, but at the expense of an 
increase in firing rate. 

Discussion and conclusion
We introduced deep neural networks and 
explained how they are presumed to re-
late to biology. Given some of the deficien-
cies of present deep neural networks, we 
focused on the question of efficient and 
asynchronous neural coding with spiking 
neurons. 

Spiking neuron models like the ASN pre-
sented here capture many important adap-
tation phenomena in real neurons, and by 
coupling the synaptic plasticity model, we 
ensure that downstream neurons appropri-
ately account for adaptation in presynap-
tic neurons. Thus, it is a prediction of this 
work that a tight coupling exists between 
neural adaptation and synaptic plasticity. 

At the same time, we demonstrated that 
the resulting neural network model can re-
place a standard ANN in a one-to-one man-
ner, without loss of performance, while us-
ing an asynchronous and sparse model of 
spike-based neural computation. As such, 
the presented ASNN can be considered as 
a novel paradigm for neural coding with 
spiking neurons, with an almost direct cor-
respondence to biological spiking neurons. 

In particular, we show that the pro-
posed ASNNs can carry out neural com-
putation with performance identical to 
the corresponding ANN for a number of 
classical benchmark datasets of increasing 
network size and complexity. Compared 
to an otherwise identical SNN that uses 
Poisson spiking neurons the presented ap-
proach has better or identical performance 
while using a much lower firing rate in 
the network. Additionally, due to the large 
dynamic range of the ASNs, no reweight-
ing or normalization of the network was 
necessary: the ASNs function as drop-in 
spiking neuron replacements for the ReLU 
neurons in the standard ANNs. Effectively, 
the ASN computes using adaptive asyn-
chronous sigma-delta pulse modulation, 
which is necessary because — unlike elec-
trical circuit signals — the signals inside a 
neural network with ReLU neurons are not 
bounded to some fixed dynamic range. 
Note that though we focus here on stan-
dard neural networks without recurrence or 
memory, we recently showed that a similar 
approach can be applied to networks with 
memory [20], to learn cognitive tasks, like 

each layer of the MNIST-cnn ( . e3 9 30j = - , 
m 3f 0j= ) for 1000 random stimulus switch-
es, as well as the average activation ( )S t  
in the output neurons and the classifica-
tion performance. White noise has been 
reproduced by presenting a (different) 
Gaussian-noise sampled image with 0n =  
and .0 5 0v j= , at each ms frame. We see 
that noise only stimulates the first layer, 
and fails to substantially activate subse-
quent layers. Once the first actual digit is 
presented, the network rapidly and correct-
ly recognizes this digit. After 200  ms the 
permuted images are presented: the clas-
sification performance for the new dataset 
reaches the 101% error threshold after a 
switching time of msST 186= . This switch 
from one digit to another is determined 
by — substantially longer — recovery time 

improves substantially at limited cost in 
terms of FR. In general, we find that the 
Matching Time increases with lower firing 
rates (not shown). 

Switching
We also computed the Matching Time to 
determine that time that input needs to be 
presented to the network before the out-
put classification reaches ANN performance 
(101% of the minimum classification error). 
A more general streaming setting however 
is one where one stimulus is presented, 
followed by another stimulus. We illustrate 
this case in Figure 15: first, white noise is 
presented to the network for 100  ms, fol-
lowed by the presentation of a digit, which 
after 100  ms is then switched to another 
digit. Shown is the average activation in 

Figure 15 Switching example with C-ASNN. Top: an example of the switching images provided to the network. Middle, 
rows 1-6: the firing rate of the network’s 5 layers plus the read-out layer. Middle, row 7: the average activity of the read-out 
layer, computed by filtering the internal state of the neurons. Note that, during the noise presentation, although a firing 
activity in the read-out layer is present, the internal state is silent  — a rapid increase in the average activity signals that 
a classification is made. Bottom: the classification performance through time showing the switch between two test sets 
of a 1000 digits each.

DataSet ANN ASNN Lowest FR Lowest MT

P(%) FR MT FR MT

IRIS 97.33 97.33 36 107 41.4 46

SONAR 88.46 88.46 59.7 80 77.1 71

MNIST-nn 98.84 98.84 14.6 15 17.3 12

MNIST-cnn 99.14 99.14 8.6 87 10 8.9

Table 2 Performance (%), Matching Firing Rate (FR) (Hz) and Matching Time (MT) (ms).
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We showed how we can relate spike-
based coding to the analog signals that 
standard artificial neural networks com-
pute with. Such a translation allows us 
to design sparsely active neural networks 
while using the existing frameworks (like 
Tensorflow and PyTorch) to train the an-
alog counterparts of these spiking net-
works. This is of course sufficient when 
the aim is to deploy a trained network on 
low-power hardware. To include learning, 
we have to develop spike-based learn-
ing algorithms. A straightforward solu-
tion there is to note that the error that 
is backpropagated in the error backprop-
agation learning rule could potential-
ly be carried by a separated network of 
spiking neurons. Peter O’Connor recently 
showed some work in that direction [17], 
but in general the problem with this ap-
proach is that the approximation error in 
the ‘spiking’ AD/DA conversion becomes 
too large when the neural networks be-
come very deep. To overcome this, dif-
ferent approaches to learning in deep 
networks may need to be found, where 
biology will again be a source of inspi-
ration as most are convinced that the 
brain does not use error-backpropagation 
but rather relies on smart and data-effi-
cient forms of learning that learn the nat-
ural structure of the world without being 
given explicit examples, as is needed for 
error-backpropagation.  s

like Intel’s Loihi chip are eminently suitable 
for exploiting the efficiency of spike based 
computation.

Our adapting neurons effectively use 
analog spikes: each spike is associated 
with a refractory kernel of different height. 
In principle, the analog value of a spike 
can be reconstructed at the postsynaptic 
neuron from just the time since the pre-
vious spike, but at considerable compu-
tational expense. Compared to standard 
(analog) ANNs, the ASNNs compute in an 
asynchronous and localized manner: input 
information can be presented to the net-
work at the precision with which neurons 
are updated, while the rate of information 
exchange in the network is determined by 
the neural coding precision required for 
classification. The network can thus pro-
cess for instance 1000  Hz input frames 
when neural updates are carried out with 
1  ms time steps: in this manner, new input 
can be processed almost immediately — 
albeit with the delay incurred in the con-
secutive layers. The neural activity is also 
localized, in that only a subset of neurons 
is really activated, emitting many spikes, 
and most neurons are silent or only very 
sparsely active. Since bandwidth, as used 
for reading weights from memory, is typi-
cally the limiting factor when computing an 
ANN, the sparse and localized neural com-
putation offers a potentially more efficient 
way of time-continuous neural computing. 

tasks that require remembering a value for 
a number of steps and then being able to 
act on this value.

Compared to classical ANNs, the com-
putations of the ASNNs are asynchronous, 
event driven and sparse. To truly exploit the 
efficiency of sparsely active asynchronous 
spiking neural networks, efficient GPU or 
ASIC implementations need to be created. 
Current CNN implementations are heavily 
optimized for carrying out convolutions on 
GPUs, an operation which closely fits the 
GPUs parallel architecture. For sparsely ac-
tive neural networks, where most neurons 
are not active at any given time step, novel 
approaches need to be developed: since 
typically for any stimulus only a subset of 
neurons is active, fast caching methods 
are likely to hold promise. As most net-
works of spiking neurons, the reduction 
in communication between the neurons is 
traded against more complex dynamics in 
the neuron; since there are typically orders 
of magnitude fewer neurons than connec-
tions, this trade-off can be worthwhile 
provided that the neuron model requires 
limited memory and computation. The ASN 
model presented here can be computed 
with only a few variables (principally the 
components of the c and h kernels), which 
when formulated as simple dynamical sys-
tems can be computed in a memory-less 
fashion, without tracking previous spike-
times. Emerging hardware architectures 

Feed-forward neural networks
We trained fully connected FFNNs using 
dropout [25] to approximately match per-
formance with state-of-the-art. We trained 
a four layer FFNN of size [4 - 30 - 30 - 3] 
on the classical IRIS dataset with a drop-
out rate of 0.5, learning rate of 0.1, for 
800 epochs. We used half of the dataset 
for training, and we obtained 97.33% on 
the validation set. For the SONAR data-
set, we trained a four layer FFNN of size 
[60 - 50 - 50 - 2], using the training set 
division reported in [12] for the angle-de-
pendent experiment. We used a dropout 
rate of 0.5, learning rate of 0.2, and we 
trained for 1000 epochs to obtain 88.46% 
accuracy on the validation set. For the 
MNIST dataset, we used the trained net-
work reported in [7] to directly compare 

with the method there. In [7], the authors 
trained a [784 - 1200 - 1200 - 10] net-
work, with a dropout rate of 0.5, learn-
ing rate of 1 and momentum of 0.5. With 
this network, we obtained 98.84% accu-
racy on the MNIST validation set (code 
and trained network were available on-
line [27] using a modified version of the 
Deep LearnToolbox [19, 28]. As in [7], for all 
datasets the input values were scaled to 
the range [0,1]. We refer to the FFNNs that 
use ASN ReLU units as feed-forward adap-
tive spiking neural networks (FF-ASNN).

Convolutional neural networks
CNNs have become a standard tool for 
image classification tasks [14], and they 
generally outperform classical FFNNs. In 
[7] a competitive ReLU CNN implementa-

tion for MNIST was presented: we apply 
the ASN network to this architecture and 
compare our results to those obtained in 
[7]. The pre-trained network consists of 
a [ ]c s c s o28 28 12 5 2 64 5 2 10# - - - - -  
CNN, where 28 28#  corresponds to the 
input image size, N, c, K are the N-con-
volutional kernels of size K, M, s, J are 
the M-averaging pooling filters of size 
J, and o is the size of the output layer; 
note that this network is available online 
[27]. Neurons in each of these layers use 
the ReLu activation function, and we can 
again map the ANN directly to our ASNN 
by substituting each ReLU unit with the 
adaptive spiking neuron. We refer to the 
CNNs equipped spiking neurons as con-
volutional adaptive spiking neural net-
works (C-ASNN).
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