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1 for winning, -1 for losing, and 0 for a 
draw. Even though the agent only receives 
such sparse rewards, it can still learn to 
play the game very well in many cases. Cur-
rently, the most impressive demonstration 
of the power of RL is Google DeepMind’s 
AlphaGo Zero system [47] that learned to 
play the complex game of Go extremely 
well by only playing games against itself. 
AlphaGo Zero was able to beat its prede-
cessor AlphaGo [45], which first learned 
from games played by human players and 
won a match against the human Grand-
master Lee Sedol in 2016 with 4-1.

In this paper, first different kinds of 
sequential decision making problems 
for RL are examined. Then we will study 
several RL algorithms that learn from the 
experiences obtained by the agent in or-
der to maximize its performance over time. 
We then examine the issue of exploration, 
which enables an agent to explore the 
results of selecting different actions, and 
which is necessary to learn to perform op-
timally. To deal with very large state spac-
es, function approximation techniques are 
necessary and the most often used tech-
niques will be explained. Then some other 
topics in RL will be covered, which increase 
the speed or applicability of RL systems. 
After having explained the ingredients of 
RL systems, a number of different applica-
tions will be finally described for which RL 
can be used effectively.

to belong to each other, or it can derive 
particular features or frequently occurring 
sub-patterns from the data.

Whereas the aforementioned algorithms 
work with a dataset of examples to gener-
ate a model, reinforcement learning (RL) 
algorithms train an agent, which is a soft-
ware program that can select and execute 
actions based on its inputs. Furthermore, 
such RL agents interact with an environ-
ment through which it receives experienc-
es. Therefore, RL methods do not need 
a dataset, but are connected to a simu-
lator or the real world. The experiences 
obtained by an RL agent are generally its 
observations of the environment, the ac-
tions which it executes, and rewards which 
it receives from selecting actions in par-
ticular environmental situations. The goal 
of the RL agent is to maximize the sum of 
rewards that it obtains over time. 

In particular problems, such as learning 
to optimally play a game, the reward is 
given at the end of the game, and is simply 

Machine learning is a very hot research area 
within the larger field Artificial Intelligence 
(AI). The main idea of machine learning al-
gorithms is to enable a computer program 
to optimize a particular performance metric 
using data or experiences to learn from. 
The field can be divided in three main 
areas: supervised learning, unsupervised 
learning and reinforcement learning. In 
supervised learning, a dataset with inputs 
and target outputs is given to a machine 
learning algorithm. The algorithm (with 
all of its tunable hyperparameters) then 
generates a model (or function) that can 
map inputs to their corresponding target 
outputs. An important issue in supervised 
learning is to generate a trained model that 
also performs well for new, unseen, inputs, 
which means the model should generalize 
over the whole input space. 

In unsupervised learning, an algorithm 
receives input data without target outputs. 
The algorithm can use the input patterns 
to compute clusters of inputs that seem 

Reinforcement learning: 
from methods to applications

Reinforcement learning (RL) algorithms enable computer programs to learn from interacting 
with an environment. The goal is to learn the optimal policy that maximizes the long-term 
intake of a reward signal, where rewards are given to the agent for reaching particular 
environmental situations. The field of RL has developed a lot since the past decade. In this 
paper, Marco Wiering will first examine different decision making problems and RL algo-
rithms. Then the combination of RL with different function approximators that can be used 
to solve large-scale problems will be described. After explaining several other ingredients 
of an RL system, a wide variety of different applications that can be fruitfully solved by RL 
systems will be covered.
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This equation is known as Bellman’s opti-
mality equation and uses an efficient re-
cursive formulation. The right-hand side of 
this equation is basically using a one-step 
lookahead in the future and could be used 
to update the Q-value from the left-hand 
side. The dynamic programming algorithm 
called value iteration makes use of this to 
efficiently compute the optimal policy for a 
known MDP. The algorithm starts with an 
arbitrary policy r and an arbitrary value 
function V and repeats the following steps 
for all s S! . First, the Q-values for all ac-
tions in state s are computed:

( , ) ( , ) ( , , ) ( ) .' 'Q s a R s a T s a s V s
's

c= + /

Then, the new value function is calculated:

( ) ( , ) .maxV s Q s a
a

=

Then, ( )sr  is changed so that the action a 
which maximizes the Q-function in a state 
s will be chosen:

( ) ( , ) .arg maxs Q s a
a

r =

The algorithm halts when the largest dif-
ference between two successive value 
functions is smaller than e, some positive 
parameter with a value close to 0. During 
each iteration, an additional lookahead 
step in the future is performed. Finally, 
with a discount factor 1<c , the far future 
is discounted so much, that more iterations 
do not change the value function anymore.

Although in a lot of research about re-
inforcement learning, the MDP framework 
is used, there are also more complex se-
quential decision making problems. One 
of these is the Partially Observable Markov 
Decision Process (POMDP) framework [28]. 
In a POMDP, the Markov property does not 
hold, because the agent only receives an 
observation ot in each state using an ob-
servation function ( )o O st t= . One problem 
of POMDPs is that the same observation 
may be received when the agent is in dif-
ferent states, which is called perceptual 
aliasing. Since the observation does not 
fully describe the current state, the Markov 
property does not hold. For this reason, 
it is necessary to make use of the history 
ht instead of only the current observation 
ot in order to enable the agent to choose 
optimal actions.

There exist different algorithms to com-
pute solutions to a priori known POMDPs. 
The most commonly used approach is to 

future. This cumulative discounted reward 
sum is called the return and is defined as:

.R r r Rt
i

t i
i

t t
0

1c c= = +
3

+
=

+/

Note that an infinite horizon (future) 
is used here. By having a discount fac-
tor 1<c , it is guaranteed that the sum 
is bounded. Instead of directly optimizing 
the action-selection policy, value-function 
based RL algorithms use state-value func-
tions or state-action value functions. The 
state-action value function ( , )Q s ar  de-
notes the expected sum of discounted 
rewards obtained when the agent selects 
action a in state s and follows policy r 
afterwards:

( , ) | , , .Q s a E r s s a at
t

t
0 0

0
c r= = =

3
r

=
f p/

Where E denotes the expectancy op-
erator. For small-sized finite MDPs, the 
Q-function can be stored in a lookup table 
of size | | | |S A . The goal is then to learn 
the Q-function Q* of the optimal policy, for 
which the following holds:

( , ) ( , ) , , .Q s a Q s a s a6$ rr*

When the optimal Q-function is known (ei-
ther computed or learned), the agent can 
always select the optimal action with the 
highest Q-value in some state s:

( ) ( , ) .arg maxs Q s a*
a

r = *

When the MDP is known a priori, it is pos-
sible to compute the optimal Q-function 
with dynamic programming techniques 
such as value interaction [7]. Bellman not-
ed that the following must hold for the op-
timal Q-function:

( , ) ( , )

( , , ) ( , ) .' 'max

Q s a R s a

T s a s Q s b
' bs

c

=

+

*

*/

Sequential decision making
Reinforcement learning algorithms en-
able an agent to optimize its behavior by 
learning from the interaction with the en-
vironment. At each time step t, the agent 
perceives the state st, and uses the state 
information to select and execute action at. 
Based on this executed action, the agent 
transits to a new state st 1+  and receives 
a scalar reward rt. The interaction histo-
ry of the agent with its environment is 

, , , , , , ,h s a r s a r st t0 0 0 1 1 1 f= . The interaction 
between the agent and its environment is 
illustrated in Figure 1. For some problems, 
the agent cannot perceive the full state 
information, and only receives a partial 
observation ot instead of st. An important 
property of a sequential decision mak-
ing problem is whether it has the Markov 
property, which holds if the current state 
st and action at contain sufficient infor-
mation to predict the next state and the 
expected received reward: ( , | , )P s r s at t t t1 =+  

( , | , )P s r h at t t t1+ . This means that instead of 
needing to use the whole interaction histo-
ry ht, only the current state st can be used 
to select the optimal action. This simplifies 
matters a lot, since the history could be a 
very long sequence of previous states and 
previously executed actions.

There are different kinds of sequential 
decision making problems. The simplest 
one is a finite Markov Decision Process 
(MDP) [58], which has the Markov property 
and is defined by:

–– A set of states S, where s St !  denotes 
the state at time t.

–– A set of actions A, where a At !  denotes 
the action selected at time t.

–– A transition function ( , , )'T s a s , which 
specifies the probability of moving to 
state s’ after selecting action a in state s.

–– A reward function ( , )R s a , which sends 
a reward signal to the agent for execut-
ing action a in state s. rt denotes the 
reward obtained at time step t. For sim-
plicity we denote the average reward 
obtained by executing action a in state 
s also by ( , )R s a .

–– A discount factor c that makes rewards 
received further in the future less im-
portant than immediate rewards, where 
0 1# #c .

The goal in an MDP is to learn a policy, 
( )s a"r , mapping states to actions in such 

a way that the agent receives the highest 
cumulative discounted reward sum in its 

Figure 1  The interaction process between an RL agent 
and its environment. The agent receives as perception of 
the environment the state information and uses this to 
select an action. After this, the agent receives a reward 
and goes to a next state.
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action. SARSA updates the Q-value of ac-
tion at in state st in the following way:

( , ) ( , )

( ( , ) ( , )) .

Q s a Q s a

r Q s a Q s a
t t t t

t t t t t1 1a c

=

+ + -+ +

As can be seen from this equation, instead 
of the best thought action in state st 1+ , 
the actual selected action in the next state 
is used to update the Q-value. Because 
SARSA is an on-policy RL algorithm, it is 
not able to learn an optimal policy as long 
as there is exploration. Therefore, SARSA 
only converges to the optimal policy and 
Q-function if the same conditions hold as 
for Q-learning and if the exploration policy 
becomes greedy in the limit of infinite ex-
ploration (GLIE) [48].

The difference between the learned 
behavior when off-policy Q-learning or 
on-policy SARSA is used can be best il-
lustrated through an example [51]. Given 
the grid shown in Figure 2, the agent can 
choose to move North, West, South and 
East. If an action is not possible (the agent 
goes outside the grid), the agent remains 
in the same state. For every action a neg-
ative reward of -1 is given except when 
the agent goes to a state where it falls 
from the cliff (in yellow), where the agent 
dies and receives a reward of -100 after 
which a new epoch is started. When the 
agent is in the goal state, an epoch ter-
minates as well and the agent does not 
receive negative rewards anymore. When 
an epoch ends, the agent starts again in 

Because most environments are stochastic, 
it is not always a good idea to use a large 
learning rate to speed up the learning pro-
cess. This is because learning on one ex-
perience also means forgetting about pre-
vious experiences. With a finite number of 
states and actions, Q-learning converges 
to the optimal policy when all state-action 
pairs are visited for an infinite number of 
times and the learning rate is properly an-
nealed [22]. Note that this means all ac-
tions should be tried out infinitely often 
in each state. Therefore always selecting 
the action with the highest current Q-value 
in a state is not good for optimizing the 
policy. There is also the need to explore 
alternative actions, which currently do 
not seem optimal, but which could lead 
to better future states and higher rewards. 
Exploration in RL will be described in the 
following section.

Q-learning is called an off-policy RL al-
gorithm. Due to the necessity to use an 
exploration strategy, the behavioral policy 
that selects actions, is not the same as the 
greedy policy that is the result of the learn-
ing dynamics. Because Q-learning uses the 
max operator in its update rule, Q-learning 
is able to learn the optimal Q-function (and 
therefore policy) even if always random ac-
tions are selected during the learning pro-
cess. This has several advantages, since 
it usually allows higher exploration rates 
than on-policy RL algorithms. A well known 
on-policy RL algorithm is SARSA [39, 50] 
which stands for state-action-reward-state-

use the history ht to create a belief state 
( )b st , which is a probability distribution 

over the entire state space [13]. The prob-
ability that the agent is in each state giv-
en the history can be efficiently computed 
using recursive formulas. Then dynamic 
programming can be used with the belief 
states in order to compute the optimal 
policy. The complexity of solving POMDPs 
is however much larger than that of solv-
ing MDPs. Whereas MDPs can be solved 
in polynomial time, solving POMDPs soon 
becomes intractable with more states, ac-
tions and observations.

Other sequential decision making prob-
lems exist when multiple agents learn at 
the same time. In this case, the Markov 
property also does not hold anymore, be-
cause the actions of other agents change 
over time and influence the goodness of 
selecting a particular action in some state 
for a specific agent. Furthermore, in multi-
agent sequential decision making prob-
lems, all agents may have a cooperative 
reward function, but there may also be 
competitive individual reward functions.

Reinforcement learning algorithms
For most real-world applications a prior 
model of an MDP (or POMDP) is not known 
beforehand. Furthermore, the state-action 
space may be high-dimensional or continu-
ous, so that dynamic programming cannot 
be effectively used. In that case, RL algo-
rithms can be used to learn the optimal 
policy by interacting with the environment. 
The main idea of an RL algorithm is to use 
each experience of the agent in the form 
( , , , )s a r st t t t 1+  in a way to improve the pol-
icy or Q-function. The Q-function can be 
stored in a lookup table for small state- 
action spaces, but can also be approxi-
mated with function approximators. The 
most often used algorithm is Q-learning 
[61, 62]. In online Q-learning the Q-value 
of a state-action pair is updated using the 
experience by:

( , ) ( , )

( ( , ) ( , )) .max

Q s a Q s a

r Q s b Q s a
t t t t

t
b

t t t1a c

=

+ + -+

Where a is the learning rate that deter-
mines how much the agent learns from the 
current experience. In case the last state 
st 1+  is a terminal state, the update rule 
becomes:

( , ) ( , ) ( ( , )) .Q s a Q s a r Q s at t t t t t ta= + -

−100 GS

Figure 2  The cliff environment illustrating the difference in learning dynamics between Q-learning and SARSA. The goal 
is to find the shortest path from the start state S to the goal state G, however a large penalty is given if the agent falls off 
the cliff. Q-learning will learn the optimal red path, whereas SARSA will converge to a slightly longer path (in green). On 
the other hand, while learning, the Q-learning agent will fall off the cliff much more often due to exploration actions than 
the SARSA agent, which takes the possible exploration actions into account when learning the policy.
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the exploration-exploitation dilemma [53]. 
This dilemma has often been studied us-
ing multi-armed bandits (MABs), which 
are a special kind of MDP with only a sin-
gle state. In a MAB, the agent can select 
among k actions, each having its own sto-
chastic reward function ( )R a . By trying an 
arm at at time step t, the agent receives a 
reward rt, and uses this to update its esti-
mate ( )Q at  of the average reward defined 
by function ( )R $ . When the agent would 
try out all actions an infinite number of 
times, then the Q-function ( )Q a  converges 
to the average reward ( )R a  due to the law 
of large numbers. After this, the agent can 
simply select the action with the highest 
Q-value. However, if the agent tries out all 
actions many times, it also selects subop-
timal actions many times, and this is of 
course not desired.

The MAB-problem has often been used 
to create proofs for exploration algorithms, 
as it is simpler than solving a full MDP. 
Such proofs can for example give guaran-
tees about the maximal amount of experi-
ences needed to learn the optimal action 
most of the times. Furthermore, exploration 
algorithms designed for the MAB-problem 
can also be used as exploration strategy in 
an MDP. We will now describe a number of 
often used exploration strategies for solv-
ing MDPs [55].
e-greedy exploration is one of the 

most used exploration strategies. It uses 
0 1# #e  as parameter of exploration 
to decide which action to perform using 

( , )Q s at . The agent chooses the action with 
the highest Q-value in the current state 
with probability 1 e- , and a random action 
otherwise. A larger value for e means more 
exploration actions are selected by the 
agent. Although e-greedy is very simple, it 
is sometimes hard to beat.

One drawback of e-greedy exploration is 
that the exploration action is selected uni-
form randomly from the set of possible ac-
tions. Therefore, it is as likely to choose the 
worst action as it is to choose the second- 
best action if an exploration action is se-
lected. That is why Boltzmann or softmax 
exploration [51] uses a Boltzmann distribu-
tion to assign a probability ( , )s atr  to the 
actions in order to choose actions with 
higher Q-values with higher probability:

( , ) .s a
e

e
( , )/

( , )/

t Q s b T
b

m

Q s a T

1
t

t
r =

=
/

( , )s atr  is then the probability with which the 

Evolutionary algorithms can be used for 
many different kinds of problems such as 
combinatorial optimization problems. They 
maintain a population of individuals that 
encode a policy and each individual is 
tested to obtain its fitness value for the 
task at hand. Then individuals are selected 
based on their fitness value and the best 
individuals are allowed to reproduce most 
often. New offspring can then be created 
by mixing the information of the two se-
lected parent individuals using crossover 
operators and some randomness is added 
by using a mutation operator. These evolu-
tionary RL methods have been successfully 
applied to different problems such as play-
ing Othello [33] and were also successfully 
used to learn policies for Atari games [19]. 
Value-function based RL and evolutionary 
RL have also been combined by a number 
of researchers, see [15] for a review of such 
combinations.

RL algorithms sometimes need very 
many experiences to learn a good policy. 
One of the reasons is that algorithms such 
as Q-learning and SARSA only update a 
single Q-value given one new experience. 
There exist several methods to improve on 
this. Eligibility traces [49] enable multiple 
states to be eligible to change their values 
based on a new experience. Experience 
replay [27] is a technique in which many 
experiences are stored in a replay memory 
and the replay memory is then used to 
make multiple updates. Experience replay 
is nowadays often used in many deep RL 
algorithms [30].

Finally, model-based RL method com-
pute an approximation to the transition 
and reward functions based on the ob-
tained experiences. When these are mod-
elled, dynamic programming techniques 
can be used to efficiently compute the 
Q-function [32, 70]. Although model-based 
RL techniques are very efficient for finite 
MDPs with not too many states and ac-
tions, it is very complex to use them for 
high-dimensional and continuous state-ac-
tion spaces.

Exploration
As mentioned before, an agent needs to 
make exploration actions in order to be 
able to learn an optimal policy. However, 
to get most rewards while interacting with 
the environment, the agent should also 
exploit its current knowledge in the form 
of the Q-values it learned. This leads to 

the start state and this is repeated for a 
large number of times.

The problem is deterministic, but the 
agent sometimes chooses an exploration 
action with some probability. Q-learning 
will converge to the optimal path shown 
in red in the figure. SARSA will converge 
to the green path. It can be seen that the 
final path of SARSA is longer. This is be-
cause the SARSA agent takes into account 
its exploration actions which often bring 
it to fall off the cliff when learning. There-
fore, the SARSA agent will learn to avoid 
coming close to the cliff. The result is that 
the SARSA agent obtains a higher average 
reward while learning, but after the learn-
ing process has converged to a stable pol-
icy, the agent receives a slightly lower sum 
of rewards. Although this is a very simple 
problem, it clearly shows the differences 
between off-policy and on-policy RL algo-
rithms.

There are a number of other reinforce-
ment learning algorithms. QV-learning 
[66] uses two value functions: the state 
value function ( )V s  and the state-action 
or Q-function ( , )Q s a . The Q-function is 
trained based on the value function and 
the value function is trained by using the 
immediate reward rt and the value of the 
next state. 

In actor-critic algorithms, the critic uses 
temporal difference learning [49] to train 
the value function ( )V s , and the actor is 
used to select actions. In the actor-critic 
framework, the actor is trained using the 
critic’s evaluations. A main advantage of 
actor-critic algorithms is that it becomes 
easier to deal with continuous action 
spaces. If a Q-function ( , )Q s a  is used in 
a critic-only system, it is complex to select 
the continuous action that maximizes the 
Q-value. With actor-critic approaches, the 
actor can immediately output the action 
that should be selected.

A related class of algorithms are policy- 
gradient algorithms. In their basic form, 
these algorithms only use an actor with a 
policy and no critic. One of the earliest ap-
proaches, REINFORCE [72], trains the policy 
using the full (Monte-Carlo) return. If this 
return is high, then the policy is adjusted 
so that the taken actions will be strength-
ened (reinforced). Otherwise, if bad things 
happen, then the policy is changed to cir-
cumvent selecting the same actions.

Another class of algorithms is called 
evolutionary reinforcement learning [64]. 
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The advantages of these linear function 
approximation techniques are that the al-
gorithms are fast, have good convergence 
properties and are easy to implement. A 
disadvantage is that the performance of 
these methods depends heavily on the 
overall design of the basis functions. One 
way of designing the basis functions is to 
use tile coding or CMACS [2, 50]. In tile cod-
ing a number of tiles are used with cells 
inside. Given a state, one cell in each tile is 
activated, and the activated cells form the 
new representation of the state. The use of 
multiple overlapping tilings helps to gener-
alize better for continuous state spaces, as 
multiple cells which are activated in slight-
ly different input regions can be updated 
at the same time. A problem of tile coding 
is that it is difficult to design the tiles and 
cells for high-dimensional state spaces. In 
this case, tiles need to combine many dif-
ferent projections of a few state variables, 
because otherwise there are far too many 
cells in each tile.

Another linear function approximation 
technique is the use of radial-basis func-
tions (RBFs). Radial basis functions resem-
ble Gaussian functions without the neces-
sity to be a true probabilistic function that 
integrates to one. The idea is to place a 
number of RBFs at specific places in the 
input space with a specific width, and then 
given an input state, several of these RBFs 
are activated based on their distance to 
the input. The closest RBFs get the high-
est activations and most of the other RBFs 
receive an activation of zero. Then the acti-
vated RBFs form the new representation of 
the state. Similarly to the use of tile cod-
ing, the use of RBFs has the problem that 
it is very difficult to fill high dimensional 
state spaces with these local basis func-
tions. Therefore also this method is best 
used with not very many state variables.

A more powerful technique to approxi-
mate the state-action value function is to 
use multi-layer perceptrons (MLPs) [38, 63]. 
Multi-layer perceptrons map an input vec-
tor to an output vector using multiple 
layers of neurons. The neurons are con-
nected with weighted connections, and 
these weights can be adapted by a learn-
ing algorithm to learn the right mapping 
of input vectors to desired output vectors. 
One of the first times MLPs were com-

environment, and can be combined with a 
reward function for solving a task.

Function approximation
In the previous sections, we examined 
tabular representations for storing the 
state-action value function. Although these 
allow to optimally represent the true value 
function, they cannot be used with very 
large state spaces or with continuous state 
spaces. Often decision making problems 
involve multiple variables representing the 
state. When this number of variables in-
creases the state spaces explodes, which 
is called the curse of dimensionality. For 
example, with 20 binary variables repre-
senting the state, the number of states is 
already 220, or around 1  million. Although 
current computing power is large enough 
to cope with 1  million states, things get 
worse when representing the state of for 
example all possible chess positions. There 
are in total around 1030 different chess po-
sitions, so storing them in a lookup table 
would be infeasible. To handle this, func-
tion approximation techniques can be used 
to learn to approximate the state-action 
value function. Next to the decrease in 
necessary storage space, another advan-
tage of function approximators is that they 
generalize over the entire state space. If 
lookup tables are used, states that have 
not been visited do not have any updat-
ed Q-values yet and therefore selecting 
an action can only occur randomly. With 
function approximation techniques, similar 
states will get assigned similar action val-
ues and therefore not all states have to 
be visited in order to select meaningful 
actions.

In supervised learning, there are many 
algorithms that can learn mappings from 
input vectors to real-valued outputs. Basi-
cally, all such methods can be used also in 
reinforcement learning, but in RL research 
has focused mostly on a specific subset of 
such methods. The most commonly used 
function approximators used in RL are: 
linear function approximation techniques 
such as tile-coding and radial-basis func-
tion networks, multi-layer perceptrons and 
deep neural networks.

Linear function approximation tech-
niques use a set of basis functions to map 
the state st to an internal representation 

( ), , ( )s st k t1 fz z . To approximate a Q-func-
tion these basis function activations are 
linearly combined:

agent selects action a in state st. T 0$  is the 
temperature parameter used in the Boltz-
mann distribution. When T 0=  the agent 
does not explore at all, and when T " 3 
the agent always selects random actions. 

Another simple way to allow the agent 
to explore, is to initialize all Q-values to 
large values, which is called being optimis-
tic in the face of uncertainty. This makes 
the agent explore a lot in the beginning 
during which the values of explored ac-
tions will drop. After some time, the initial 
Q-values have washed out, but the agent 
has learned which state-action pairs lead 
to more reward intake than others. A prob-
lem of this approach is that the Q-values 
can drop quite fast when the learning rate 
is large. Another problem is that this meth-
od is difficult to combine with function 
approximation techniques, which will be 
discussed in the next section.

The above techniques are all undirected 
exploration strategies: they only use the 
Q-values in order to select (exploration) 
actions. Directed exploration techniques 
use other information as well. For exam-
ple, count-based methods [70] keep track 
of the number of times each action has 
been selected in each state. This allows 
the agent to go to areas of the state space, 
in which it has not (often) been before. 
Another directed technique is to learn how 
large the Q-value updates and errors were 
for particular state-action values. The idea 
is that large errors correspond to more 
uncertainty in the actual values and there-
fore state-action pairs with large errors 
should be explored more often.

A difficulty of the error-based explora-
tion strategy is that in some states the 
environment may be very stochastic. In 
such problems the error will stay high, but 
these state-action pairs may not be import-
ant to visit over and over for learning the 
optimal policy. Therefore Schmidhuber [41] 
proposed the idea of curiosity and novelty- 
based exploration. Here, the agent is at-
tracted to new parts of the state space, 
but at the same time the agent records if 
it can really learn new knowledge in these 
regions of the environment. Think for ex-
ample about a television. Although black-
white noise images are always different, 
they cannot be predicted and therefore 
watching these will not be useful when 
considered by this framework. Curiosity- 
driven exploration allows the agent to 
learn to increase its knowledge about the 
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task is broken up in smaller tasks until at 
the bottom of the tree primitive actions 
can be chosen. In general, hierarchical RL 
systems help to make learning faster when 
compared to flat learning algorithms.

Humans can learn to solve new tasks 
faster by using their previous experience 
with related tasks. This is the field of 
transfer learning that aims to reuse solu-
tions to previously solved tasks to solve 
new sequential decision making problems. 
Transfer learning has been used in differ-
ent ways such as instance transfer in which 
experiences are reused, representation 
transfer in which an abstraction process is 
used to allow transferring parts of the rep-
resentation, and parametric transfer to use 
previous Q-functions for learning to solve 
new problems [26].

Multi-agent RL is used when multiple 
agents can learn and interact in the same 
environment [11]. The reward function can 
be shared among the agents, leading to 
cooperative multi-agent systems, or can be 
individual functions for each agent, possi-
bly leading to competitive systems. One of 
the oldest multi-agent RL algorithms was 
a system that used Q-learning on multi-
ple nodes to route packages over a net-
work [9]. The system learned that under 
busy situations, the shortest route be-
tween different parts of the network will 
become saturated, leading to long waiting 
times. Therefore the RL system learned to 
select alternative longer routes if neces-
sary. Multi-agent RL has also been used to 
learn to find solutions to game theoreti-
cal problems such as matrix games. In a 
matrix game, each agent selects an action 
and based on all selected actions, each 
agent receives its own reward. Many ma-
trix games have a competitive nature, and 
therefore the aim is to learn to converge 
to a Nash equilibrium, in which no agent 
is better off when it deviates from the joint 
action strategy [35].

Although most RL research has focused 
on scalar reward functions, there also exist 
RL systems that learn to optimize reward 
vectors where multiple objectives are as-
signed rewards at the same time. This is 
the field of multi-objective RL and its aim 
is not so much to learn a single policy, but 
to learn all polices that are not dominated 
[16, 37, 68, 71]. Policies are non-dominated 
if they do not obtain a lower cumulative re-
ward on all objectives than another policy. 
In general it is much harder to learn the set 

[21]. An LSTM can learn to overcome long-
time relationships between previous inputs 
and future predictions and has been suc-
cessfully used for many time-series appli-
cations. Bakker [4] was the first who used 
the LSTM for solving a POMDP and showed 
that the LSTM was able to learn to over-
come long time lags. 

Other topics in RL
We have examined how an agent can use 
an RL algorithm to learn to optimize its be-
havior by interacting with an environment. 
In most research in RL, an agent learns a 
single state-action value function or poli-
cy and uses that to select actions. In the 
previous decades, a number of new topics 
in RL have emerged, which are described 
in detail in [67]. Here, we will have a look 
at several topics: hierarchical RL, transfer 
learning, multi-agent RL, and multi-objec-
tive RL.

In hierarchical RL a divide and conquer 
strategy is used to split the overall task in 
a number of subtasks [5]. In one of the ear-
liest hierarchical RL systems, HQ-learning 
[69], a higher-level policy is used to learn 
to select subgoals which the lower-level 
policy has to attain. This allowed HQ-learn-
ing to solve a number of difficult tasks 
modelled as POMDPs. The options frame-
work [36] introduced the notion of options, 
which are macro-actions that select multi-
ple actions before finishing. Such options 
make it easier to learn to solve problems 
where many actions are needed to arrive 
at a goal state, since shorter sequences of 
options can arrive in the goal state. This 
makes it easier to quicker find the goal 
and solve the temporal credit assignment 
problem, which relates to how important a 
previously executed action was for attain-
ing a goal. MAXQ-learning [14] is another 
hierarchical RL system in which the overall 

bined with RL, was in Tesauro’s backgam-
mon learning program [52]. This program, 
called TD-Gammon, was able to learn 
to play backgammon purely by playing 
games against itself. After around 1.5  mil-
lion training games, the program was able 
to attain the level of the strongest human 
players. MLPs are very powerful in their 
way to represent non-linear functions, but 
often need more time and experiences to 
train and they have much worse conver-
gence guarantees than linear function ap-
proximation techniques. In some cases, 
MLPs combined with Q-learning can even 
diverge and lead to continuously increas-
ing weight and output values. Still, in 
many applications MLPs have been fruitful-
ly combined with RL [8, 27, 57].

Inspired by the recent successes in deep 
learning [25, 42], convolutional neural net-
works have also been introduced in rein-
forcement learning, a field that is called 
deep reinforcement learning. In [30], the 
authors used a convolutional neural net-
work combined with Q-learning to learn to 
play different Atari games using pixel in-
formation as input. The difficulty of using 
pixels as input is that the input space is in-
credibly large. However, by using convolu-
tional neural networks, the authors showed 
that it was possible to play different Atari 
games at a very good level using only 
pixel input. In a later paper [31], the au-
thors used the same methodology to learn 
to play 49 different Atari games at a lev-
el comparable to a professional human 
games tester. Deep RL has also been used 
with a number of other algorithms such 
as Monte-Carlo Tree Search [24] to learn 
to play Go at a level better than any hu-
man player [47]. Almost the same system 
has also been used to learn to play Chess 
and Shogi at a level much better than any 
human or previous computer program 
by letting the system learn from playing 
games against itself [46]. Nowadays, the 
field of deep RL attracts a lot of interest 
from the RL community, and different al-
gorithms have been introduced to make it 
more efficient [20]. Figure 3 shows how a 
Deep RL system interacts with the classical 
Arcade game Breakout to learn to optimize 
its score.

For solving POMDPs with RL systems, 
recurrent neural networks can be effective-
ly used. One of the best known and per-
forming recurrent neural networks is the 
long short term memory (LSTM) network 

Figure 3  A Deep RL system learning to play the game 
Breakout from pixel information as input
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MARL problem that has received a lot of 
attention is traffic light control. Many inter-
sections in cities have traffic lights, but the 
commonly used controllers can in many 
cases be improved using RL. In [65], one 
of the first RL systems is presented that 
learned to control traffic lights on many 
intersections. This resulted in much lower 
waiting times compared to non-adaptive 
controllers. RL has also been used in a 
realistic traffic network modelled after the 
city Tehran where multiple traffic disrup-
tions can take place [3]. Figure 4 shows 
the used traffic light simulator in [65].

Although RL techniques usually need 
many interactions with an environment to 
optimize an agent or controller, RL has also 
been effectively used for robot control. In 
[1], first a model was learned from the in-
teraction between an unmanned aerial ve-
hicle (helicopter) and the sky, and then RL 
was used to learn very complex behaviors 
such as looping etc. In [60], RL was com-
bined with motor primitives, which take 
care of particular action sequences, to train 
a robot to play table tennis. In a recent 
paper [18], a number of robots was used 
at the same time to train robots to open 
a door. There is a growing amount of re-
search using RL for different robot control 
problems, and of course we cannot cover 
them all in this short survey.

Therapy planning for patients is another 
sequential decision making problem where 
for example different therapies can be giv-

to learn to perform well with only 10,000 
training games. Deep RL has also been 
used for learning to optimize the behavior 
of Ms.  Pac-Man, but using only pixel-in-
formation, this took much more training 
games and led to worse results [31]. Some 
researchers have decomposed the overall 
Q-function into a set of single objective re-
ward functions, which are then combined 
to solve the overall problem. This tech-
nique has been successfully used to obtain 
the highest score with an RL system for the 
game Ms.  Pac-Man in [59].

Many other games such as Starcraft 
[43], Tron [23], and others have also been 
used to develop different RL systems that 
can learn to play them well.

Although games provide researchers 
with an interesting test problem for their 
algorithm, the societal relevance is a bit 
lower than for other problems. In the 
field of multi-agent reinforcement learning 
(MARL), different systems have been con-
structed to learn to optimize the behavior 
of multiple agents. The network routing 
problem mentioned earlier is one example. 
Another successful example was the use of 
MARL for elevator control [12]. In this sys-
tem, four elevators have to collaborate to 
minimize the total waiting time of people 
wanting to take the elevator from one floor 
to another. The RL system was able to 
learn to control the elevators such that the 
overall waiting time was shorter than with 
many commonly used techniques. Another 

of non-dominated policies than a single 
optimal policy, and that is why multi-objec-
tive RL has not been used yet for solving 
very complex problems.

Applications
There are many applications to which rein-
forcement learning algorithms have been 
efficiently applied. We will describe a wide 
range of different applications, starting 
with game playing, multi-agent problems, 
and robotics and then discuss applications 
for medicine and health, electric power 
grids, and end with personal education 
systems.

Games provide researchers with a large 
number of interesting problems having dif-
ferent complexities, but still allow for con-
trolled and repeatable settings. Therefore, 
they have always played an important part 
of AI research [73]. The oldest self-learn-
ing program that learned to play a game is 
Samuel’s checkers playing program [40]. It 
combined several machine learning meth-
ods and reached a decent amateur level in 
playing checkers. A very successful attempt 
to using reinforcement learning to play 
games is TD-Gammon [52], that learned 
to play the game of Backgammon at hu-
man expert level using temporal difference 
learning [49] and multi-layer perceptrons. 
Although in the nineties, learning from 
1.5  million games took multiple months, 
with the current computing power this 
can be done within several hours. Anoth-
er board-game that has received a lot of 
attention from RL researchers is Othello 
[10, 29, 57, 56]. In [56], structured multi-lay-
er perceptrons were used in which not all 
board-fields were connected to hidden 
units, but specific lines or regions were 
connected to them. This led to much bet-
ter results and a faster learning process. As 
mentioned before, AlphaZero obtained an 
excellent level of playing Chess, but Chess 
has also been used a long time before to 
let RL systems to learn to play the game, 
although the final performance of these RL 
systems was much worse [6, 54].

Next to using RL for learning to play 
board-games, RL has also been used for 
many other types of games. In [8], the 
authors used Q-learning with a multi-lay-
er perceptron to learn to play the game 
Ms. Pac-Man. The novel thing was that the 
system only used seven input units, which 
extracted higher-level information from 
the game state. This allowed the system 

Figure 4  The traffic light simulator consisting of 6 intersections. There are traffic lights for going straight ahead/right or 
for going left (no collissions).
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work on intelligent tutoring systems that 
use RL to educate people. These systems 
can offer much more personalized educa-
tion than currently used in the classroom.

To conclude, RL systems have been 
applied to a wide range of different prob-
lems. RL systems can continuously learn 
to improve themselves and do not need a 
dataset or humans to provide labels to the 
system. Therefore, reinforcement learning 
is a very promising direction for Artificial 
Intelligence to evolve further and to help 
human kind to cope with many different 
challenges in life.	 s

control problems [17] and make it easier to 
cope with additional variable power sourc-
es such as sun and wind energy. In the 
finance sector, RL systems can be used to 
learn from a historical huge amount of data 
to create automatic trading bots. Also in 
advertising RL systems have been used to 
estimate on which advertisement a specific 
user is most likely to click on. Chatbots 
have recently been constructed using deep 
reinforcement learning and because these 
systems can become better with more in-
teractions and feedback, the end of this is 
not in sight. Finally, there is some recent 

en to a patient and the goal is to make the 
patient healthy as soon as possible. There-
fore this is also a very good problem for 
RL, but some things have to be adapted, 
for example exploration is more complex in 
this scenario. In [44], an RL system is devel-
oped to plan therapies for patients suffering 
from schizophrenia. In [34], a deep RL 
system is used for medication dosing. It 
should be clear that there are many more 
possible applications of RL to health and 
medicine. 

RL systems have also been used to 
solve electric power system decision and 
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