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of meaning, leading-up to current vec-
tor-space models of sentence meaning, 
compatible with sophisticated techniques 
from the deep learning field.

Step 1: Montague semantics — or:
celebrating the sentence, ignoring the word
The American logician Richard Montague 
(1930–1971) is widely credited with provid-
ing the first successful attempt to formalize 
the semantics of a substantial ‘fragment’ 
of natural language. He developed what 
we now call Montague Semantics or Mon-
tague Grammar in a series of seminal pa-
pers [28, 29, 30].

Montague Semantics provided a sys-
tematic way to translate natural language 
to a logical language. For instance, when 
processing the sentence ‘Gottlob loves 
Yoshua’, the goal is to end up with the 
logical expression love(g)(y), where love 
is a binary predicate, describing a relation 
between the constants g (Gottlob) and y 
(Yoshua).

To achieve this translation, Montague 
proposed an ingenious system that com-
bined insights from various modeling tra-
ditions in linguistics and logic. From cate-
gorical grammar, he borrowed a system to 
assign syntactic categories to words. ‘Got-
tlob’ and ‘Yoshua’ are proper nouns, and 

B.C.). From the early 20th century, mod-
els based on formal logic became pop-
ular. Linguists like to point out that lan-
guage comes so natural to us that we are 
largely unaware of its complexity; logical 
models played a key role in uncovering 
and detailing the complexity of language 
structure.

Although logic-based models continue 
to be important in linguistics, in Natural 
Language Processing, the field that studies 
language technology on computers — they 
are in the last few years rapidly making 
way for so-called ‘vector-space models’. In 
those models, words are represented as 
numerical vectors, and sentence meanings 
are computed using a variety of operations 
from linear algebra.

In this article, we describe these devel-
opments, going over four major steps in 
the development of mathematical models 

Language, in written, spoken or signed 
form, is all around us. Most of our daily 
communication makes use of language, 
most of what we learn in school is con-
veyed through language, and most of the 
knowledge that humanity has built up is 
passed on to future generations through 
language. For allowing computers to take 
part in daily interactions with humans and 
to make use of the accumulated knowl-
edge of humanity, we need mathematical 
models of language — models that allow 
computers to translate the noisy spoken, 
written or signed forms into internal rep-
resentations with which they can compute.

The design of mathematical models 
for many different aspects of language 
and speech has a long history going back 
to at least the Indian grammarian Pani-
ni (6th, 5th or 4th century B.C.) and the 
Greek philosopher Aristotle (4th century 

Vector-space models of 
words and sentences

How can we compute with words? Natural Language Processing is a research field focused 
on developing mathematical and computational models of language. For decades, models in 
this field were using techniques from discrete mathematics, but in recent years — with the 
rise of ‘deep learning’ — words and sentences are increasingly modelled with continuously 
valued numerical vectors. Can these models deal with the endless creativity of language, 
where ten thousands of words can be combined into an unbounded number of potential 
sentences? Michael Repplinger, Lisa Beinborn, Willem Zuidema discuss the four steps the 
field has gone through to arrive at the current state-of-the-art vector-space models of 
sentences.
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the language which can then be semanti-
cally analyzed in completion. The latter is 
however a requirement for computational 
models of symbolic semantics [31]. Conse-
quently, the use of these theories for prac-
tical computational applications is limited 
as well.

Step 2: Distributional semantics — or: 
counting words
More recently, the field of distributional 
semantics emerged, which takes a com-
pletely different approach to modeling 
meaning, focusing on statistical techniques 
and large-scale modeling of word meaning. 
Central to distributional semantics is the 
distributional hypothesis, often expressed 
as: “You shall know a word by the compa-
ny it keeps’’ [8]. To turn Firth’s slogan into 
a formal system, we use numerical vectors 
as representations and fill them with num-
bers based on counts of how often pairs 
of words occur near to each other in large 
databases of text. 

Table 1 shows an idealized co-occur-
rence count, corresponding to a semantic 
space for the three nouns ‘mouse’, ‘ele-
phant’ and ‘car’. Values in this table indi-
cate how often a target word, i.e. the word 
we aim to represent as a vector, appeared 
near certain other words in a corpus. For 
example, ‘mouse’ and ‘animal’ co-occurred 
eight times, while ‘car’ and ‘animal’ co-oc-
curred only once. Based on these hypo-
thetical counts, we can represent these 
nouns as vectors in a four-dimensional se-
mantic space, where the vectors consist of 
raw co-occurrence counts. In practical sys-
tems, dimensionality is usually in the order 
of hundreds or thousands, and raw counts 
are usually transformed into (weighted) 
frequency values.

The great advantage of vector represen-
tation for the meaning of words, is that 
we can now use standard mathematical 
tools that apply to numerical vectors to 
compute similarity between words. One 
frequently used similarity metric is cosine. 
Using cosine similarity on pairs of these 
word vectors, we can calculate their se-

Strengths and weaknesses
One of the lasting impacts of Montague 
Semantics has been that it has highlighted 
an important feature of human language, 
known as the principle of compositional-
ity (already hinted at in the work of Gott-
lob Frege [9] ). This principle is commonly 
phrased along the lines of: “The meaning 
of a complex expression is determined by 
the meanings of its constituents and the 
rules used to combine them.”

Closely related to compositionality is 
the notion of recursion. Recursively defined 
processes are widely believed to underly 
the capacity of speakers of a language to 
build and understand arbitrary expressions 
of the language. By recursive syntactic pro-
cessing, speakers can, in principle, build 
an infinite set of complex expressions from 
a finite set of simple ‘building blocks’. 
By a parallel recursive semantic process, 
speakers are then able to express and un-
derstand a potential infinitude of distinct 
meanings.

Formal semantics in the symbolic tra-
dition excels at modeling compositionality 
and recursion — deriving algorithmically the 
meaning of a sentence from its smaller 
constituents. This focus on the structural 
aspects of language comes at a price, how-
ever, and the lexical foundation, i.e. the 
meaning of words, has received much less 
attention.

Another point concerns the limited in-
tegration of individual semantic theories. 
Montague’s original proposal was a ‘meth-
od of fragments’ — identifying a well-delin-
eated syntactic fragment of the language, 
then formally describing this fragment. 
However, modern semantic theories gener-
ally no longer follow this approach, opting 
instead for descriptions of individual se-
mantic phenomena without confining them 
to some syntactic fragment. Consequently, 
there is no syntactically defined subset of 

receive the atomic category PN. ‘loves’ is 
a so-called transitive verb, that needs an 
argument on its left (the person that loves) 
and an argument on its right (the person 
that is loved). It therefore receives a ‘com-
plex category’ that contains slashes that 
indicate what it can be combined with on 
the left and the right; in the case of love, 
the category is (S\PN)/PN. According to 
the rules of categorical grammar, loves can 
then first be combined with Yoshua, and 
again be combined with Gottlob. This pro-
cess yields a syntactic analysis depicted in 
Figure 1 (left).

From logic, Montague borrowed inten-
sional logic, a higher-order typed logic (our 
examples will only use first-order predicate 
logic). Crucially, however, Montague pro-
posed that the semantic, logical repre-
sentation is derived simultaneously with 
the grammatical derivation. To achieve 
this, he enriched the logical expressions 
with elements from the lambda calculus. 
Gottlob and Yoshua again get assigned 
an atomic symbol, g and y respectively. 
The meaning of ‘loves’ is represented as 

[ ( )( )]loveq p p qm m . According to the rules 
of the lambda calculus, the semantics of 
the first argument that loves get combined 
with y, ends up in the place of the variable 
marked with the first m in the expression 
q. This semantic derivation is depicted in 
Figure 1 (right).

On this basis, Montague and others 
have built an enormous body of work to 
analyze the semantics of natural language 
sentences. This work has addressed for in-
stance the subtle ways in which ‘some’ and 
‘any’ differ in sentences like ‘some math-
ematicians proved a theorem’ or ‘there 
wasn’t any mathematician that proved a 
theorem’. Interested readers will find [10] 
or [15] to be thorough introductions to 
complete semantic systems in the spirit of 
Montague’s proposal.

animal large small USB

mouse 8 2 4 3

elephant 9 5 1 0

car 1 4 3 0

Table 1 Idealized context-counts for ‘mouse’, ‘elephant’ 
and ‘car’.

S

S\PN

PN

Yoshua

(S\PN)/PN

loves

PN

Gottlob

⇐⇒

�love(g)(y)� ∈ Dt = {0, 1}

�λqλp[love(p)(q)]�(�yoshua�)
= �λp[love(p)(y)]�

�yoshua� = y ∈ De

Yoshua

�λqλp[love(p)(q)]�

loves

�gottlob� = g ∈ De

Gottlob

Figure 1 Translation to logical language.
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by analyzing the counts of context items, 
given some target word. Recently, a new 
class of models has emerged based on 
neural networks. These models are trained 
to either predict the most likely word given 
some context, or, in reverse direction, the 
most likely context for a given word. The 
word vectors that emerge as a side-effect 
of this prediction task, have turned out to 
be of much higher quality than the word 
vector from classical distributional seman-
tics. 

The origins of neural word embeddings 
can be traced back to the proposals of Hin-
ton [16] and Bengio et al. [4], who used 
neural architectures in the derivation of 
word meanings. The currently most suc-
cessful embedding algorithms were pro-
posed by Mikolov et al. [23] and Mikolov 
et al. [22], accompanied by an efficient 
implementation dubbed word2vec.These 
modern neural word embeddings can be 
seen as feedforward neural networks (see 
box ‘Feedforward neural networks’) without 
hidden layers and nonlinear activation func-
tions — the latter were identified as compu-
tational bottlenecks of the original models.

word2vec embeddings are based on 
two closely related algorithms. The first 
model, Continuous Bag-of-Words (CBOW), 
learns to predict a word, given a context 
of surrounding words. A ‘projection layer’ 

Models derive semantic information 
from the analysis of lexical co-occurrence, 
i.e. they are based on context counting. 
These counts are usually processed further 
by weighting schemes. Intuitively, these 
processing steps can be seen as adjusting 
the raw counts for word frequency, giving 
more weight to words that are rare but 
informative. One frequently used method 
used for this purpose is pointwise mutual 
information.

Another frequently employed process-
ing step is to perform dimensionality re-
duction on the derived representations, 
for example by non-negative matrix fac-
torization (NMF) or singular value decom-
position (SVD) [3]. The dimensionality 
reduction step is motivated by two main 
concerns: computational efficiency, and 
possibly greater generalization capacity of 
the model [20]. The latter effect can result 
from merging (similar) contexts, i.e. associ-
ating a word with contexts of similar words 
even though it might have never appeared 
directly in these contexts itself, thus allow-
ing the model to uncover additional simi-
larities.

Step 3: Neural word embeddings — or: 
Learning to predict words
The classical distributional models de-
scribed so far learn the meaning of words 

mantic similarity: 0.86 (mouse, elephant), 
0.57 (mouse, car), 0.61 (elephant, car). This 
would then represent, as intended, that 
‘mouse’ and ‘elephant’ are more similar to 
each other than either of the two is to ‘car’ 
(animals versus non-animal), and that ‘car’ 
is (slightly) more similar to ‘elephant’ than 
to ‘mouse’ (being somewhat more similar 
in size). Note also the co-occurrence of 
‘mouse’ with a seemingly unrelated word, 
‘USB’, intended to illustrate the problem of 
polysemy. In most models, the vector rep-
resentation of ‘mouse’ would be a ‘mix’ of 
contexts where ‘mouse’ refers to a rodent 
and contexts where the word refers to a 
computer component.

Modeling choices
Various modeling choices need to be made 
in the specification of a semantic vector 
space model. First, one must define what 
constitutes context, i.e. what we consider 
‘near to each other’. Commonly, this con-
text is defined as ‘the N neighboring words 
of the target word’, where N is the context 
window, another parameter. Other choices 
are possible however. For example, context 
can be defined on a sub-word level, e.g. 
based on single characters. The choice of 
a similarity metric (Euclidean, correlation, 
cosine) also influences what it means for 
different words to be similar in meaning.

Figure 2 word2vec embedding of great and neighboring embeddings (1st/2nd/3rd principal component of 200 dimensional vector embeddings plotted).
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Another obstacle for models that rely 
entirely on contextual learning is sparsi-
ty of data. Individual words occur abun-
dantly across different contexts, but the 
frequency of combinations of words de-
clines exponentially with the length of the 
sequence. Phrases, and short sentences 
are still encountered frequently enough to 
allow learning through contextual analysis 
alone. Long sentences on the other hand 
appear only infrequently, or are unique in 
the worst case, even in large data sets. 
Context-based learning however general-
ly requires training on a large number of 
instances of an expression, thus making 
sentence length a limiting factor for con-
text-only models.

Step 4: Compositional distributional 
semantics — or: having your cake and eat it
Speakers of a language are able to gen-
eralize from previously encountered ex-
pressions to expressions that a speaker 
never heard before. They achieve this by 
analyzing previously heard utterances as 
being built up from component parts, and 
by reusing these parts in all kinds of new 
combinations.

The symbolic models of language in 
the tradition of Montague emphasized the 
compositional semantics of sentences, but 
largely ignored how the meaning of words 
can be modelled and moreover relied on 
hand-built grammars specifying the syn-
tactic and semantic properties of words. 
The distributional semantics tradition 
successfully developed vector represen-
tations for words. The recent neural word 
embedding models built on those success-
es, and moreover showed that automati-
cally learned word representations encode 
many linguistically relevant relations be-
tween words. But distributional and neural 
word vectors have little to say about how 
sentence meanings can be constructed.

In the last few years, much research 
is devoted to bringing together insights 
about compositionality from the symbolic 
tradition, and insights from vector-space 
models of word meaning from the distribu-
tional and neural traditions: compositional 
distributional semantics.

Investigating different types of composition
Two landmark articles from this field of re-
search are Mitchell and Lapata [25, 26]. The 
authors systematically evaluate different 
types of composition functions that can be 

Arora et al. [1] provide theoretical sup-
port in favor of these claims, by showing 
that embedding algorithms like word2vec 
actively impose linear structure on the lan-
guage data. The authors argue that this 
linearization effect stems from the lower- 
dimensional model internal representa-
tions, and because embedding models are 
effectively nonlinear data processors even 
though they do not contain the non-linear 
activation function of a full-power neural 
network.

Limitations of context-based approaches
Objections against embedding models 
have frequently been raised, noting that 
such models operate at a low level of the 
language (words or characters). Further 
criticism stems from the fact that models of 
this approach learn meaning by a compara-
bly ‘shallow’ context analysis, without ex-
plicitly accounting for syntactic or seman-
tic compositionality. Such broad criticism 
appears to be unwarranted: the exam-
ples shown above, of relational structure 
emerging in embedding models, strongly 
suggest that distributional models cannot 
be simply dismissed as ‘linguistically insuf-
ficient’. Even though their architecture does 
not explicitly account for compositionality, 
the models succeed in extracting high-
ly structured information from language 
data, through a combination of sophisti-
cated statistical machinery, and due to 
their ability to process enormous amounts 
of data.

At the same time, some language phe-
nomena pose major challenges for the 
class of purely context-based models. One 
example is the meaning derivation of logi-
cal operators, such as negation. In order to 
learn (sentential) negation from the context 
analysis alone, the intended meaning of 
negation would have to be fully expressed 
in the context distributions of sentences 
and their negation. It seems obvious how-
ever that human speakers can express (and 
understand) the negation of a sentence 
without knowledge of any ‘neighboring’ 
sentences. Confirming this intuition, Mo-
hammad et al. show that highly contrasting 
items (including aspectual negation) tend 
to occur in very similar contexts. Models 
that purely learn from context, without the 
ability to deconstruct it if necessary, are 
then missing the relevant statistical infor-
mation that would allow them to derive the 
correct meaning of negation.

turns discretely encoded (sparse) word 
representations into continuous (dense) 
representations, which are then fed into a 
matrix — shared for all context words re-
gardless of their position, hence the name 
‘bag-of-words’ — for an output prediction 
of the most likely middle word for a giv-
en context. The second type of models is 
trained to predict in the opposite direc-
tion; given a word, the goal is to maxi-
mize the log probability of its surround-
ing context, i.e. models learn to predict 
the context, given an individual word. 
The context words do not need to appear 
consecutively in the corpus, i.e. individual 
words can be skipped when determining 
the context — referred to by the algorithm’s 
name, Skip-Gram.

Linguistic regularities inside embeddings
Neural embeddings gained widespread at-
tention for their representation of complex 
syntactic and semantic relational informa-
tion. Very influential was the demonstra-
tion by Mikolov et al. [24] that a relation- 
specific, constant vector offset exists be-
tween the vector representations of related 
word pairs. Mikolov reported, for instance, 
that when you substract the vector for 
‘man’ from the vector for ‘king’ and then 
add the vector for ‘woman’, you end up 
very near to the vector for ‘queen’:

.v v v vking man woman queen.- +

More generally, given a constant offset, the 
embedding space can be queried for an 
answer to analogy questions of the form: 
“word 1 is to word 2 as word 3 is to word 
4’’. In this query, words 1, 2, 3 are given, 
while word 4 must be found in order to 
answer the question. Expressed as vector 
space operations, using cosine similarity to 
measure semantic similarity, the analogy 
query is defined as:

( ( , )) .argmax cos v v v vv 4 3 1 24
- + (1)

Some of the other results produced by 
these analogy queries are:

,

.

v v v v

v v v v
Paris France Italy Rome

apple apples car cars

.

.

- +

- -

These results have been interpreted as 
evidence that embeddings contain struc-
ture encoding a gender relation or fea-
ture, can relate countries and their capi-
tals, and can learn a systematic syntactic 
relation between singular and plural word 
forms.
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latter. The authors describe this form of 
composition as feature filtering, in contrast 
to the feature blending that results from 
additive composition.

Mitchell and Lapata [25] evaluate the dif-
ferent model classes on a set of semantic 
similarity tasks, and arrive at somewhat in-
conclusive results. While the multiplicative 
models perform well (as predicted by the 
authors), only the simplest multiplicative 
model based on point-wise multiplication 
performs well across different tasks. Mod-
els using the tensor product, predicted to 
be more powerful than other simpler mod-
els, perform worse than most other mod-
els. Finally, the additive models perform 
comparably well across tasks, despite the 
theoretical objections raised against them.

The experimental findings of Mitchell 
and Lapata [25] are somewhat outdated, 
due to advances of models in recent years. 
Their proposed classification, however, had 
a lasting influence, and is still frequently 
invoked to classify and relate model archi-
tectures.

Modern approaches
Current research on compositional distribu-
tional semantics exists in two flavors. One 
class of models, which we collectively refer 
to as type-based tensor approaches, com-
bines a powerful compositional mechanism 
with a robust distributional foundation of 
word meaning — at the cost of very high 
computational complexity. The approach 
results from the independent work of two 
research groups, presented by Baroni and 
Zamparelli [2] and Coecke et al. [5] approx-
imately in parallel. Informally, these ap-
proaches can be seen as a ‘translation’ of 

tained in the ‘brown’ vector (e.g. aspects 
related to brown dogs). It is easy to see 
that this effect runs counter to the intend-
ed meaning of the phrase, as an intersec-
tion of the two concepts.

Multiplicative and tensor-based composi-
tion. Multiplication of components is sug-
gested as a solution to the blending prob-
lem above, leading to a general form of 
multiplicative models:

z xyV=

where V is a 3rd-order tensor mapping 
the two constituent vectors x, y to output 
vector z. Composition is consequently a 
bilinear function of the constituents. A sim-
ple instance of this class is composition by 
element-wise product:

.z x y9=

The most powerful class of multiplicative 
models is given by composition with the 
tensor product:

.z x y7=

Mitchell and Lapata argue that multipli-
cation of components as defined here is a 
solution to the previous blending problem: 
Additive composition does not relate the 
input components directly, adding them 
independently (at best, scaled by some 
constant factor) to form the output. Given 
component multiplication however, values 
interact directly through their products. For 
example, if a component with some high 
numerical value ‘interacts’ by multiplica-
tion with another component that has the 
value 0, the meaning contribution of the 
former is limited by its interaction with the 

used in vector space models to compose 
sentence meaning from the meaning of 
smaller units, such as words.

Additive composition. The class of models 
based on additive composition is defined 
as:

z Vx Wy= +

where V, W are matrices, and composition 
is given by matrix multiplication. The very 
simplest instance of this class is given by 
vector addition:

.z x y= +

Mitchell and Lapata point out the clear lim-
itations of this approach, such as insensi-
tivity to word order due to commutativity 
of vector addition. For example, recursive 
application of vector addition would derive 
identical meanings for the phrases ‘man 
bites dog’ and ‘dog bites man’.

Adding scalar weights for each vector 
results in the weighted additive model:

.z x ya b= +

Here, left and right input vectors are scaled 
(uniformly, for each vector) by parameters 
a, b which are optimized on a develop-
ment set.

Employing scalar weights or full ma-
trices fixes the commutativity problem of 
simple vector addition, but another prob-
lem remains: the blending of meaning in 
additive models. Even the most complex 
(matrix-based) additive models compose 
vectors through (weighted) sums of their 
components. Additive composition ef-
fectively ‘blends’ or ‘mixes’ the meaning 
aspects of the composed word vectors, 
which can lead to undesirable results.

Consider for example the phrase ‘brown 
cow’, the result of composing vectors for 
‘brown’ and ‘cow’. Its intended meaning is 
a particular type of cow, one that is brown. 
Ideally, composition would yield a vector 
that represents the intersection of ‘things 
that are brown’ and ‘things that are cows’. 
Recall now that word vectors gather their 
meaning from co-occurrence counts, and 
that the ‘brown’ vector contains meaning 
elements related to any brown objects 
encountered in the data: (brown) cows, 
(brown) dogs, (brown) houses, and so on. 
Since additive composition is incapable of 
context-dependent selection of only the 
relevant meaning aspects, the composed 
vector for ‘brown cow’ is bound to include 
various unrelated meaning aspects con-

S

S\N

N

cats

(S\N)/N

chase

N

dogs

⇐⇒

W(chase cats) ◦ vdogs
= v(dogs chase cats) ∈ RS

Vchase ◦ vcats
= W(chase cats) ∈ RS×N

vcats ∈ RN

cats

Vchase ∈ RS×N×N

chase

vdogs ∈ RN

dogs

Figure 3 Sentence derivation in type-based tensor models.
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as continuously-valued numerical vectors, 
sentences as summations, mutiplications 
or more complicated combinations of these 
word vectors. And, importantly, these word 
and sentence vectors are computed using 
neural networks, optimized using stochas-
tic gradient decent and other tools from the 
increasingly rich toolbox of ‘deep learning’.

As always when scientific fields go 
through a paradigm shift, much of the ex-
cellent work done in the old paradigm is 
ignored or discarded. Fortunately, however, 
researchers in the domain of compositional 
distributional semantics are finding ways 
to integrate the main insights from the 
symbolic and neural traditions. s
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tectures that have been used to compute 
sentence representations in recent years.

Conclusions
Compared to mathematics, human lan-
guage is a hopelessly messy, ambiguous, 
and redundant system. Yet, language is 
the carrier of a vast amount of knowledge, 
and for both scientific and technological 
reasons there is a need of adequate math-
ematical models of language.

In developing such models, linguists 
have looked at many different branches of 
mathematics. Until a few years ago, most 
useful tools where found in discrete math-
ematics: logics to describe the meaning of 
utterances, grammars of various sorts to 
describe the structure of sentences, lamb-
da calculus to regulate to combinations of 
bits of meaning into larger wholes. In re-
cent years, the field of Natural Language 
Processing is turning to continuous math-
ematics. Suddenly, words are modelled 

the symbolic semantic theories in the Mon-
tague tradition into a vector space setting, 
through the use of higher-order tensors, as 
illustrated in Figure 3.

The other class of models consists of 
neural network architectures that — implic-
itly or explicitly — account for the demands 
of semantic compositionality. After a peri-
od of receiving only little attention, neu-
ral network models re-emerged in recent 
years as powerful, robust models, shown 
to be capable of solving a plethora of 
tasks across domains. The new generation 
of neural models produced outstanding re-
sults in the field of computer vision, as well 
as on language processing tasks such as 
machine translation, sentiment analysis or 
information retrieval. Many of these models 
are presented under the umbrella term of 
deep learning, originally meant to describe 
neural network models that contain a high 
number of hidden layers. In the appendix, 
we go over the main deep learning archi-

Feedforward neural networks
A simple feedforward neural network with 
two hidden layers, ( )x2nn{ , can be com-
pactly represented in vectorized notation 
as follows:

( ) ,

( ),

( ),

.

x z

h f W x b

h f W h b

z W h

2

1 1 1

2 2 1 2

3 2

nn{ =

= +

= +

=

(2)

Vector z is the network output, for an in-
put of vector x. Matrices W1, W2 and 
(bias) vectors b1, b2 are the trainable 
parameters of the network, together 
computing a linear transformation of the 
input x. Using a non-linear (activation) 
function in place of f, the network will 
however learn complex functions that 
go well beyond simple linear transfor-
mations. Theoretical results by Cybenko 
[6] and Hornik et al. [8] established that 
neural networks are in principle able to 
approximate any function of practical in-
terest to an arbitrary degree of precision, 
given a sufficiently high number of ad-
justable model parameters. Figure 4 is an 
equivalent representation of the network 
( )x2nn{ , in the traditional form of con-

nected neurons computing a weighted 
sum of their input.

Simple feedforward networks are how-
ever ill-equipped to process sequences of 
arbitrary length, which is a basic require-
ment for the semantic modeling of sen-
tences. Any sentence of a given length 
can be processed by a feedforward neural 
network with appropriate input layer di-
mensions. However, since the input lay-
er dimension is fixed, the same model 
instance cannot be applied to sentences 
of any other length, preventing models 
from shared learning across sentences of 
different lengths. In order to process se-
quences of arbitrary length, such as sen-
tences, the model should allow for the 
recursive processing of input sequences.

Recurrent neural networks
A simple, but powerful architecture sat-
isfying the requirement of recursive in-
put processing is the recurrent neural 
network (RNN), originally proposed in 
Elman [7].

The function learned by an RNN model 
is defined as a recursion over an input 
sequence of vectors , ,x xn1 f . This se-
quence of input vectors can be chosen 
quite generally, for example, as vectors 
representing the words of a sentence, or, 
breaking input down further, as the char-
acters of a sentence.

At input step xi of input sequence x, 
the output zi of an RNN is given by:

b1

x1

x2

x3

f(·)

f(·)

f(·)

b2

h1
1

h1
2

h1
3

f(·)

f(·)

f(·)

f(·)

h2
1

h2
2

h2
3

h2
4

z1

z2

Figure 4 Simple feedforward neural network with two hidden layers.
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( )z f W z W x bi
hh

i
hx

i
h

1= + +- (3)

where z Ri
H! , and H is the dimension of 

the hidden layer, x Ri
X! , W Rhh H H! #  

is the matrix of hidden-to-hidden con-
nections, W Rhx H X! #  the matrix of in-
put-to-hidden connections, b Rh H!  is a 
bias vector, and f an element-wise non-
linear function, called the nonlinearity of 
a layer. Frequent choices for this nonlin-
earity are the sigmoid function, tanh, or 
a rectified linear unit (ReLU).

For finite input sequences, the general 
recursive definition can be replaced by an 
unfolded version of the model instance. 
Given an input sequence of length n, the 
network can be seen as a chain of n 1+  
hidden layers or states, where each state 
has two outgoing connections (one to the 
next hidden layer, one being the output 
at the current step), and two incoming 
connections (one being the output of the 
previous hidden layer, one for the input 
at the current step). The i-th state of this 
chain is the model representation of the 
input sequence up to and including input 
element i, given by summing the linear 
combination of the i-th input vector, the 
linear combination of the ( )i 1- -th state 
or output, and the bias vector, then ap-
plying the element-wise nonlinearity f to 
the resulting vector.

Using simple RNN models, the work 
of Mikolov [21] constitutes an early, in-
fluential exploration of RNNs applied 
to language tasks. In general, however, 
most notable results produced by RNN 
architectures in recent years were in fact 
extensions of the architecture, often pro-
duced by the highly successful class of 
LSTM models, discussed later on. 

Recursive neural networks
A structural extension of the basic RNN 
architecture is the recursive neural net-
work, or tree-shaped recurrent neural 
network (tRNN). The current tRNN ar-
chitecture was introduced by Socher et 
al. [33] and was based on earlier pro-
posals of Pollack [32] and Goller and 
Küchler [12]. The tRNN can be seen as 
a generalization of RNNs in terms of in-
put structure, in the following sense: 
While the input sequence of a simple 
RNN is unstructured, and composition 
invariably proceeds in one direction, the 

tRNN architecture allows for the compo-
sitional process to be structured by syn-
tactic analysis of the input. In practice, 
this syntactic analysis is usually provided 
externally, by providing the model with 
a parse tree for a given input sentence.

The decision to provide the neural 
network with a parse tree of the input 
is motivated by linguistic considerations, 
attempting to include some of the struc-
tural information that lends power to the 
symbolic models of formal semantics. 
While the tRNN class of models initial-
ly proved to be successful, the field has 
largely moved on to models that do not 
require external information (such as 
parse trees), allowing for much larger 
data sets to be used in training.

Neural networks with long-term memory
A major challenge when training deep 
neural networks — networks consisting of 
many stacked hidden layers — is the van-
ishing gradient problem. The cause for 
this problem relates to the training algo-
rithm of networks, which passes informa-
tion (gradients) down the network as a 
chain of products. Since individual terms 
of this chain are often small, their prod-
uct tends to decrease with the length of 
the chain, to the point of vanishing. As 
a result, lower layers of a deep network 
only receive a greatly diminished learning 
signal, thus negatively affecting learning 
success.

LSTM networks
The seminal work of Hochreiter and 
Schmidhuber [17] presented a solution 
to the problem, by introducing the long 
short-term memory architecture (LSTM). 
We only describe the general idea behind 
the approach here, and refer the reader 
to Graves [13] for a technical explanation 
of the mechanisms.

The LSTM architecture, based on the 
(simple) RNN model of (3), adds mem-
ory cells and (control) gates, allowing 
a higher degree of retainment of gradi-
ent information across network layers. 
Memory cells are vectors retaining past 
gradient information, where access to 
these cells is controlled by three types of 
gates (input, output, and forget gates). 
Intuitively, these gates can be seen as 
vector space versions of logic gates, 

interacting with the components of the 
memory cells by pointwise multiplication 
with values near 0 or 1, i.e. soft boolean 
values. During training, stored gradient 
information and the gates interact to 
preserve old and select new gradient in-
formation that will be passed downwards 
in the network. This mechanism leads to 
major improvements in training effective-
ness of deep networks, and most major 
results in recent years by models of the 
RNN class were produced by LSTMs, or 
further model extensions of the RNN ar-
chitecture, with added LSTM gates.

RNN models using LSTM gates gener-
ated major results on several language 
tasks. In an early study of LSTMs and lan-
guage processing, Gers and Schmidhuber 
[11] showed that their model can learn 
simple context-free and context-sensitive 
languages, e.g. strings of the form an bn 
and a b cn n n, respectively. In Graves [14], 
LSTM models are used to generate novel 
sentences after being trained on Wikipe-
dia data, and learn to produce sentences 
in realistic script (i.e. the model learned 
handwriting).

Tree-structure information for free?
As mentioned above, recursive neural 
networks, i.e. tree-shaped RNNs, make 
use of explicit syntactic information to 
guide the processing of sentences. LSTM 
models have been suggested as effec-
tively replacing the need for such explicit 
syntactic information, due to their ability 
to store (training) information across the 
processing of long input sequences like 
sentences. While syntactic information 
is given to the tree-structured networks 
explicitly, LSTM models possibly can rely 
on implicit syntactic information through 
their storage mechanism. Whether syn-
tactically guided processing is a useful 
or necessary feature of distributional 
models is not conclusively answered 
yet. It should be noted however that the 
two architectures can be combined, i.e. 
tree-structured networks can be enriched 
by adding a memory mechanism. See, for 
example, the proposals of Le and Zuide-
ma [19] and Tai et al. [34], extending tRNN 
architectures with LSTM gates to improve 
training efficiency of deep networks, and 
help with modeling long distance depen-
dencies.
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