
Marco Wiering	 Reinforcement learning: from methods to applications	 NAW 5/19  nr. 3  september 2018	 157

1 for winning, -1 for losing, and 0 for a
draw. Even though the agent only receives
such sparse rewards, it can still learn to
play the game very well in many cases. Cur-
rently, the most impressive demonstration
of the power of RL is Google DeepMind’s
AlphaGo Zero system [47] that learned to
play the complex game of Go extremely
well by only playing games against itself.
AlphaGo Zero was able to beat its prede-
cessor AlphaGo [45], which first learned
from games played by human players and
won a match against the human Grand-
master Lee Sedol in 2016 with 4-1.

In this paper, first different kinds of
sequential decision making problems
for RL are examined. Then we will study
several RL algorithms that learn from the
experiences obtained by the agent in or-
der to maximize its performance over time.
We then examine the issue of exploration,
which enables an agent to explore the
results of selecting different actions, and
which is necessary to learn to perform op-
timally. To deal with very large state spac-
es, function approximation techniques are
necessary and the most often used tech-
niques will be explained. Then some other
topics in RL will be covered, which increase
the speed or applicability of RL systems.
After having explained the ingredients of
RL systems, a number of different applica-
tions will be finally described for which RL
can be used effectively.

to belong to each other, or it can derive
particular features or frequently occurring
sub-patterns from the data.

Whereas the aforementioned algorithms
work with a dataset of examples to gener-
ate a model, reinforcement learning (RL)
algorithms train an agent, which is a soft-
ware program that can select and execute
actions based on its inputs. Furthermore,
such RL agents interact with an environ-
ment through which it receives experienc-
es. Therefore, RL methods do not need
a dataset, but are connected to a simu-
lator or the real world. The experiences
obtained by an RL agent are generally its
observations of the environment, the ac-
tions which it executes, and rewards which
it receives from selecting actions in par-
ticular environmental situations. The goal
of the RL agent is to maximize the sum of
rewards that it obtains over time.

In particular problems, such as learning
to optimally play a game, the reward is
given at the end of the game, and is simply

Machine learning is a very hot research area
within the larger field Artificial Intelligence
(AI). The main idea of machine learning al-
gorithms is to enable a computer program
to optimize a particular performance metric
using data or experiences to learn from.
The field can be divided in three main
areas: supervised learning, unsupervised
learning and reinforcement learning. In
supervised learning, a dataset with inputs
and target outputs is given to a machine
learning algorithm. The algorithm (with
all of its tunable hyperparameters) then
generates a model (or function) that can
map inputs to their corresponding target
outputs. An important issue in supervised
learning is to generate a trained model that
also performs well for new, unseen, inputs,
which means the model should generalize
over the whole input space.

In unsupervised learning, an algorithm
receives input data without target outputs.
The algorithm can use the input patterns
to compute clusters of inputs that seem

Reinforcement learning:
from methods to applications

Reinforcement learning (RL) algorithms enable computer programs to learn from interacting
with an environment. The goal is to learn the optimal policy that maximizes the long-term
intake of a reward signal, where rewards are given to the agent for reaching particular
environmental situations. The field of RL has developed a lot since the past decade. In this
paper, Marco Wiering will first examine different decision making problems and RL algo-
rithms. Then the combination of RL with different function approximators that can be used
to solve large-scale problems will be described. After explaining several other ingredients
of an RL system, a wide variety of different applications that can be fruitfully solved by RL
systems will be covered.

Marco Wiering
Department of Artificial Intelligence
University of Groningen
m.a.wiering@rug.nl

158	 NAW 5/19  nr. 3  september 2018	 Reinforcement learning: from methods to applications	 Marco Wiering

Il
lu

st
ra

ti
on

:
Ry

u
Ta

jir
i

Marco Wiering	 Reinforcement learning: from methods to applications	 NAW 5/19  nr. 3  september 2018	 159

This equation is known as Bellman’s opti-
mality equation and uses an efficient re-
cursive formulation. The right-hand side of
this equation is basically using a one-step
lookahead in the future and could be used
to update the Q-value from the left-hand
side. The dynamic programming algorithm
called value iteration makes use of this to
efficiently compute the optimal policy for a
known MDP. The algorithm starts with an
arbitrary policy r and an arbitrary value
function V and repeats the following steps
for all s S! . First, the Q-values for all ac-
tions in state s are computed:

(,) (,) (, ,) () .' 'Q s a R s a T s a s V s
's

c= + /

Then, the new value function is calculated:

() (,) .maxV s Q s a
a

=

Then, ()sr is changed so that the action a
which maximizes the Q-function in a state
s will be chosen:

() (,) .arg maxs Q s a
a

r =

The algorithm halts when the largest dif-
ference between two successive value
functions is smaller than e, some positive
parameter with a value close to 0. During
each iteration, an additional lookahead
step in the future is performed. Finally,
with a discount factor 1<c , the far future
is discounted so much, that more iterations
do not change the value function anymore.

Although in a lot of research about re-
inforcement learning, the MDP framework
is used, there are also more complex se-
quential decision making problems. One
of these is the Partially Observable Markov
Decision Process (POMDP) framework [28].
In a POMDP, the Markov property does not
hold, because the agent only receives an
observation ot in each state using an ob-
servation function ()o O st t= . One problem
of POMDPs is that the same observation
may be received when the agent is in dif-
ferent states, which is called perceptual
aliasing. Since the observation does not
fully describe the current state, the Markov
property does not hold. For this reason,
it is necessary to make use of the history
ht instead of only the current observation
ot in order to enable the agent to choose
optimal actions.

There exist different algorithms to com-
pute solutions to a priori known POMDPs.
The most commonly used approach is to

future. This cumulative discounted reward
sum is called the return and is defined as:

.R r r Rt
i

t i
i

t t
0

1c c= = +
3

+
=

+/

Note that an infinite horizon (future)
is used here. By having a discount fac-
tor 1<c , it is guaranteed that the sum
is bounded. Instead of directly optimizing
the action-selection policy, value-function
based RL algorithms use state-value func-
tions or state-action value functions. The
state-action value function (,)Q s ar de-
notes the expected sum of discounted
rewards obtained when the agent selects
action a in state s and follows policy r
afterwards:

(,) | , , .Q s a E r s s a at
t

t
0 0

0
c r= = =

3
r

=
f p/

Where E denotes the expectancy op-
erator. For small-sized finite MDPs, the
Q-function can be stored in a lookup table
of size | | | |S A . The goal is then to learn
the Q-function Q* of the optimal policy, for
which the following holds:

(,) (,) , , .Q s a Q s a s a6$ rr*

When the optimal Q-function is known (ei-
ther computed or learned), the agent can
always select the optimal action with the
highest Q-value in some state s:

() (,) .arg maxs Q s a*
a

r = *

When the MDP is known a priori, it is pos-
sible to compute the optimal Q-function
with dynamic programming techniques
such as value interaction [7]. Bellman not-
ed that the following must hold for the op-
timal Q-function:

(,) (,)

(, ,) (,) .' 'max

Q s a R s a

T s a s Q s b
' bs

c

=

+

*

*/

Sequential decision making
Reinforcement learning algorithms en-
able an agent to optimize its behavior by
learning from the interaction with the en-
vironment. At each time step t, the agent
perceives the state st, and uses the state
information to select and execute action at.
Based on this executed action, the agent
transits to a new state st 1+ and receives
a scalar reward rt. The interaction histo-
ry of the agent with its environment is

, , , , , , ,h s a r s a r st t0 0 0 1 1 1 f= . The interaction
between the agent and its environment is
illustrated in Figure 1. For some problems,
the agent cannot perceive the full state
information, and only receives a partial
observation ot instead of st. An important
property of a sequential decision mak-
ing problem is whether it has the Markov
property, which holds if the current state
st and action at contain sufficient infor-
mation to predict the next state and the
expected received reward: (, | ,)P s r s at t t t1 =+

(, | ,)P s r h at t t t1+ . This means that instead of
needing to use the whole interaction histo-
ry ht, only the current state st can be used
to select the optimal action. This simplifies
matters a lot, since the history could be a
very long sequence of previous states and
previously executed actions.

There are different kinds of sequential
decision making problems. The simplest
one is a finite Markov Decision Process
(MDP) [58], which has the Markov property
and is defined by:

–– A set of states S, where s St ! denotes
the state at time t.

–– A set of actions A, where a At ! denotes
the action selected at time t.

–– A transition function (, ,)'T s a s , which
specifies the probability of moving to
state s’ after selecting action a in state s.

–– A reward function (,)R s a , which sends
a reward signal to the agent for execut-
ing action a in state s. rt denotes the
reward obtained at time step t. For sim-
plicity we denote the average reward
obtained by executing action a in state
s also by (,)R s a .

–– A discount factor c that makes rewards
received further in the future less im-
portant than immediate rewards, where
0 1# #c .

The goal in an MDP is to learn a policy,
()s a"r , mapping states to actions in such

a way that the agent receives the highest
cumulative discounted reward sum in its

Figure 1  The interaction process between an RL agent
and its environment. The agent receives as perception of
the environment the state information and uses this to
select an action. After this, the agent receives a reward
and goes to a next state.

160	 NAW 5/19  nr. 3  september 2018	 Reinforcement learning: from methods to applications	 Marco Wiering

action. SARSA updates the Q-value of ac-
tion at in state st in the following way:

(,) (,)

((,) (,)) .

Q s a Q s a

r Q s a Q s a
t t t t

t t t t t1 1a c

=

+ + -+ +

As can be seen from this equation, instead
of the best thought action in state st 1+ ,
the actual selected action in the next state
is used to update the Q-value. Because
SARSA is an on-policy RL algorithm, it is
not able to learn an optimal policy as long
as there is exploration. Therefore, SARSA
only converges to the optimal policy and
Q-function if the same conditions hold as
for Q-learning and if the exploration policy
becomes greedy in the limit of infinite ex-
ploration (GLIE) [48].

The difference between the learned
behavior when off-policy Q-learning or
on-policy SARSA is used can be best il-
lustrated through an example [51]. Given
the grid shown in Figure 2, the agent can
choose to move North, West, South and
East. If an action is not possible (the agent
goes outside the grid), the agent remains
in the same state. For every action a neg-
ative reward of -1 is given except when
the agent goes to a state where it falls
from the cliff (in yellow), where the agent
dies and receives a reward of -100 after
which a new epoch is started. When the
agent is in the goal state, an epoch ter-
minates as well and the agent does not
receive negative rewards anymore. When
an epoch ends, the agent starts again in

Because most environments are stochastic,
it is not always a good idea to use a large
learning rate to speed up the learning pro-
cess. This is because learning on one ex-
perience also means forgetting about pre-
vious experiences. With a finite number of
states and actions, Q-learning converges
to the optimal policy when all state-action
pairs are visited for an infinite number of
times and the learning rate is properly an-
nealed [22]. Note that this means all ac-
tions should be tried out infinitely often
in each state. Therefore always selecting
the action with the highest current Q-value
in a state is not good for optimizing the
policy. There is also the need to explore
alternative actions, which currently do
not seem optimal, but which could lead
to better future states and higher rewards.
Exploration in RL will be described in the
following section.

Q-learning is called an off-policy RL al-
gorithm. Due to the necessity to use an
exploration strategy, the behavioral policy
that selects actions, is not the same as the
greedy policy that is the result of the learn-
ing dynamics. Because Q-learning uses the
max operator in its update rule, Q-learning
is able to learn the optimal Q-function (and
therefore policy) even if always random ac-
tions are selected during the learning pro-
cess. This has several advantages, since
it usually allows higher exploration rates
than on-policy RL algorithms. A well known
on-policy RL algorithm is SARSA [39, 50]
which stands for state-action-reward-state-

use the history ht to create a belief state
()b st , which is a probability distribution

over the entire state space [13]. The prob-
ability that the agent is in each state giv-
en the history can be efficiently computed
using recursive formulas. Then dynamic
programming can be used with the belief
states in order to compute the optimal
policy. The complexity of solving POMDPs
is however much larger than that of solv-
ing MDPs. Whereas MDPs can be solved
in polynomial time, solving POMDPs soon
becomes intractable with more states, ac-
tions and observations.

Other sequential decision making prob-
lems exist when multiple agents learn at
the same time. In this case, the Markov
property also does not hold anymore, be-
cause the actions of other agents change
over time and influence the goodness of
selecting a particular action in some state
for a specific agent. Furthermore, in multi-
agent sequential decision making prob-
lems, all agents may have a cooperative
reward function, but there may also be
competitive individual reward functions.

Reinforcement learning algorithms
For most real-world applications a prior
model of an MDP (or POMDP) is not known
beforehand. Furthermore, the state-action
space may be high-dimensional or continu-
ous, so that dynamic programming cannot
be effectively used. In that case, RL algo-
rithms can be used to learn the optimal
policy by interacting with the environment.
The main idea of an RL algorithm is to use
each experience of the agent in the form
(, , ,)s a r st t t t 1+ in a way to improve the pol-
icy or Q-function. The Q-function can be
stored in a lookup table for small state-
action spaces, but can also be approxi-
mated with function approximators. The
most often used algorithm is Q-learning
[61, 62]. In online Q-learning the Q-value
of a state-action pair is updated using the
experience by:

(,) (,)

((,) (,)) .max

Q s a Q s a

r Q s b Q s a
t t t t

t
b

t t t1a c

=

+ + -+

Where a is the learning rate that deter-
mines how much the agent learns from the
current experience. In case the last state
st 1+ is a terminal state, the update rule
becomes:

(,) (,) ((,)) .Q s a Q s a r Q s at t t t t t ta= + -

−100 GS

Figure 2  The cliff environment illustrating the difference in learning dynamics between Q-learning and SARSA. The goal
is to find the shortest path from the start state S to the goal state G, however a large penalty is given if the agent falls off
the cliff. Q-learning will learn the optimal red path, whereas SARSA will converge to a slightly longer path (in green). On
the other hand, while learning, the Q-learning agent will fall off the cliff much more often due to exploration actions than
the SARSA agent, which takes the possible exploration actions into account when learning the policy.

Marco Wiering	 Reinforcement learning: from methods to applications	 NAW 5/19  nr. 3  september 2018	 161

the exploration-exploitation dilemma [53].
This dilemma has often been studied us-
ing multi-armed bandits (MABs), which
are a special kind of MDP with only a sin-
gle state. In a MAB, the agent can select
among k actions, each having its own sto-
chastic reward function ()R a . By trying an
arm at at time step t, the agent receives a
reward rt, and uses this to update its esti-
mate ()Q at of the average reward defined
by function ()R $. When the agent would
try out all actions an infinite number of
times, then the Q-function ()Q a converges
to the average reward ()R a due to the law
of large numbers. After this, the agent can
simply select the action with the highest
Q-value. However, if the agent tries out all
actions many times, it also selects subop-
timal actions many times, and this is of
course not desired.

The MAB-problem has often been used
to create proofs for exploration algorithms,
as it is simpler than solving a full MDP.
Such proofs can for example give guaran-
tees about the maximal amount of experi-
ences needed to learn the optimal action
most of the times. Furthermore, exploration
algorithms designed for the MAB-problem
can also be used as exploration strategy in
an MDP. We will now describe a number of
often used exploration strategies for solv-
ing MDPs [55].
e-greedy exploration is one of the

most used exploration strategies. It uses
0 1# #e as parameter of exploration
to decide which action to perform using

(,)Q s at . The agent chooses the action with
the highest Q-value in the current state
with probability 1 e- , and a random action
otherwise. A larger value for e means more
exploration actions are selected by the
agent. Although e-greedy is very simple, it
is sometimes hard to beat.

One drawback of e-greedy exploration is
that the exploration action is selected uni-
form randomly from the set of possible ac-
tions. Therefore, it is as likely to choose the
worst action as it is to choose the second-
best action if an exploration action is se-
lected. That is why Boltzmann or softmax
exploration [51] uses a Boltzmann distribu-
tion to assign a probability (,)s atr to the
actions in order to choose actions with
higher Q-values with higher probability:

(,) .s a
e

e
(,)/

(,)/

t Q s b T
b

m

Q s a T

1
t

t
r =

=
/

(,)s atr is then the probability with which the

Evolutionary algorithms can be used for
many different kinds of problems such as
combinatorial optimization problems. They
maintain a population of individuals that
encode a policy and each individual is
tested to obtain its fitness value for the
task at hand. Then individuals are selected
based on their fitness value and the best
individuals are allowed to reproduce most
often. New offspring can then be created
by mixing the information of the two se-
lected parent individuals using crossover
operators and some randomness is added
by using a mutation operator. These evolu-
tionary RL methods have been successfully
applied to different problems such as play-
ing Othello [33] and were also successfully
used to learn policies for Atari games [19].
Value-function based RL and evolutionary
RL have also been combined by a number
of researchers, see [15] for a review of such
combinations.

RL algorithms sometimes need very
many experiences to learn a good policy.
One of the reasons is that algorithms such
as Q-learning and SARSA only update a
single Q-value given one new experience.
There exist several methods to improve on
this. Eligibility traces [49] enable multiple
states to be eligible to change their values
based on a new experience. Experience
replay [27] is a technique in which many
experiences are stored in a replay memory
and the replay memory is then used to
make multiple updates. Experience replay
is nowadays often used in many deep RL
algorithms [30].

Finally, model-based RL method com-
pute an approximation to the transition
and reward functions based on the ob-
tained experiences. When these are mod-
elled, dynamic programming techniques
can be used to efficiently compute the
Q-function [32, 70]. Although model-based
RL techniques are very efficient for finite
MDPs with not too many states and ac-
tions, it is very complex to use them for
high-dimensional and continuous state-ac-
tion spaces.

Exploration
As mentioned before, an agent needs to
make exploration actions in order to be
able to learn an optimal policy. However,
to get most rewards while interacting with
the environment, the agent should also
exploit its current knowledge in the form
of the Q-values it learned. This leads to

the start state and this is repeated for a
large number of times.

The problem is deterministic, but the
agent sometimes chooses an exploration
action with some probability. Q-learning
will converge to the optimal path shown
in red in the figure. SARSA will converge
to the green path. It can be seen that the
final path of SARSA is longer. This is be-
cause the SARSA agent takes into account
its exploration actions which often bring
it to fall off the cliff when learning. There-
fore, the SARSA agent will learn to avoid
coming close to the cliff. The result is that
the SARSA agent obtains a higher average
reward while learning, but after the learn-
ing process has converged to a stable pol-
icy, the agent receives a slightly lower sum
of rewards. Although this is a very simple
problem, it clearly shows the differences
between off-policy and on-policy RL algo-
rithms.

There are a number of other reinforce-
ment learning algorithms. QV-learning
[66] uses two value functions: the state
value function ()V s and the state-action
or Q-function (,)Q s a . The Q-function is
trained based on the value function and
the value function is trained by using the
immediate reward rt and the value of the
next state.

In actor-critic algorithms, the critic uses
temporal difference learning [49] to train
the value function ()V s , and the actor is
used to select actions. In the actor-critic
framework, the actor is trained using the
critic’s evaluations. A main advantage of
actor-critic algorithms is that it becomes
easier to deal with continuous action
spaces. If a Q-function (,)Q s a is used in
a critic-only system, it is complex to select
the continuous action that maximizes the
Q-value. With actor-critic approaches, the
actor can immediately output the action
that should be selected.

A related class of algorithms are policy-
gradient algorithms. In their basic form,
these algorithms only use an actor with a
policy and no critic. One of the earliest ap-
proaches, REINFORCE [72], trains the policy
using the full (Monte-Carlo) return. If this
return is high, then the policy is adjusted
so that the taken actions will be strength-
ened (reinforced). Otherwise, if bad things
happen, then the policy is changed to cir-
cumvent selecting the same actions.

Another class of algorithms is called
evolutionary reinforcement learning [64].

162	 NAW 5/19  nr. 3  september 2018	 Reinforcement learning: from methods to applications	 Marco Wiering

(, |) () .Q s a s ,i i a
i

k

1
i z i=

=
/

The advantages of these linear function
approximation techniques are that the al-
gorithms are fast, have good convergence
properties and are easy to implement. A
disadvantage is that the performance of
these methods depends heavily on the
overall design of the basis functions. One
way of designing the basis functions is to
use tile coding or CMACS [2, 50]. In tile cod-
ing a number of tiles are used with cells
inside. Given a state, one cell in each tile is
activated, and the activated cells form the
new representation of the state. The use of
multiple overlapping tilings helps to gener-
alize better for continuous state spaces, as
multiple cells which are activated in slight-
ly different input regions can be updated
at the same time. A problem of tile coding
is that it is difficult to design the tiles and
cells for high-dimensional state spaces. In
this case, tiles need to combine many dif-
ferent projections of a few state variables,
because otherwise there are far too many
cells in each tile.

Another linear function approximation
technique is the use of radial-basis func-
tions (RBFs). Radial basis functions resem-
ble Gaussian functions without the neces-
sity to be a true probabilistic function that
integrates to one. The idea is to place a
number of RBFs at specific places in the
input space with a specific width, and then
given an input state, several of these RBFs
are activated based on their distance to
the input. The closest RBFs get the high-
est activations and most of the other RBFs
receive an activation of zero. Then the acti-
vated RBFs form the new representation of
the state. Similarly to the use of tile cod-
ing, the use of RBFs has the problem that
it is very difficult to fill high dimensional
state spaces with these local basis func-
tions. Therefore also this method is best
used with not very many state variables.

A more powerful technique to approxi-
mate the state-action value function is to
use multi-layer perceptrons (MLPs) [38, 63].
Multi-layer perceptrons map an input vec-
tor to an output vector using multiple
layers of neurons. The neurons are con-
nected with weighted connections, and
these weights can be adapted by a learn-
ing algorithm to learn the right mapping
of input vectors to desired output vectors.
One of the first times MLPs were com-

environment, and can be combined with a
reward function for solving a task.

Function approximation
In the previous sections, we examined
tabular representations for storing the
state-action value function. Although these
allow to optimally represent the true value
function, they cannot be used with very
large state spaces or with continuous state
spaces. Often decision making problems
involve multiple variables representing the
state. When this number of variables in-
creases the state spaces explodes, which
is called the curse of dimensionality. For
example, with 20 binary variables repre-
senting the state, the number of states is
already 220, or around 1  million. Although
current computing power is large enough
to cope with 1  million states, things get
worse when representing the state of for
example all possible chess positions. There
are in total around 1030 different chess po-
sitions, so storing them in a lookup table
would be infeasible. To handle this, func-
tion approximation techniques can be used
to learn to approximate the state-action
value function. Next to the decrease in
necessary storage space, another advan-
tage of function approximators is that they
generalize over the entire state space. If
lookup tables are used, states that have
not been visited do not have any updat-
ed Q-values yet and therefore selecting
an action can only occur randomly. With
function approximation techniques, similar
states will get assigned similar action val-
ues and therefore not all states have to
be visited in order to select meaningful
actions.

In supervised learning, there are many
algorithms that can learn mappings from
input vectors to real-valued outputs. Basi-
cally, all such methods can be used also in
reinforcement learning, but in RL research
has focused mostly on a specific subset of
such methods. The most commonly used
function approximators used in RL are:
linear function approximation techniques
such as tile-coding and radial-basis func-
tion networks, multi-layer perceptrons and
deep neural networks.

Linear function approximation tech-
niques use a set of basis functions to map
the state st to an internal representation

(), , ()s st k t1 fz z . To approximate a Q-func-
tion these basis function activations are
linearly combined:

agent selects action a in state st. T 0$ is the
temperature parameter used in the Boltz-
mann distribution. When T 0= the agent
does not explore at all, and when T " 3
the agent always selects random actions.

Another simple way to allow the agent
to explore, is to initialize all Q-values to
large values, which is called being optimis-
tic in the face of uncertainty. This makes
the agent explore a lot in the beginning
during which the values of explored ac-
tions will drop. After some time, the initial
Q-values have washed out, but the agent
has learned which state-action pairs lead
to more reward intake than others. A prob-
lem of this approach is that the Q-values
can drop quite fast when the learning rate
is large. Another problem is that this meth-
od is difficult to combine with function
approximation techniques, which will be
discussed in the next section.

The above techniques are all undirected
exploration strategies: they only use the
Q-values in order to select (exploration)
actions. Directed exploration techniques
use other information as well. For exam-
ple, count-based methods [70] keep track
of the number of times each action has
been selected in each state. This allows
the agent to go to areas of the state space,
in which it has not (often) been before.
Another directed technique is to learn how
large the Q-value updates and errors were
for particular state-action values. The idea
is that large errors correspond to more
uncertainty in the actual values and there-
fore state-action pairs with large errors
should be explored more often.

A difficulty of the error-based explora-
tion strategy is that in some states the
environment may be very stochastic. In
such problems the error will stay high, but
these state-action pairs may not be import-
ant to visit over and over for learning the
optimal policy. Therefore Schmidhuber [41]
proposed the idea of curiosity and novelty-
based exploration. Here, the agent is at-
tracted to new parts of the state space,
but at the same time the agent records if
it can really learn new knowledge in these
regions of the environment. Think for ex-
ample about a television. Although black-
white noise images are always different,
they cannot be predicted and therefore
watching these will not be useful when
considered by this framework. Curiosity-
driven exploration allows the agent to
learn to increase its knowledge about the

Marco Wiering	 Reinforcement learning: from methods to applications	 NAW 5/19  nr. 3  september 2018	 163

task is broken up in smaller tasks until at
the bottom of the tree primitive actions
can be chosen. In general, hierarchical RL
systems help to make learning faster when
compared to flat learning algorithms.

Humans can learn to solve new tasks
faster by using their previous experience
with related tasks. This is the field of
transfer learning that aims to reuse solu-
tions to previously solved tasks to solve
new sequential decision making problems.
Transfer learning has been used in differ-
ent ways such as instance transfer in which
experiences are reused, representation
transfer in which an abstraction process is
used to allow transferring parts of the rep-
resentation, and parametric transfer to use
previous Q-functions for learning to solve
new problems [26].

Multi-agent RL is used when multiple
agents can learn and interact in the same
environment [11]. The reward function can
be shared among the agents, leading to
cooperative multi-agent systems, or can be
individual functions for each agent, possi-
bly leading to competitive systems. One of
the oldest multi-agent RL algorithms was
a system that used Q-learning on multi-
ple nodes to route packages over a net-
work [9]. The system learned that under
busy situations, the shortest route be-
tween different parts of the network will
become saturated, leading to long waiting
times. Therefore the RL system learned to
select alternative longer routes if neces-
sary. Multi-agent RL has also been used to
learn to find solutions to game theoreti-
cal problems such as matrix games. In a
matrix game, each agent selects an action
and based on all selected actions, each
agent receives its own reward. Many ma-
trix games have a competitive nature, and
therefore the aim is to learn to converge
to a Nash equilibrium, in which no agent
is better off when it deviates from the joint
action strategy [35].

Although most RL research has focused
on scalar reward functions, there also exist
RL systems that learn to optimize reward
vectors where multiple objectives are as-
signed rewards at the same time. This is
the field of multi-objective RL and its aim
is not so much to learn a single policy, but
to learn all polices that are not dominated
[16, 37, 68, 71]. Policies are non-dominated
if they do not obtain a lower cumulative re-
ward on all objectives than another policy.
In general it is much harder to learn the set

[21]. An LSTM can learn to overcome long-
time relationships between previous inputs
and future predictions and has been suc-
cessfully used for many time-series appli-
cations. Bakker [4] was the first who used
the LSTM for solving a POMDP and showed
that the LSTM was able to learn to over-
come long time lags.

Other topics in RL
We have examined how an agent can use
an RL algorithm to learn to optimize its be-
havior by interacting with an environment.
In most research in RL, an agent learns a
single state-action value function or poli-
cy and uses that to select actions. In the
previous decades, a number of new topics
in RL have emerged, which are described
in detail in [67]. Here, we will have a look
at several topics: hierarchical RL, transfer
learning, multi-agent RL, and multi-objec-
tive RL.

In hierarchical RL a divide and conquer
strategy is used to split the overall task in
a number of subtasks [5]. In one of the ear-
liest hierarchical RL systems, HQ-learning
[69], a higher-level policy is used to learn
to select subgoals which the lower-level
policy has to attain. This allowed HQ-learn-
ing to solve a number of difficult tasks
modelled as POMDPs. The options frame-
work [36] introduced the notion of options,
which are macro-actions that select multi-
ple actions before finishing. Such options
make it easier to learn to solve problems
where many actions are needed to arrive
at a goal state, since shorter sequences of
options can arrive in the goal state. This
makes it easier to quicker find the goal
and solve the temporal credit assignment
problem, which relates to how important a
previously executed action was for attain-
ing a goal. MAXQ-learning [14] is another
hierarchical RL system in which the overall

bined with RL, was in Tesauro’s backgam-
mon learning program [52]. This program,
called TD-Gammon, was able to learn
to play backgammon purely by playing
games against itself. After around 1.5  mil-
lion training games, the program was able
to attain the level of the strongest human
players. MLPs are very powerful in their
way to represent non-linear functions, but
often need more time and experiences to
train and they have much worse conver-
gence guarantees than linear function ap-
proximation techniques. In some cases,
MLPs combined with Q-learning can even
diverge and lead to continuously increas-
ing weight and output values. Still, in
many applications MLPs have been fruitful-
ly combined with RL [8, 27, 57].

Inspired by the recent successes in deep
learning [25, 42], convolutional neural net-
works have also been introduced in rein-
forcement learning, a field that is called
deep reinforcement learning. In [30], the
authors used a convolutional neural net-
work combined with Q-learning to learn to
play different Atari games using pixel in-
formation as input. The difficulty of using
pixels as input is that the input space is in-
credibly large. However, by using convolu-
tional neural networks, the authors showed
that it was possible to play different Atari
games at a very good level using only
pixel input. In a later paper [31], the au-
thors used the same methodology to learn
to play 49 different Atari games at a lev-
el comparable to a professional human
games tester. Deep RL has also been used
with a number of other algorithms such
as Monte-Carlo Tree Search [24] to learn
to play Go at a level better than any hu-
man player [47]. Almost the same system
has also been used to learn to play Chess
and Shogi at a level much better than any
human or previous computer program
by letting the system learn from playing
games against itself [46]. Nowadays, the
field of deep RL attracts a lot of interest
from the RL community, and different al-
gorithms have been introduced to make it
more efficient [20]. Figure 3 shows how a
Deep RL system interacts with the classical
Arcade game Breakout to learn to optimize
its score.

For solving POMDPs with RL systems,
recurrent neural networks can be effective-
ly used. One of the best known and per-
forming recurrent neural networks is the
long short term memory (LSTM) network

Figure 3  A Deep RL system learning to play the game
Breakout from pixel information as input

164	 NAW 5/19  nr. 3  september 2018	 Reinforcement learning: from methods to applications	 Marco Wiering

MARL problem that has received a lot of
attention is traffic light control. Many inter-
sections in cities have traffic lights, but the
commonly used controllers can in many
cases be improved using RL. In [65], one
of the first RL systems is presented that
learned to control traffic lights on many
intersections. This resulted in much lower
waiting times compared to non-adaptive
controllers. RL has also been used in a
realistic traffic network modelled after the
city Tehran where multiple traffic disrup-
tions can take place [3]. Figure 4 shows
the used traffic light simulator in [65].

Although RL techniques usually need
many interactions with an environment to
optimize an agent or controller, RL has also
been effectively used for robot control. In
[1], first a model was learned from the in-
teraction between an unmanned aerial ve-
hicle (helicopter) and the sky, and then RL
was used to learn very complex behaviors
such as looping etc. In [60], RL was com-
bined with motor primitives, which take
care of particular action sequences, to train
a robot to play table tennis. In a recent
paper [18], a number of robots was used
at the same time to train robots to open
a door. There is a growing amount of re-
search using RL for different robot control
problems, and of course we cannot cover
them all in this short survey.

Therapy planning for patients is another
sequential decision making problem where
for example different therapies can be giv-

to learn to perform well with only 10,000
training games. Deep RL has also been
used for learning to optimize the behavior
of Ms.  Pac-Man, but using only pixel-in-
formation, this took much more training
games and led to worse results [31]. Some
researchers have decomposed the overall
Q-function into a set of single objective re-
ward functions, which are then combined
to solve the overall problem. This tech-
nique has been successfully used to obtain
the highest score with an RL system for the
game Ms.  Pac-Man in [59].

Many other games such as Starcraft
[43], Tron [23], and others have also been
used to develop different RL systems that
can learn to play them well.

Although games provide researchers
with an interesting test problem for their
algorithm, the societal relevance is a bit
lower than for other problems. In the
field of multi-agent reinforcement learning
(MARL), different systems have been con-
structed to learn to optimize the behavior
of multiple agents. The network routing
problem mentioned earlier is one example.
Another successful example was the use of
MARL for elevator control [12]. In this sys-
tem, four elevators have to collaborate to
minimize the total waiting time of people
wanting to take the elevator from one floor
to another. The RL system was able to
learn to control the elevators such that the
overall waiting time was shorter than with
many commonly used techniques. Another

of non-dominated policies than a single
optimal policy, and that is why multi-objec-
tive RL has not been used yet for solving
very complex problems.

Applications
There are many applications to which rein-
forcement learning algorithms have been
efficiently applied. We will describe a wide
range of different applications, starting
with game playing, multi-agent problems,
and robotics and then discuss applications
for medicine and health, electric power
grids, and end with personal education
systems.

Games provide researchers with a large
number of interesting problems having dif-
ferent complexities, but still allow for con-
trolled and repeatable settings. Therefore,
they have always played an important part
of AI research [73]. The oldest self-learn-
ing program that learned to play a game is
Samuel’s checkers playing program [40]. It
combined several machine learning meth-
ods and reached a decent amateur level in
playing checkers. A very successful attempt
to using reinforcement learning to play
games is TD-Gammon [52], that learned
to play the game of Backgammon at hu-
man expert level using temporal difference
learning [49] and multi-layer perceptrons.
Although in the nineties, learning from
1.5  million games took multiple months,
with the current computing power this
can be done within several hours. Anoth-
er board-game that has received a lot of
attention from RL researchers is Othello
[10, 29, 57, 56]. In [56], structured multi-lay-
er perceptrons were used in which not all
board-fields were connected to hidden
units, but specific lines or regions were
connected to them. This led to much bet-
ter results and a faster learning process. As
mentioned before, AlphaZero obtained an
excellent level of playing Chess, but Chess
has also been used a long time before to
let RL systems to learn to play the game,
although the final performance of these RL
systems was much worse [6, 54].

Next to using RL for learning to play
board-games, RL has also been used for
many other types of games. In [8], the
authors used Q-learning with a multi-lay-
er perceptron to learn to play the game
Ms. Pac-Man. The novel thing was that the
system only used seven input units, which
extracted higher-level information from
the game state. This allowed the system

Figure 4  The traffic light simulator consisting of 6 intersections. There are traffic lights for going straight ahead/right or
for going left (no collissions).

Marco Wiering	 Reinforcement learning: from methods to applications	 NAW 5/19  nr. 3  september 2018	 165

work on intelligent tutoring systems that
use RL to educate people. These systems
can offer much more personalized educa-
tion than currently used in the classroom.

To conclude, RL systems have been
applied to a wide range of different prob-
lems. RL systems can continuously learn
to improve themselves and do not need a
dataset or humans to provide labels to the
system. Therefore, reinforcement learning
is a very promising direction for Artificial
Intelligence to evolve further and to help
human kind to cope with many different
challenges in life.	 s

control problems [17] and make it easier to
cope with additional variable power sourc-
es such as sun and wind energy. In the
finance sector, RL systems can be used to
learn from a historical huge amount of data
to create automatic trading bots. Also in
advertising RL systems have been used to
estimate on which advertisement a specific
user is most likely to click on. Chatbots
have recently been constructed using deep
reinforcement learning and because these
systems can become better with more in-
teractions and feedback, the end of this is
not in sight. Finally, there is some recent

en to a patient and the goal is to make the
patient healthy as soon as possible. There-
fore this is also a very good problem for
RL, but some things have to be adapted,
for example exploration is more complex in
this scenario. In [44], an RL system is devel-
oped to plan therapies for patients suffering
from schizophrenia. In [34], a deep RL
system is used for medication dosing. It
should be clear that there are many more
possible applications of RL to health and
medicine.

RL systems have also been used to
solve electric power system decision and

1	 P. Abbeel, A. Coates, M. Quigley and A. Y. Ng,
An application of reinforcement learning to
aerobatic helicopter flight, in B. Schölkopf,
J. C. Platt and T. Hoffman, eds., Advances in
Neural Information Processing Systems 19,
MIT Press, 2007, pp. 1–8.

2	 J. S. Albus, A new approach to manipulator
control: The cerebellar model articulation
controller (CMAC), Journal of Dynamic Sys-
tems, Measurement and Control 97 (1975),
220–227.

3	 M. Aslani, M. Mesgari and M. Wiering, Adap-
tive traffic signal control with actor-critic
methods in a real-world traffic network with
different traffic disruption events, Transpor-
tation Research Part C: Emerging Technolo-
gies 85 (2017), 732–751.

4	 B. Bakker, Reinforcement learning with long
short-term memory, in T. G. Dietterich, S.
Becker and Z. Ghahramani, eds., Advances
in Neural Information Processing Systems
14, MIT Press, 2002, pp. 1475–1482.

5	 A. Barto and S. Mahadevan, Recent advanc-
es in hierarchical reinforcement learning,
Discrete Event Dynamic Systems 13 (2003),
341–379.

6	 J. Baxter, A. Tridgell and L. Weaver, Learning
to play chess using temporal differences,
Machine Learning 40(3) (2000), 243–263.

7	 R. Bellman, A markovian decision process,
Indiana Univ. Math. J. 6(4) (1957), 679–684.

8	 L. Bom, R. Henken and M. Wiering, Rein-
forcement learning to train Ms.  Pac-Man
using higher-order action-relative inputs, in
2013 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning
(ADPRL), 2013, pp. 156–163.

9	 J. A. Boyan and M. L. Littman, Packet routing
in dynamically changing networks: A rein-
forcement learning approach, in Proceed-
ings of the 6th International Conference

on Neural Information Processing Systems,
NIPS’93, Morgan Kaufmann Publishers, 1993,
pp. 671–678.

10	 M. Buro, The evolution of strong Othel-
lo programs, Entertainment Computing,
Springer, 2003, pp. 81–88.

11	 L. Busoniu, R. Babuska and B. D. Schutter,
Multi-agent reinforcement learning: A sur-
vey, 2006 9th International Conference on
Control, Automation, Robotics and Vision.
2006.

12	 R. Crites and A. Barto, Improving elevator
performance using reinforcement learning,
in D. Touretzky, M. Mozer and M. Hassel-
mo, eds., Advances in Neural Information
Processing Systems 8, MIT Press, 1996, pp.
1017–1023.

13	 B. D’Ambrosio, POMDP learning using qual-
itative belief spaces, Technical report, Ore-
gon State University, Corvallis, 1989.

14	 T. Dietterich, Hierarchical reinforcement
learning with the MAXQ value function de-
composition, Technical report, Oregon State
University, 1997.

15	 M. M. Drugan, Synergies between evolution-
ary algorithms and reinforcement learning,
in Genetic and Evolutionary Computation
Conference, GECCO 2015, pp. 723–740.

16	 M. M. Drugan and A. Nowé, Designing
multi-objective multi-armed bandits algo-
rithms: A study, in The 2013 International
Joint Conference on Neural Networks, IJCNN,
2013.

17	 M. Glavic, R. Fonteneau and D. Ernst, Rein-
forcement learning for electric power system
decision and control: Past considerations
and perspectives, 20th IFAC World Congress,
IFAC-PapersOnLine 50(1) (2017), 6918–6927.

18	 S. Gu, E. Holly, T. Lillicrap and S. Levine,
Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy up-

dates, in Proceedings 2017 IEEE Internation-
al Conference on Robotics and Automation
(ICRA), IEEE, 2017.

19	 M. Hausknecht, J. Lehman, R. Miikkulainen
and P. Stone, A neuroevolution approach to
general Atari game playing, IEEE Transac-
tions on Computational Intelligence and AI
in Games, 2013.

20	 M. Hessel, J. Modayil, H. van Hasselt, T.
Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. G. Azar and D. Silver, Rainbow:
Combining improvements in deep reinforce-
ment learning, in Proceedings of the Thir-
ty-Second AAAI Conference on Artificial In-
telligence, 2018.

21	 S. Hochreiter and J. Schmidhuber, Long
short-term memory, Neural Computation,
9(8) (1997), 1735–1780.

22	 T. Jaakkola, M. I. Jordan and S. P. Singh,
On the convergence of stochastic iterative
dynamic programming algorithms, Neural
Computation, 6 (1994), 1185–1201.

23	 S. Knegt, M. Drugan and M. Wiering, Oppo-
nent modelling in the game of Tron using
reinforcement learning, in ICAART 2018: 10th
International Conference on Agents and Ar-
tificial Intelligence, 2018, pp. 29–40.

24	 L. Kocsis and C. Szepesvári, Bandit based
Monte-Carlo planning, in J. Fürnkranz, T.
Scheffer and M. Spiliopoulou, eds., Machine
Learning: ECML 2006, Springer, 2006, pp.
282–293.

25	 A. Krizhevsky, I. Sutskever and G. E. Hinton,
Imagenet classification with deep convo-
lutional neural networks, in F. Pereira, C.
Burges, L. Bottou and K. Weinberger, eds.,
Advances in Neural Information Processing
Systems 25, 2012, pp. 1097–1105.

26	 A. Lazaric, Transfer in reinforcement learn-
ing: A framework and a survey, in M. Wie-
ring and M. van Otterlo, eds., Reinforcement

References

166	 NAW 5/19  nr. 3  september 2018	 Reinforcement learning: from methods to applications	 Marco Wiering

ing against a fixed opponent and learning
from self-play, in 2013 IEEE Symposium on
Adaptive Dynamic Programming And Re-
inforcement Learning (ADPRL), 2013, pp.
108–115.

58	 M. van Otterlo and M. Wiering, Reinforce-
ment learning and Markov decision process-
es, in M. Wiering and M. van Otterlo, eds.,
Reinforcement Learning: State-of-the-Art,
Springer, 2012, pp. 3–42.

59	 H. van Seijen, M. Fatemi, J. Romoff, R. Laro-
che, T. Barnes and J. Tsang, Hybrid reward ar-
chitecture for reinforcement learning, arXiv:
1706.04208, 2017.

60	 Z. Wang, A. Boularias, K. Muelling, B. Schoel
kopf and J. Peters, Anticipatory action selec-
tion for human-robot table tennis, Artificial
Intelligence 247 (2017), pp. 399–414.

61	 C. J. Watkins and P. Dayan, Q-learning, Ma-
chine Learning 8(3) (1992), 279–292.

62	 C. J. C. H. Watkins, Learning from Delayed
Rewards, PhD thesis, King’s College, Cam-
bridge, UK, 1989.

63	 P. J. Werbos, Beyond Regression: New Tools
for Prediction and Analysis in the Behavior-
al Sciences, PhD thesis, Harvard University,
1974.

64	 S. Whiteson, Evolutionary computation for
reinforcement learning, in M. Wiering and M.
van Otterlo, eds., Reinforcement Learning:
State-of-the-Art, Springer, 2012, pp. 325–
355.

65	 M. Wiering, Multi-agent reinforcement learn-
ing for traffic light control, in 17th Inter-
national Conference on Machine Learning,
2000, pp. 1151–1158.

66	 M. Wiering, QV(lambda)-learning: A new
on-policy reinforcement learning algorithm,
in D. Leone, ed., Proceedings of the 7th Eu-
ropean Workshop on Reinforcement Learn-
ing, 2005, pp. 29–30.

67	 M. Wiering and M. van Otterlo, Reinforce-
ment Learning: State of the Art, Springer,
2012.

68	 M. A. Wiering and E. D. D. Jong, Computing
optimal stationary policies for multi-ob-
jective Markov decision processes, in IEEE
International Symposium on Approximate
Dynamic Programming and Reinforcement
Learning, 2007 (ADPRL 2007), IEEE, 2007,
pp. 158–165.

69	 M. A. Wiering and J. H. Schmidhuber, HQ-
learning, Adaptive Behavior 6(2) (1997),
219–246.

70	 M. A. Wiering and J. H. Schmidhuber, Efficient
model-based exploration, in J. A. Meyer and
S. W. Wilson, eds., Proceedings of the Sixth
International Conference on Simulation of
Adaptive Behavior: From Animals to Ani-
mats 6, MIT Press/Bradford Books, 1998, pp.
223–228.

71	 M. A. Wiering, M. Withagen and M. M. Dru-
gan, Model-based multi-objective reinforce-
ment learning, in 2014 IEEE Symposium on
Adaptive Dynamic Programming and Rein-
forcement Learning, ADPRL, 2014.

72	 R. J. Williams, Simple statistical gradient-fol-
lowing algorithms for connectionist rein-
forcement learning, Machine Learning 8
(1992), 229–256.

73	 G. N. Yannakakis and J. Togelius, Artificial
Intelligence and Games, Springer, 2018.

43	 A. Shantia, E. Begue and M. Wiering, Con-
nectionist reinforcement learning for intel-
ligent unit micro management in Starcraft,
in The 2011 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2011, pp.
1794–1801.

44	 S. M. Shortreed, E. B. Laber, D. J. Lizotte, T. S.
Stroup, J. Pineau and S. A. Murphy, Informing
sequential clinical decision-making through
reinforcement learning: an empirical study,
Machine Learning 84(1-2) (2011), 109–136.

45	 D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwie-
ser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.
Leach, K. Kavukcuoglu, T. Graepel and D.
Hassabis, Mastering the game of Go with
deep neural networks and tree search, Na-
ture 529(7587) (2016), 484–489.

46	 D. Silver, T. Hubert, J. Schrittwieser, I. Antono-
glou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D.
Kumaran, T. Graepel, T. Lillicrap, K. Simon-
yan and D. Hassabis, Mastering chess and
shogi by self-play with a general reinforce-
ment learning algorithm, arXiv:1712.01815,
2017.

47	 D. Silver, J. Schrittwieser, K. Simonyan, I. An-
tonoglou, A. Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Grae-
pel and D. Hassabis, Mastering the game of
go without human knowledge, Nature 550
(2017), 354.

48	 S. Singh, T. Jaakkola, M. Littman and C.
Szepesvari, Convergence results for sin-
gle-step on-policy reinforcement-learning
algorithms, Machine Learning 38(3) (2000),
287–308.

49	 R. S. Sutton, Learning to predict by the
methods of temporal differences, Machine
Learning 3(1) (1988), 9–44.

50	 R. S. Sutton, Generalization in reinforcement
learning: Successful examples using sparse
coarse coding, in D. S. Touretzky, M. C. Mozer
and M. E. Hasselmo, eds., Advances in Neu-
ral Information Processing Systems 8, MIT
Press, 1996, pp. 1038–1045.

51	 R. S. Sutton and A. G. Barto, Introduction to
Reinforcement Learning, MIT Press, 1998,
1st edition.

52	 G. Tesauro, Temporal difference learning and
TD-gammon, Commun. ACM 38(3) (1995),
58–68.

53	 S. Thrun, Efficient exploration in rein-
forcement learning, Technical Report CMU-
CS-92-102, Carnegie-Mellon University, 1992.

54	 S. Thrun, Learning to play the game of
chess, Advances in Neural Information Pro-
cessing Systems 7 (1995), 1069–1076.

55	 A. D. Tijsma, M. M. Drugan and M. A. Wie-
ring, Comparing exploration strategies for
Q-learning in random stochastic mazes, in
2016 IEEE Symposium Series on Computa-
tional Intelligence, SSCI, 2016.

56	 S. van den Dries and M. A. Wiering, Neu-
ral-fitted TD-leaf learning for playing Othello
with structured neural networks, IEEE Trans-
actions on Neural Networks and Learning
Systems 23(11) (2012), 1701–1713.

57	 M. van der Ree and M. A. Wiering, Reinforce-
ment learning in the game of Othello: Learn-

Learning: State-of-the-Art, Springer, 2012,
pp. 143–173.

27	 L. J. Lin, Reinforcement Learning for Robots
Using Neural Networks, PhD thesis, Carne-
gie Mellon University, Pittsburgh, 1993.

28	 M. L. Littman, Algorithms for Sequential De-
cision Making, PhD thesis, Brown University,
1996.

29	 S. Lucas and T. Runarsson, Temporal differ-
ence learning versus co-evolution for acquir-
ing Othello position evaluation, in Compu-
tational Intelligence and Games, 2006 IEEE
Symposium, 2006, pp. 52–59.

30	 V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra and M. Riedmiller,
Playing atari with deep reinforcement learn-
ing, arXiv:1312.5602, 2013.

31	 V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep
reinforcement learning, Nature 518(7540)
(2015), 529–533.

32	 A. W. Moore and C. G. Atkeson, Prioritized
sweeping: Reinforcement learning with less
data and less time, Machine Learning 13
(1993), 103–130.

33	 D. E. Moriarty and R. Miikkulainen, Discov-
ering complex Othello strategies through
evolutionary neural networks, Connection
Science 7(3) (1995), 195–209.

34	 S. Nemati, M. M. Ghassemi and G. D. Clifford,
Optimal medication dosing from subopti-
mal clinical examples: A deep reinforcement
learning approach, In 2016 38th Annual In-
ternational Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC),
2016, pp. 2978–2981.

35	 A. Nowé, P. Vrancz and Y. M. De Hauwere,
Game theory and multi-agent reinforcement
learning, in M. Wiering and M. van Otterlo,
eds., Reinforcement Learning: State-of-the-
Art, Springer, 2012, pp. 441–470.

36	 D. Precup and R. Sutton, Theoretical results
on reinforcement learning with temporal-
ly abstract options, in Proceedings of the
Tenth European Conference on Machine
Learning (ECML’98), 1998.

37	 D. M. Roijers, P. Vamplew, S. Whiteson and
R. Dazeley, A survey of multi-objective se-
quential decision-making, Journal of Artifi-
cial Intelligence Research 48 (2013), 67–113.

38	 D. E. Rumelhart, G. E. Hinton and R. J. Wil-
liams, Learning internal representations by
error propagation, in Parallel Distributed
Processing, Vol. 1, MIT Press, 1986, pp. 318–
362.

39	 G. A. Rummery and M. Niranjan, On-line
Q-learning using connectionist systems,
CUED/F-INFENG/TR 166, Cambridge Universi-
ty Engineering Department, 1994.

40	 A. L. Samuel, Some studies in machine
learning using the game of checkers, IBM
Journal on Research and Development 3
(1959), 210–229.

41	 J. Schmidhuber, Developmental robotics,
optimal artificial curiosity, creativity, music,
and the fine arts, Connection Science 18(2)
(2006), 173–187.

42	 J. Schmidhuber, Deep learning in neural
networks: An overview, Neural Networks 61
(2015), 85–117.

