
Michael Repplinger, Lisa Beinborn, Willem Zuidema Vector-space models of words and sentences NAW 5/19 nr. 3 september 2018 167

of meaning, leading-up to current vec-
tor-space models of sentence meaning,
compatible with sophisticated techniques
from the deep learning field.

Step 1: Montague semantics — or:
celebrating the sentence, ignoring the word
The American logician Richard Montague
(1930–1971) is widely credited with provid-
ing the first successful attempt to formalize
the semantics of a substantial ‘fragment’
of natural language. He developed what
we now call Montague Semantics or Mon-
tague Grammar in a series of seminal pa-
pers [28, 29, 30].

Montague Semantics provided a sys-
tematic way to translate natural language
to a logical language. For instance, when
processing the sentence ‘Gottlob loves
Yoshua’, the goal is to end up with the
logical expression love(g)(y), where love
is a binary predicate, describing a relation
between the constants g (Gottlob) and y
(Yoshua).

To achieve this translation, Montague
proposed an ingenious system that com-
bined insights from various modeling tra-
ditions in linguistics and logic. From cate-
gorical grammar, he borrowed a system to
assign syntactic categories to words. ‘Got-
tlob’ and ‘Yoshua’ are proper nouns, and

B.C.). From the early 20th century, mod-
els based on formal logic became pop-
ular. Linguists like to point out that lan-
guage comes so natural to us that we are
largely unaware of its complexity; logical
models played a key role in uncovering
and detailing the complexity of language
structure.

Although logic-based models continue
to be important in linguistics, in Natural
Language Processing, the field that studies
language technology on computers — they
are in the last few years rapidly making
way for so-called ‘vector-space models’. In
those models, words are represented as
numerical vectors, and sentence meanings
are computed using a variety of operations
from linear algebra.

In this article, we describe these devel-
opments, going over four major steps in
the development of mathematical models

Language, in written, spoken or signed
form, is all around us. Most of our daily
communication makes use of language,
most of what we learn in school is con-
veyed through language, and most of the
knowledge that humanity has built up is
passed on to future generations through
language. For allowing computers to take
part in daily interactions with humans and
to make use of the accumulated knowl-
edge of humanity, we need mathematical
models of language — models that allow
computers to translate the noisy spoken,
written or signed forms into internal rep-
resentations with which they can compute.

The design of mathematical models
for many different aspects of language
and speech has a long history going back
to at least the Indian grammarian Pani-
ni (6th, 5th or 4th century B.C.) and the
Greek philosopher Aristotle (4th century

Vector-space models of
words and sentences

How can we compute with words? Natural Language Processing is a research field focused
on developing mathematical and computational models of language. For decades, models in
this field were using techniques from discrete mathematics, but in recent years — with the
rise of ‘deep learning’ — words and sentences are increasingly modelled with continuously
valued numerical vectors. Can these models deal with the endless creativity of language,
where ten thousands of words can be combined into an unbounded number of potential
sentences? Michael Repplinger, Lisa Beinborn, Willem Zuidema discuss the four steps the
field has gone through to arrive at the current state-of-the-art vector-space models of
sentences.

Michael Repplinger
ILLC
University of Amsterdam
mpjrepplinger@gmail.com

Lisa Beinborn
Language Technology Lab
University of Duisburg-Essen, Germany
lisa.beinborn@uni-due.de

Willem Zuidema
ILLC
University of Amsterdam
zuidema@uva.nl

168 NAW 5/19 nr. 3 september 2018 Vector-space models of words and sentences Michael Repplinger, Lisa Beinborn, Willem Zuidema

the language which can then be semanti-
cally analyzed in completion. The latter is
however a requirement for computational
models of symbolic semantics [31]. Conse-
quently, the use of these theories for prac-
tical computational applications is limited
as well.

Step 2: Distributional semantics — or:
counting words
More recently, the field of distributional
semantics emerged, which takes a com-
pletely different approach to modeling
meaning, focusing on statistical techniques
and large-scale modeling of word meaning.
Central to distributional semantics is the
distributional hypothesis, often expressed
as: “You shall know a word by the compa-
ny it keeps’’ [8]. To turn Firth’s slogan into
a formal system, we use numerical vectors
as representations and fill them with num-
bers based on counts of how often pairs
of words occur near to each other in large
databases of text.

Table 1 shows an idealized co-occur-
rence count, corresponding to a semantic
space for the three nouns ‘mouse’, ‘ele-
phant’ and ‘car’. Values in this table indi-
cate how often a target word, i.e. the word
we aim to represent as a vector, appeared
near certain other words in a corpus. For
example, ‘mouse’ and ‘animal’ co-occurred
eight times, while ‘car’ and ‘animal’ co-oc-
curred only once. Based on these hypo-
thetical counts, we can represent these
nouns as vectors in a four-dimensional se-
mantic space, where the vectors consist of
raw co-occurrence counts. In practical sys-
tems, dimensionality is usually in the order
of hundreds or thousands, and raw counts
are usually transformed into (weighted)
frequency values.

The great advantage of vector represen-
tation for the meaning of words, is that
we can now use standard mathematical
tools that apply to numerical vectors to
compute similarity between words. One
frequently used similarity metric is cosine.
Using cosine similarity on pairs of these
word vectors, we can calculate their se-

Strengths and weaknesses
One of the lasting impacts of Montague
Semantics has been that it has highlighted
an important feature of human language,
known as the principle of compositional-
ity (already hinted at in the work of Gott-
lob Frege [9]). This principle is commonly
phrased along the lines of: “The meaning
of a complex expression is determined by
the meanings of its constituents and the
rules used to combine them.”

Closely related to compositionality is
the notion of recursion. Recursively defined
processes are widely believed to underly
the capacity of speakers of a language to
build and understand arbitrary expressions
of the language. By recursive syntactic pro-
cessing, speakers can, in principle, build
an infinite set of complex expressions from
a finite set of simple ‘building blocks’.
By a parallel recursive semantic process,
speakers are then able to express and un-
derstand a potential infinitude of distinct
meanings.

Formal semantics in the symbolic tra-
dition excels at modeling compositionality
and recursion — deriving algorithmically the
meaning of a sentence from its smaller
constituents. This focus on the structural
aspects of language comes at a price, how-
ever, and the lexical foundation, i.e. the
meaning of words, has received much less
attention.

Another point concerns the limited in-
tegration of individual semantic theories.
Montague’s original proposal was a ‘meth-
od of fragments’ — identifying a well-delin-
eated syntactic fragment of the language,
then formally describing this fragment.
However, modern semantic theories gener-
ally no longer follow this approach, opting
instead for descriptions of individual se-
mantic phenomena without confining them
to some syntactic fragment. Consequently,
there is no syntactically defined subset of

receive the atomic category PN. ‘loves’ is
a so-called transitive verb, that needs an
argument on its left (the person that loves)
and an argument on its right (the person
that is loved). It therefore receives a ‘com-
plex category’ that contains slashes that
indicate what it can be combined with on
the left and the right; in the case of love,
the category is (S\PN)/PN. According to
the rules of categorical grammar, loves can
then first be combined with Yoshua, and
again be combined with Gottlob. This pro-
cess yields a syntactic analysis depicted in
Figure 1 (left).

From logic, Montague borrowed inten-
sional logic, a higher-order typed logic (our
examples will only use first-order predicate
logic). Crucially, however, Montague pro-
posed that the semantic, logical repre-
sentation is derived simultaneously with
the grammatical derivation. To achieve
this, he enriched the logical expressions
with elements from the lambda calculus.
Gottlob and Yoshua again get assigned
an atomic symbol, g and y respectively.
The meaning of ‘loves’ is represented as

[()()]loveq p p qm m . According to the rules
of the lambda calculus, the semantics of
the first argument that loves get combined
with y, ends up in the place of the variable
marked with the first m in the expression
q. This semantic derivation is depicted in
Figure 1 (right).

On this basis, Montague and others
have built an enormous body of work to
analyze the semantics of natural language
sentences. This work has addressed for in-
stance the subtle ways in which ‘some’ and
‘any’ differ in sentences like ‘some math-
ematicians proved a theorem’ or ‘there
wasn’t any mathematician that proved a
theorem’. Interested readers will find [10]
or [15] to be thorough introductions to
complete semantic systems in the spirit of
Montague’s proposal.

animal large small USB

mouse 8 2 4 3

elephant 9 5 1 0

car 1 4 3 0

Table 1 Idealized context-counts for ‘mouse’, ‘elephant’
and ‘car’.

S

S\PN

PN

Yoshua

(S\PN)/PN

loves

PN

Gottlob

⇐⇒

�love(g)(y)� ∈ Dt = {0, 1}

�λqλp[love(p)(q)]�(�yoshua�)
= �λp[love(p)(y)]�

�yoshua� = y ∈ De

Yoshua

�λqλp[love(p)(q)]�

loves

�gottlob� = g ∈ De

Gottlob

Figure 1 Translation to logical language.

Michael Repplinger, Lisa Beinborn, Willem Zuidema Vector-space models of words and sentences NAW 5/19 nr. 3 september 2018 169

by analyzing the counts of context items,
given some target word. Recently, a new
class of models has emerged based on
neural networks. These models are trained
to either predict the most likely word given
some context, or, in reverse direction, the
most likely context for a given word. The
word vectors that emerge as a side-effect
of this prediction task, have turned out to
be of much higher quality than the word
vector from classical distributional seman-
tics.

The origins of neural word embeddings
can be traced back to the proposals of Hin-
ton [16] and Bengio et al. [4], who used
neural architectures in the derivation of
word meanings. The currently most suc-
cessful embedding algorithms were pro-
posed by Mikolov et al. [23] and Mikolov
et al. [22], accompanied by an efficient
implementation dubbed word2vec.These
modern neural word embeddings can be
seen as feedforward neural networks (see
box ‘Feedforward neural networks’) without
hidden layers and nonlinear activation func-
tions — the latter were identified as compu-
tational bottlenecks of the original models.

word2vec embeddings are based on
two closely related algorithms. The first
model, Continuous Bag-of-Words (CBOW),
learns to predict a word, given a context
of surrounding words. A ‘projection layer’

Models derive semantic information
from the analysis of lexical co-occurrence,
i.e. they are based on context counting.
These counts are usually processed further
by weighting schemes. Intuitively, these
processing steps can be seen as adjusting
the raw counts for word frequency, giving
more weight to words that are rare but
informative. One frequently used method
used for this purpose is pointwise mutual
information.

Another frequently employed process-
ing step is to perform dimensionality re-
duction on the derived representations,
for example by non-negative matrix fac-
torization (NMF) or singular value decom-
position (SVD) [3]. The dimensionality
reduction step is motivated by two main
concerns: computational efficiency, and
possibly greater generalization capacity of
the model [20]. The latter effect can result
from merging (similar) contexts, i.e. associ-
ating a word with contexts of similar words
even though it might have never appeared
directly in these contexts itself, thus allow-
ing the model to uncover additional simi-
larities.

Step 3: Neural word embeddings — or:
Learning to predict words
The classical distributional models de-
scribed so far learn the meaning of words

mantic similarity: 0.86 (mouse, elephant),
0.57 (mouse, car), 0.61 (elephant, car). This
would then represent, as intended, that
‘mouse’ and ‘elephant’ are more similar to
each other than either of the two is to ‘car’
(animals versus non-animal), and that ‘car’
is (slightly) more similar to ‘elephant’ than
to ‘mouse’ (being somewhat more similar
in size). Note also the co-occurrence of
‘mouse’ with a seemingly unrelated word,
‘USB’, intended to illustrate the problem of
polysemy. In most models, the vector rep-
resentation of ‘mouse’ would be a ‘mix’ of
contexts where ‘mouse’ refers to a rodent
and contexts where the word refers to a
computer component.

Modeling choices
Various modeling choices need to be made
in the specification of a semantic vector
space model. First, one must define what
constitutes context, i.e. what we consider
‘near to each other’. Commonly, this con-
text is defined as ‘the N neighboring words
of the target word’, where N is the context
window, another parameter. Other choices
are possible however. For example, context
can be defined on a sub-word level, e.g.
based on single characters. The choice of
a similarity metric (Euclidean, correlation,
cosine) also influences what it means for
different words to be similar in meaning.

Figure 2 word2vec embedding of great and neighboring embeddings (1st/2nd/3rd principal component of 200 dimensional vector embeddings plotted).

170 NAW 5/19 nr. 3 september 2018 Vector-space models of words and sentences Michael Repplinger, Lisa Beinborn, Willem Zuidema

Another obstacle for models that rely
entirely on contextual learning is sparsi-
ty of data. Individual words occur abun-
dantly across different contexts, but the
frequency of combinations of words de-
clines exponentially with the length of the
sequence. Phrases, and short sentences
are still encountered frequently enough to
allow learning through contextual analysis
alone. Long sentences on the other hand
appear only infrequently, or are unique in
the worst case, even in large data sets.
Context-based learning however general-
ly requires training on a large number of
instances of an expression, thus making
sentence length a limiting factor for con-
text-only models.

Step 4: Compositional distributional
semantics — or: having your cake and eat it
Speakers of a language are able to gen-
eralize from previously encountered ex-
pressions to expressions that a speaker
never heard before. They achieve this by
analyzing previously heard utterances as
being built up from component parts, and
by reusing these parts in all kinds of new
combinations.

The symbolic models of language in
the tradition of Montague emphasized the
compositional semantics of sentences, but
largely ignored how the meaning of words
can be modelled and moreover relied on
hand-built grammars specifying the syn-
tactic and semantic properties of words.
The distributional semantics tradition
successfully developed vector represen-
tations for words. The recent neural word
embedding models built on those success-
es, and moreover showed that automati-
cally learned word representations encode
many linguistically relevant relations be-
tween words. But distributional and neural
word vectors have little to say about how
sentence meanings can be constructed.

In the last few years, much research
is devoted to bringing together insights
about compositionality from the symbolic
tradition, and insights from vector-space
models of word meaning from the distribu-
tional and neural traditions: compositional
distributional semantics.

Investigating different types of composition
Two landmark articles from this field of re-
search are Mitchell and Lapata [25, 26]. The
authors systematically evaluate different
types of composition functions that can be

Arora et al. [1] provide theoretical sup-
port in favor of these claims, by showing
that embedding algorithms like word2vec
actively impose linear structure on the lan-
guage data. The authors argue that this
linearization effect stems from the lower-
dimensional model internal representa-
tions, and because embedding models are
effectively nonlinear data processors even
though they do not contain the non-linear
activation function of a full-power neural
network.

Limitations of context-based approaches
Objections against embedding models
have frequently been raised, noting that
such models operate at a low level of the
language (words or characters). Further
criticism stems from the fact that models of
this approach learn meaning by a compara-
bly ‘shallow’ context analysis, without ex-
plicitly accounting for syntactic or seman-
tic compositionality. Such broad criticism
appears to be unwarranted: the exam-
ples shown above, of relational structure
emerging in embedding models, strongly
suggest that distributional models cannot
be simply dismissed as ‘linguistically insuf-
ficient’. Even though their architecture does
not explicitly account for compositionality,
the models succeed in extracting high-
ly structured information from language
data, through a combination of sophisti-
cated statistical machinery, and due to
their ability to process enormous amounts
of data.

At the same time, some language phe-
nomena pose major challenges for the
class of purely context-based models. One
example is the meaning derivation of logi-
cal operators, such as negation. In order to
learn (sentential) negation from the context
analysis alone, the intended meaning of
negation would have to be fully expressed
in the context distributions of sentences
and their negation. It seems obvious how-
ever that human speakers can express (and
understand) the negation of a sentence
without knowledge of any ‘neighboring’
sentences. Confirming this intuition, Mo-
hammad et al. show that highly contrasting
items (including aspectual negation) tend
to occur in very similar contexts. Models
that purely learn from context, without the
ability to deconstruct it if necessary, are
then missing the relevant statistical infor-
mation that would allow them to derive the
correct meaning of negation.

turns discretely encoded (sparse) word
representations into continuous (dense)
representations, which are then fed into a
matrix — shared for all context words re-
gardless of their position, hence the name
‘bag-of-words’ — for an output prediction
of the most likely middle word for a giv-
en context. The second type of models is
trained to predict in the opposite direc-
tion; given a word, the goal is to maxi-
mize the log probability of its surround-
ing context, i.e. models learn to predict
the context, given an individual word.
The context words do not need to appear
consecutively in the corpus, i.e. individual
words can be skipped when determining
the context — referred to by the algorithm’s
name, Skip-Gram.

Linguistic regularities inside embeddings
Neural embeddings gained widespread at-
tention for their representation of complex
syntactic and semantic relational informa-
tion. Very influential was the demonstra-
tion by Mikolov et al. [24] that a relation-
specific, constant vector offset exists be-
tween the vector representations of related
word pairs. Mikolov reported, for instance,
that when you substract the vector for
‘man’ from the vector for ‘king’ and then
add the vector for ‘woman’, you end up
very near to the vector for ‘queen’:

.v v v vking man woman queen.- +

More generally, given a constant offset, the
embedding space can be queried for an
answer to analogy questions of the form:
“word 1 is to word 2 as word 3 is to word
4’’. In this query, words 1, 2, 3 are given,
while word 4 must be found in order to
answer the question. Expressed as vector
space operations, using cosine similarity to
measure semantic similarity, the analogy
query is defined as:

((,)) .argmax cos v v v vv 4 3 1 24
- + (1)

Some of the other results produced by
these analogy queries are:

,

.

v v v v

v v v v
Paris France Italy Rome

apple apples car cars

.

.

- +

- -

These results have been interpreted as
evidence that embeddings contain struc-
ture encoding a gender relation or fea-
ture, can relate countries and their capi-
tals, and can learn a systematic syntactic
relation between singular and plural word
forms.

Michael Repplinger, Lisa Beinborn, Willem Zuidema Vector-space models of words and sentences NAW 5/19 nr. 3 september 2018 171

latter. The authors describe this form of
composition as feature filtering, in contrast
to the feature blending that results from
additive composition.

Mitchell and Lapata [25] evaluate the dif-
ferent model classes on a set of semantic
similarity tasks, and arrive at somewhat in-
conclusive results. While the multiplicative
models perform well (as predicted by the
authors), only the simplest multiplicative
model based on point-wise multiplication
performs well across different tasks. Mod-
els using the tensor product, predicted to
be more powerful than other simpler mod-
els, perform worse than most other mod-
els. Finally, the additive models perform
comparably well across tasks, despite the
theoretical objections raised against them.

The experimental findings of Mitchell
and Lapata [25] are somewhat outdated,
due to advances of models in recent years.
Their proposed classification, however, had
a lasting influence, and is still frequently
invoked to classify and relate model archi-
tectures.

Modern approaches
Current research on compositional distribu-
tional semantics exists in two flavors. One
class of models, which we collectively refer
to as type-based tensor approaches, com-
bines a powerful compositional mechanism
with a robust distributional foundation of
word meaning — at the cost of very high
computational complexity. The approach
results from the independent work of two
research groups, presented by Baroni and
Zamparelli [2] and Coecke et al. [5] approx-
imately in parallel. Informally, these ap-
proaches can be seen as a ‘translation’ of

tained in the ‘brown’ vector (e.g. aspects
related to brown dogs). It is easy to see
that this effect runs counter to the intend-
ed meaning of the phrase, as an intersec-
tion of the two concepts.

Multiplicative and tensor-based composi-
tion. Multiplication of components is sug-
gested as a solution to the blending prob-
lem above, leading to a general form of
multiplicative models:

z xyV=

where V is a 3rd-order tensor mapping
the two constituent vectors x, y to output
vector z. Composition is consequently a
bilinear function of the constituents. A sim-
ple instance of this class is composition by
element-wise product:

.z x y9=

The most powerful class of multiplicative
models is given by composition with the
tensor product:

.z x y7=

Mitchell and Lapata argue that multipli-
cation of components as defined here is a
solution to the previous blending problem:
Additive composition does not relate the
input components directly, adding them
independently (at best, scaled by some
constant factor) to form the output. Given
component multiplication however, values
interact directly through their products. For
example, if a component with some high
numerical value ‘interacts’ by multiplica-
tion with another component that has the
value 0, the meaning contribution of the
former is limited by its interaction with the

used in vector space models to compose
sentence meaning from the meaning of
smaller units, such as words.

Additive composition. The class of models
based on additive composition is defined
as:

z Vx Wy= +

where V, W are matrices, and composition
is given by matrix multiplication. The very
simplest instance of this class is given by
vector addition:

.z x y= +

Mitchell and Lapata point out the clear lim-
itations of this approach, such as insensi-
tivity to word order due to commutativity
of vector addition. For example, recursive
application of vector addition would derive
identical meanings for the phrases ‘man
bites dog’ and ‘dog bites man’.

Adding scalar weights for each vector
results in the weighted additive model:

.z x ya b= +

Here, left and right input vectors are scaled
(uniformly, for each vector) by parameters
a, b which are optimized on a develop-
ment set.

Employing scalar weights or full ma-
trices fixes the commutativity problem of
simple vector addition, but another prob-
lem remains: the blending of meaning in
additive models. Even the most complex
(matrix-based) additive models compose
vectors through (weighted) sums of their
components. Additive composition ef-
fectively ‘blends’ or ‘mixes’ the meaning
aspects of the composed word vectors,
which can lead to undesirable results.

Consider for example the phrase ‘brown
cow’, the result of composing vectors for
‘brown’ and ‘cow’. Its intended meaning is
a particular type of cow, one that is brown.
Ideally, composition would yield a vector
that represents the intersection of ‘things
that are brown’ and ‘things that are cows’.
Recall now that word vectors gather their
meaning from co-occurrence counts, and
that the ‘brown’ vector contains meaning
elements related to any brown objects
encountered in the data: (brown) cows,
(brown) dogs, (brown) houses, and so on.
Since additive composition is incapable of
context-dependent selection of only the
relevant meaning aspects, the composed
vector for ‘brown cow’ is bound to include
various unrelated meaning aspects con-

S

S\N

N

cats

(S\N)/N

chase

N

dogs

⇐⇒

W(chase cats) ◦ vdogs
= v(dogs chase cats) ∈ RS

Vchase ◦ vcats
= W(chase cats) ∈ RS×N

vcats ∈ RN

cats

Vchase ∈ RS×N×N

chase

vdogs ∈ RN

dogs

Figure 3 Sentence derivation in type-based tensor models.

172 NAW 5/19 nr. 3 september 2018 Vector-space models of words and sentences Michael Repplinger, Lisa Beinborn, Willem Zuidema

as continuously-valued numerical vectors,
sentences as summations, mutiplications
or more complicated combinations of these
word vectors. And, importantly, these word
and sentence vectors are computed using
neural networks, optimized using stochas-
tic gradient decent and other tools from the
increasingly rich toolbox of ‘deep learning’.

As always when scientific fields go
through a paradigm shift, much of the ex-
cellent work done in the old paradigm is
ignored or discarded. Fortunately, however,
researchers in the domain of compositional
distributional semantics are finding ways
to integrate the main insights from the
symbolic and neural traditions. s

Acknowledgments
WZ is supported by a Gravitation grant, nr
024.001.006, from the Netherlands Organization
for Scientific Research (NWO) to the Language
in Interaction consortium. This paper is largely
based on chapters 2, 3 and 4 of Repplinger [33].
We thank Dieuwke Hupkes for useful comments.

tectures that have been used to compute
sentence representations in recent years.

Conclusions
Compared to mathematics, human lan-
guage is a hopelessly messy, ambiguous,
and redundant system. Yet, language is
the carrier of a vast amount of knowledge,
and for both scientific and technological
reasons there is a need of adequate math-
ematical models of language.

In developing such models, linguists
have looked at many different branches of
mathematics. Until a few years ago, most
useful tools where found in discrete math-
ematics: logics to describe the meaning of
utterances, grammars of various sorts to
describe the structure of sentences, lamb-
da calculus to regulate to combinations of
bits of meaning into larger wholes. In re-
cent years, the field of Natural Language
Processing is turning to continuous math-
ematics. Suddenly, words are modelled

the symbolic semantic theories in the Mon-
tague tradition into a vector space setting,
through the use of higher-order tensors, as
illustrated in Figure 3.

The other class of models consists of
neural network architectures that — implic-
itly or explicitly — account for the demands
of semantic compositionality. After a peri-
od of receiving only little attention, neu-
ral network models re-emerged in recent
years as powerful, robust models, shown
to be capable of solving a plethora of
tasks across domains. The new generation
of neural models produced outstanding re-
sults in the field of computer vision, as well
as on language processing tasks such as
machine translation, sentiment analysis or
information retrieval. Many of these models
are presented under the umbrella term of
deep learning, originally meant to describe
neural network models that contain a high
number of hidden layers. In the appendix,
we go over the main deep learning archi-

Feedforward neural networks
A simple feedforward neural network with
two hidden layers, ()x2nn{ , can be com-
pactly represented in vectorized notation
as follows:

() ,

(),

(),

.

x z

h f W x b

h f W h b

z W h

2

1 1 1

2 2 1 2

3 2

nn{ =

= +

= +

=

(2)

Vector z is the network output, for an in-
put of vector x. Matrices W1, W2 and
(bias) vectors b1, b2 are the trainable
parameters of the network, together
computing a linear transformation of the
input x. Using a non-linear (activation)
function in place of f, the network will
however learn complex functions that
go well beyond simple linear transfor-
mations. Theoretical results by Cybenko
[6] and Hornik et al. [8] established that
neural networks are in principle able to
approximate any function of practical in-
terest to an arbitrary degree of precision,
given a sufficiently high number of ad-
justable model parameters. Figure 4 is an
equivalent representation of the network
()x2nn{ , in the traditional form of con-

nected neurons computing a weighted
sum of their input.

Simple feedforward networks are how-
ever ill-equipped to process sequences of
arbitrary length, which is a basic require-
ment for the semantic modeling of sen-
tences. Any sentence of a given length
can be processed by a feedforward neural
network with appropriate input layer di-
mensions. However, since the input lay-
er dimension is fixed, the same model
instance cannot be applied to sentences
of any other length, preventing models
from shared learning across sentences of
different lengths. In order to process se-
quences of arbitrary length, such as sen-
tences, the model should allow for the
recursive processing of input sequences.

Recurrent neural networks
A simple, but powerful architecture sat-
isfying the requirement of recursive in-
put processing is the recurrent neural
network (RNN), originally proposed in
Elman [7].

The function learned by an RNN model
is defined as a recursion over an input
sequence of vectors , ,x xn1 f . This se-
quence of input vectors can be chosen
quite generally, for example, as vectors
representing the words of a sentence, or,
breaking input down further, as the char-
acters of a sentence.

At input step xi of input sequence x,
the output zi of an RNN is given by:

b1

x1

x2

x3

f(·)

f(·)

f(·)

b2

h1
1

h1
2

h1
3

f(·)

f(·)

f(·)

f(·)

h2
1

h2
2

h2
3

h2
4

z1

z2

Figure 4 Simple feedforward neural network with two hidden layers.

Michael Repplinger, Lisa Beinborn, Willem Zuidema Vector-space models of words and sentences NAW 5/19 nr. 3 september 2018 173

()z f W z W x bi
hh

i
hx

i
h

1= + +- (3)

where z Ri
H! , and H is the dimension of

the hidden layer, x Ri
X! , W Rhh H H! #

is the matrix of hidden-to-hidden con-
nections, W Rhx H X! # the matrix of in-
put-to-hidden connections, b Rh H! is a
bias vector, and f an element-wise non-
linear function, called the nonlinearity of
a layer. Frequent choices for this nonlin-
earity are the sigmoid function, tanh, or
a rectified linear unit (ReLU).

For finite input sequences, the general
recursive definition can be replaced by an
unfolded version of the model instance.
Given an input sequence of length n, the
network can be seen as a chain of n 1+
hidden layers or states, where each state
has two outgoing connections (one to the
next hidden layer, one being the output
at the current step), and two incoming
connections (one being the output of the
previous hidden layer, one for the input
at the current step). The i-th state of this
chain is the model representation of the
input sequence up to and including input
element i, given by summing the linear
combination of the i-th input vector, the
linear combination of the ()i 1- -th state
or output, and the bias vector, then ap-
plying the element-wise nonlinearity f to
the resulting vector.

Using simple RNN models, the work
of Mikolov [21] constitutes an early, in-
fluential exploration of RNNs applied
to language tasks. In general, however,
most notable results produced by RNN
architectures in recent years were in fact
extensions of the architecture, often pro-
duced by the highly successful class of
LSTM models, discussed later on.

Recursive neural networks
A structural extension of the basic RNN
architecture is the recursive neural net-
work, or tree-shaped recurrent neural
network (tRNN). The current tRNN ar-
chitecture was introduced by Socher et
al. [33] and was based on earlier pro-
posals of Pollack [32] and Goller and
Küchler [12]. The tRNN can be seen as
a generalization of RNNs in terms of in-
put structure, in the following sense:
While the input sequence of a simple
RNN is unstructured, and composition
invariably proceeds in one direction, the

tRNN architecture allows for the compo-
sitional process to be structured by syn-
tactic analysis of the input. In practice,
this syntactic analysis is usually provided
externally, by providing the model with
a parse tree for a given input sentence.

The decision to provide the neural
network with a parse tree of the input
is motivated by linguistic considerations,
attempting to include some of the struc-
tural information that lends power to the
symbolic models of formal semantics.
While the tRNN class of models initial-
ly proved to be successful, the field has
largely moved on to models that do not
require external information (such as
parse trees), allowing for much larger
data sets to be used in training.

Neural networks with long-term memory
A major challenge when training deep
neural networks — networks consisting of
many stacked hidden layers — is the van-
ishing gradient problem. The cause for
this problem relates to the training algo-
rithm of networks, which passes informa-
tion (gradients) down the network as a
chain of products. Since individual terms
of this chain are often small, their prod-
uct tends to decrease with the length of
the chain, to the point of vanishing. As
a result, lower layers of a deep network
only receive a greatly diminished learning
signal, thus negatively affecting learning
success.

LSTM networks
The seminal work of Hochreiter and
Schmidhuber [17] presented a solution
to the problem, by introducing the long
short-term memory architecture (LSTM).
We only describe the general idea behind
the approach here, and refer the reader
to Graves [13] for a technical explanation
of the mechanisms.

The LSTM architecture, based on the
(simple) RNN model of (3), adds mem-
ory cells and (control) gates, allowing
a higher degree of retainment of gradi-
ent information across network layers.
Memory cells are vectors retaining past
gradient information, where access to
these cells is controlled by three types of
gates (input, output, and forget gates).
Intuitively, these gates can be seen as
vector space versions of logic gates,

interacting with the components of the
memory cells by pointwise multiplication
with values near 0 or 1, i.e. soft boolean
values. During training, stored gradient
information and the gates interact to
preserve old and select new gradient in-
formation that will be passed downwards
in the network. This mechanism leads to
major improvements in training effective-
ness of deep networks, and most major
results in recent years by models of the
RNN class were produced by LSTMs, or
further model extensions of the RNN ar-
chitecture, with added LSTM gates.

RNN models using LSTM gates gener-
ated major results on several language
tasks. In an early study of LSTMs and lan-
guage processing, Gers and Schmidhuber
[11] showed that their model can learn
simple context-free and context-sensitive
languages, e.g. strings of the form an bn
and a b cn n n, respectively. In Graves [14],
LSTM models are used to generate novel
sentences after being trained on Wikipe-
dia data, and learn to produce sentences
in realistic script (i.e. the model learned
handwriting).

Tree-structure information for free?
As mentioned above, recursive neural
networks, i.e. tree-shaped RNNs, make
use of explicit syntactic information to
guide the processing of sentences. LSTM
models have been suggested as effec-
tively replacing the need for such explicit
syntactic information, due to their ability
to store (training) information across the
processing of long input sequences like
sentences. While syntactic information
is given to the tree-structured networks
explicitly, LSTM models possibly can rely
on implicit syntactic information through
their storage mechanism. Whether syn-
tactically guided processing is a useful
or necessary feature of distributional
models is not conclusively answered
yet. It should be noted however that the
two architectures can be combined, i.e.
tree-structured networks can be enriched
by adding a memory mechanism. See, for
example, the proposals of Le and Zuide-
ma [19] and Tai et al. [34], extending tRNN
architectures with LSTM gates to improve
training efficiency of deep networks, and
help with modeling long distance depen-
dencies.

174 NAW 5/19 nr. 3 september 2018 Vector-space models of words and sentences Michael Repplinger, Lisa Beinborn, Willem Zuidema

1 Sanjeev Arora, Yuanzhi Li, Yingyu Liang,
Tengyu Ma and Andrej Risteski, Rand-walk:
A latent variable model approach to word
embeddings, Transactions of the Associa-
tion for Computational Linguistics 4 (2016),
385–399.

2 Marco Baroni and Roberto Zamparelli, Nouns
are vectors, adjectives are matrices: Repre-
senting adjective noun constructions in se-
mantic space, in Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, Association for Com-
putational Linguistics, 2010, pp. 1183–1193.

3 Marco Baroni, Georgiana Dinu and German
Kruszewski, Don’t count, predict! A system-
atic comparison of context-counting vs. con-
text-predicting semantic vectors, in ACL (1),
2014, pp. 238–247.

4 Yoshua Bengio, Rejean Ducharme, Pascal
Vincent and Christian Jauvin, A neural prob-
abilistic language model, Journal of Machine
Learning Research 3 (2003), 1137–1155.

5 Bob Coecke, Mehrnoosh Sadrzadeh and Ste-
phen Clark, Mathematical foundations for a
compositional distributional model of mean-
ing, arXiv:1003.4394, 2010.

6 George Cybenko, Approximation by super-
positions of a sigmoidal function, Math-
ematics of Control, Signals, and Systems
(MCSS) 2(4) (1989), 303–314.

7 Jeffrey L. Elman, Finding structure in time,
Cognitive science 14(2) (1990), 179–211.

8 John R. Firth, A Synopsis of Linguistic Theory,
1930–1955, Oxford University Press, 1957.

9 Gottlob Frege, Über sinn und Bedeutung,
Zeitschrift für Philosophie und philosophi-
sche Kritik, 1892.

10 L. T. F. Gamut, Logic, Language, and Mean-
ing. Volume II. Intensional Logic and Logical
Grammar, University of Chicago Press, 1991.

11 Felix A. Gers and Jürgen Schmidhuber, LSTM
recurrent networks learn simple context-free
and context-sensitive languages, IEEE Trans-
actions on Neural Networks 12(6) (2001)
1333–1340.

12 Christoph Goller and Andreas Küchler, Learn-
ing task dependent distributed representa-
tions by backpropagation through structure,

in IEEE International Conference on Neural
Networks, 1996, Vol. 1, IEEE, 1996, pp. 347–
352.

13 Alex Graves, Supervised Sequence Labelling
with Recurrent Neural Networks, PhD thesis,
Technical University Munich, 2008.

14 Alex Graves, Generating sequences with re-
current neural networks, arXiv:1308.0850,
2013.

15 Irene Heim and Angelika Kratzer, Semantics
in Generative Grammar, Vol. 13, Blackwell,
1998.

16 Geoffrey E. Hinton, Learning distributed rep-
resentations of concepts, in Proceedings of
the Eighth Annual Conference of the Cog-
nitive Science Society, Vol. 1, Amherst, MA,
1986, p. 12.

17 Sepp Hochreiter and Jürgen Schmidhuber,
Long short-term memory, Neural computa-
tion, 9(8) (1997), 1735–1780.

18 Kurt Hornik, Maxwell Stinchcombe and Hal-
bert White, Multilayer feedforward networks
are universal approximators, Neural Net-
works 2(5) (1989), 359–366.

19 Phong Le and Willem Zuidema, Composi-
tional distributional semantics with long
short term memory, Proceedings of the
Fourth Joint Conference on Lexical and Com-
putational Semantics (*SEM), 2015.

20 Omer Levy and Yoav Goldberg, Neural word
embedding as implicit matrix factorization,
in Advances in Neural Information Process-
ing Systems, 2014, pp. 2177–2185.

21 Tomas Mikolov, Statistical Language Models
Based on Neural Networks, PhD thesis, Brno
University of Technology, 2012.

22 Tomas Mikolov, Kai Chen, Greg Corrado
and Jerffey Dean, Efficient estimation of
word representations in vector space, arX-
iv:1301.3781, 2013.

23 Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S. Corrado and Jeff Dean, Distributed
representations of words and phrases and
their compositionality, in Advances in Neu-
ral Information Processing Systems, 2013,
pp. 3111–3119.

24 Tomas Mikolov, Wen-tau Yih and Geoffrey

Zweig, Linguistic regularities in continuous
space word representations, in Proceedings
of NAACL-HLT, Vol. 13, 2013, pp. 746–751.

25 Jeff Mitchell and Mirella Lapata, Vector-based
models of semantic composition, in Pro-
ceedings of the ACL, 2008, pp. 236–244.

26 Jeff Mitchell and Mirella Lapata, Composition
in distributional models of semantics, Cog-
nitive Science 34(8) (2010), 1388–1429.

27 Saif M. Mohammad, Bonnie J. Dorr, Graeme
Hirst, and Peter D. Turney, Computing lexical
contrast, Computational Linguistics 39(3)
(2013), 555–590.

28 Richard Montague, English as a formal lan-
guage, in Bruno Visentini et al., eds., Lin-
guaggi nella società e nella tecnica, Edizioni
di Communita, 1970, pp. 189–224.

29 Richard Montague, Universal grammar, The-
oria 36(3) (1970), 373–398.

30 Richard Montague, The proper treatment
of quantification in ordinary English, in Ap-
proaches to Natural Language, Springer,
1973, pp. 221–242.

31 Barbara H. Partee, Montague grammar, in
Neil J. Smelser and Paul B. Baltes, eds.,
International Encyclopedia of the Social &
Behavioral Sciences, Vol. 11, Elsevier, 2001.

32 Jordan B. Pollack. Recursive distributed
representations, Artificial Intelligence 46(1)
(1990), 77–105.

33 Michael Repplinger, Understanding General-
ization: Learning Quantifiers and Negation
with Neural Tensor Networks, Master Thesis,
Master of Logic, University of Amsterdam,
2017.

34 Richard Socher, Christopher D. Manning and
Andrew Y. Ng, Learning continuous phrase
representations and syntactic parsing with
recursive neural networks, in Proceedings of
the NIPS-2010 Deep Learning and Unsuper-
vised Feature Learning Workshop, 2010, pp.
1–9.

35 Kai Sheng Tai, Richard Socher and Christo-
pher D Manning, Improved semantic repre-
sentations from tree-structured long short-
term memory networks, Association for
Computational Linguistics 2015 Conference,
2015.

References

