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The law of large numbers
Recall the law of large numbers from prob-
ability theory:

If we flip a coin infinitely many times, and 
we denote by hn the number of times we 
see heads amongst the first n flips, then 
with probability 1,

.lim n
h

2
1

n

n =
"3

Our standard example of a random se-
quence, x4, was obtained by flipping a coin 
like this. Thus, our sequence x4 will (proba-
bly) satisfy the following property:

Definition 1. Given an infinite sequence 
x of zeroes and ones, if we let #x nQ  be 
the number of ones amongst the first n 
elements of the sequence, we say that x 
satisfies the law of large numbers if

#
.lim n

x n
2
1

n

Q
=

"3

More informally, x satisfies the law of 
large numbers if, when we look far enough 
in the sequence, roughly half of the ele-
ments are zeroes, and roughly half of the 
elements are ones. Intuitively a random 
sequence should not be biased towards 
zeroes or ones, so a random sequence 
should satisfy the law of large numbers. 
We could therefore try to use this as a defi-
nition of randomness.

Let us go back to our examples at the 
beginning. The non-random sequence x5 
does not satisfy the law of large numbers, 
which is a good sign. However, x2 does 
satisfy it, while we decided this sequence 

does not seem to be random any longer.
So, how do we actually get an exam-

ple of a random sequence? Something that 
we can write down easily follows a pattern 
and is therefore not random by any rea-
sonable definition of randomness. The key 
to obtaining a random sequence is using a 
probabilistic method to generate it. To ob-
tain x4, we flipped a coin, denoting heads 
by 1 and tails by 0. With a coin flip having 
an equal probability to land on heads or 
tails, there should not be any easy way of 
predicting what x4 is going to look like, in 
the sense that even if we know the first 
37 elements of the sequence, there is no 
way of knowing whether the 38th element 
is going to be a zero or a one. Thus, x4 
should be considered random.

So, we now have three examples of 
sequences that should not be considered 
random, and one example of something 
that should be considered random. Again, 
we would like to have a mathematical-
ly rigorous definition of what exactly it 
means to be random, and we now have 
three examples of sequences that should 
fail this definition, and one example of 
something that should pass it. We will use 
this as a starting point and try to build 
our mathematical definition from the 
ground up.

What does it mean for a sequence to be 
random? You probably have an intuitive 
idea of what a random sequence is, but 
how do we formalise this in a mathe-
matically rigorous way? To motivate what 
comes next, let us look at the (initial digits 
of ) a few infinite sequences of zeroes and 
ones:

x

x

x

x
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Take a break and consider for a moment: 
which of these sequences would you con-
sider to be random sequences?

Would you consider x1 to be random? 
Probably not, since it only contains zeroes, 
no ones, and therefore does not look very 
random. What about x2? This time it has 
both zeroes and ones, but the sequence 
follows a very clear pattern and therefore 
again should not be considered to be a 
random sequence. On the other hand, x3 
looks much more random, since there does 
not seem to be a clear pattern. However, 
if we were to write r in binary, we would 
see that

.11 001001000011111101fr =

and if we compare this to x3, suddenly x3 
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sitions at which we know for sure the digit 
is a one. In particular, if we were to restrict 
x5 to W, i.e. we throw away all the digits 
at positions not in W, we get a sequence 
that only contains ones and therefore 
no longer even satisfies the law of large 
numbers.

Again, if we think about a sequence of 
coin tosses, if we were, for example, to 
ignore all the even coin tosses and only re-
cord the odd ones, the resulting sequence 
should still satisfy the law of large num-
bers. Thus, we would like to say that a 
sequence is random if every infinite sub-
sequence, that is a sequence obtained by 
removing all but infinitely many digits, sat-
isfies the law of large numbers.

Unfortunately, that is too strong a prop-
erty: such sequences do not exist. Indeed, 
every infinite sequence contains either 
infinitely many zeroes or infinitely many 
ones, so we can always find an infinite 

There is a pattern in this sequence that 
might not be immediately obvious: we write 
the natural numbers , , , ,0 1 2 3 f in binary, 
and form the sequence x5 by concate-
nating all these binary numbers together 
in order. The sequence x5 we obtain this 
way is called Champernowne’s sequence. 
This sequence is known to be normal, so 
would be random if we took normality as 
our definition of randomness. However, it 
does not seem very reasonable to consider 
x5 to be random. After all, it was generated 
using such an easy pattern and therefore it 
is very easy to compute the digits of this 
sequence.

Church stochasticity
Going back to Champernowne’s sequence 
x5, why exactly is it non-random? We no-
ticed that it is very easy to reconstruct the 
pattern used to define x5. In particular, it is 
very easy to give an infinite set W of po-

should not be called random. Thus, we 
need a stronger definition.

Normal numbers
Let us have another look at the sequence

x 010101010101010101012 f=

This sequence satisfies the law of large 
numbers, because the digits 0 and 1 both 
appear roughly half the time. Let us con-
sider what happens if we consider blocks 
of two digits in x2. We see that x2 contains 
the blocks:

, , , , , , , , ,01 10 01 10 01 10 01 10 01 f

In other words, we never see the other 
two blocks of length 2: 00 and 11. Again, 
thinking about coin flips, if one flips a 
coin twice and records both the results, 
then the four possibilities (heads, heads), 
(tails, tails), (heads, tails) and (tails, heads) 
all occur with probability 4

1 . Thus, in a ran-
dom sequence we do not just want each 
digit to occur roughly half the time, but we 
also want each block of two digits to occur 
roughly one quarter of the time. Generalis-
ing this to blocks of arbitrary length we get 
to the following definition.

Definition 2. Let x be an infinite sequence 
of zeroes and ones. We say that x is nor-
mal (in base 2) if for every positive nat-
ural number k, and every block b of k 
many zeroes or ones, if we let ( , , )N x b n  
be the number of times the block b occurs 
amongst the first n digits of x, then

( , , )
.lim n

N x b n

2
1

n
b=

"3

(The notion of normality — in arbitrary bas-
es — was introduced by Borel, when we 
talk about normality we mean the special 
case of normality in base 2.)

Because x1 does not satisfy the law of 
large numbers it is certainly not normal, and 
x2 is not normal either as argued above. 
What about x3? Perhaps surprisingly, it is 
not known whether the sequence x3, which 
we obtained from the binary expansion of 
r, is normal, so we do not know wheth-
er this definition is able to determine the 
nonrandomness of x3. On the other hand, 
the sequence x4 obtained by flipping coins 
is (with probability 1) normal.

Does this mean we are done? Let us 
consider the following sequence:

x 0 10 100 110 1000

1010 1100

1 11 101 111 1001

1011
5

f

=
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mathematically rigorous way? Of course 
that is an informal statement that cannot 
be formalised, let alone proven. However, 
the fact that we do not know of any coun-
terexamples and have many equivalent 
definitions of Martin-Löf randomness seem 
to show that this is the definition we were 
looking for.

Definition using betting
This time, let us consider a fair casino, in 
which we are betting on the digits of a 
fixed infinite sequence of zeroes and ones 
x 2N! , which is known by the casino but 
not by us. Our goal is to make as much 
money as possible. The rules of the casino 
are as follows.

 – We initially start with one unit of money.
 – We then split all our money between 

betting on 0 or 1.
 – The first bit of x is then revealed to us. 

If this is a 0, the casino pays out twice 
our bet on 0. If it is 1, the casino pays 
out twice our bet on 1.

 – We again split our (new) money be-
tween betting on 0 and 1.

 – The second bit of x is now revealed to 
us. If this is a 0, the casino pays out 
twice our bet on 0. If it is 1, the casino 
pays out twice our bet on 1.

 – We keep playing for as long as we like.

If the sequence x has a clear pattern on 
it, we would like to play in this casino, 
because it would be very easy for us to 
predict the next digit and make a lot of 
money this way. On the other hand, if 
the sequence is truly random, for exam-
ple if the casino was just flipping a coin 
to generate the digits of x, we have no 
way of predicting the outcome and would 
therefore not expect to be able to make 
large profits (unless we got really lucky). 
This brings us to our second definition of 
Martin-Löf randomness.

Theorem 1 (Schnorr). A sequence x 2N!  
is Martin-Löf random if and only if there 
is no semi-effective betting strategy which 
guarantees arbitrarily large profits when 
betting on x if we keep playing as long 
as we want.

While this is the easiest definition of 
Martin-Löf randomness to explain, the fact 
that we need to talk about semi-effective-
ness is perhaps not very satisfying. We will 
not go into the technical details here, but 

This notion, called Martin-Löf randomness, 
was originally introduced by Martin-Löf as 
an abstracting of the computable selection 
functions defined above. One of the things 
that makes this definition so robust is that 
there are many equivalent definitions of 
it, of which we will here discuss the three 
most important ones.

Measure-theoretic definition
First, let us introduce Martin-Löf random-
ness using measure theory, as originally 
done by Martin-Löf. This definition requires 
more mathematical prerequisites than the 
alternatives down below, and the remain-
der of this article can be understood with-
out understanding this section.

The standard topology on 2N is generat-
ed by the basic open sets

{ },x x2 extendsN! ;v v=! +
where v is any finite sequence of zeroes 
and ones (we denote this set by 2<N). 
In other words, the open sets are the 
ones that can be written as a union of 
such basic open sets. Given any open set 
U X v=

!v
! +' , we say that X is prefix-free 

if for any two , X!v x , v is not an exten-
sion of x. We may assume without loss of 
generality that X is prefix-free. Then the 
measure ( )Un  is 2 length( )

X!v
v-/ .

Intuitively, a random x should not be in 
any ‘easy’ set of measure 0, and the col-
lection of random x should have measure 
1. This motivates the following definition.

Definition 3. A Gd (or 2
0P ) set is a set of 

the form V Unn N
=

!
( , where each Un 

is open. We say that V is effectively Gd 
(or 2

0P ) if there is a computable function 
:f 2N N <N"#  such that

 

( , ) .V f n m
mn NN

=
!!

" ,( '

A Martin-Löf test is an effective Gd set 
V as above such that m N!( ( , ) )f n m #n " ,'  
2 n- . Finally, we say that x 2N!  is Martin-Löf 
random if x is not in any Martin-Löf test.

How does this connect to the previous 
section? It turns out that every Martin-Löf 
random x is Church stochastic. Further-
more, Ville’s sequence x6 is not Martin-Löf 
random.

Thus, we strengthened our notion of 
randomness, and got rid of our bad exam-
ple x6. Does this mean we have reached 
our goal and defined randomness in a 

subsequence which only contains zeroes 
or ones! How do we resolve this?

Until now, we have been talking about 
randomness without talking about algo-
rithmic randomness, and this is the point 
at which the algorithmic part of the title 
comes into play. In algorithmic random-
ness, one uses tools from computability 
theory to define and work with random-
ness. To do so, one needs a rigorous defi-
nition of what it means to be computa-
ble, which was given by Turing. Instead of 
giving the rigorous definition here, think 
about a function :f N N"  as being com-
putable if there is a procedure such that 
any capable human could, given enough 
paper and time, work out f(n) given any 
number n N! . Equivalently, such a func-
tion f is computable if it can be imple-
mented using your favourite programming 
language.

Using the notion of a computable func-
tion, we can now restrict to certain nice, 
easy subsequences, which are selected 
in a computable way using the technical 
notion of a computable selection function 
(we omit the exact definition). Now, we 
say that a sequence is Church stochastic 
if every subsequence selected by a com-
putable selection function satisfies the law 
of large numbers. It is known that every 
Church stochastic sequence is normal, so 
this is a strengthening of our previous no-
tion of randomness. Champernowne’s se-
quence is not Church stochastic, but our 
sequence x4 obtained using coin flips is 
(with probability 1).

So, does that mean that Church stochas-
ticity is the definition of randomness we 
were looking for? Unfortunately not. Ville 
showed that there is an infinite sequence 
x6 which is Church stochastic, but for every 
positive natural number n, if we look at the 
first n digits in the sequence, there are al-
ways more zeroes than ones (even though 
the ratio converges to 2

1 ). Again, thinking 
about what happens when you repeatedly 
flip a coin, if you occasionally take a break 
when you get tired, sometimes you will 
have seen more heads than tails up until 
then, and sometimes you will have seen 
more tails than heads. Thus, the sequence 
x6 should not be considered random.

Martin-Löf randomness
We now take our last step towards our 
definition of randomness, finally arriving 
at a notion that is fit to be called random. 
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are ‘small’. There is another way to talk 
about the smallness or largeness of sets, 
using category. Recall that a set is mea-
gre if it is contained in a countable un-
ion of closed nowhere dense sets. We 
would like to say that a set is ‘random’ if 
it is not in any effective closed nowhere 
dense set, which is done in the following 
definition.

Definition 4. A closed set V 2N3  is a 1
0P

-class if there is a computable function 
:f 2N <N"  such that \ ( )V f n2 n

N
N

=
!
" ,' . 

We say that x 2N!  is 1-generic if for every 

1
0P -class V we have that \Int( )x V Vz .

Thus, 1-genericity is another way of 
talking about ‘random’ points, but using 
category instead of measure. Many theo-
rems about Martin-Löf random reals have 
analogues in terms of 1-generics, although 
this is not always the case.

It is easy to adapt this definition to the 
real numbers, and hence we can talk about 
generic elements of [ , ]0 1  as well. Just as 
in the previous section, we wonder how 
this notion interacts with category almost 
everywhere theorems. In fact, there is a 
nice analogue of the differentiability char-
acterisation of Martin-Löf randomness giv-
en above, obtained by studying a theorem 
of Bruckner and Leonard.

Theorem 5 (Kuyper and Terwijn [4]). Let 
[ , ]x 0 1! . The following are equivalent:

1. x is 1-generic.
2. Every differentiable computable func-

tion : [ , ]f 0 1 R"  has continuous deriv-
ative at x.

Further reading
The standard reference works on algorith-
mic randomness are Downey and Hirsch-
feldt [3] and Nies [5]. There is also the excel-
lent nontechnical (and significantly shorter) 
account by Terwijn [6]. s

concepts of computability theory. A more 
recent direction of study has been to con-
sider how randomness interacts with usu-
al mathematical theorems about ‘almost 
everywhere’ theorems. Consider, for exam-
ple, the following theorem of Lebesgue:

Theorem 3 (Lebesgue). Let : [ , ]f 0 1 R"  be 
a function of bounded variation. Then f is 
differentiable almost everywhere.

So far, we have been talking about 
computable functions on the natural num-
bers, and randomness of infinite binary 
sequences. There is a natural and robust 
way to extend and adapt these concepts 
to real numbers. So, we can talk about 
computable functions f of bounded vari-
ation, and Martin-Löf random elements of 
the unit interval. If a theorem holds at al-
most every point, that should be a strong 
indication that it holds for a random point. 
Furthermore, if we are lucky the converse 
might even hold and therefore give us an 
equivalent definition of Martin-Löf random-
ness. This is, in fact, true for the theorem 
just given.

Theorem 4 (Brattka, Miller and Nies [2]). 
Let [ , ]x 0 1! . The following are equivalent:
1. x is Martin-Löf random.
2. Every computable : [ , ]f 0 1 R"  of bound- 

ed variation is differentiable at x.

Another interesting direction is to look 
at Brownian motion. It turns out that Mar-
tin-Löf randomness is also the right notion 
to talk about many almost surely theorems 
about Brownian motion, as studied by Al-
len, Bienvenu and Slaman [1].

A different approach: Baire category
As we saw above, one way of defining 
Martin-Löf randomness is by using ef-
fective measure 0 sets. Sets which have 
measure 0 can be seen as sets which 

let us mention that if we restricted our-
selves to computable betting strategies we 
would get a notion of randomness called 
computable randomness, which is strictly 
weaker than Martin-Löf randomness but 
interesting in its own right.

Compression and randomness
Finally, let us discuss how Martin-Löf ran-
domness relates to compressibility. Consid-
er your favourite compression algorithm. 
How good is it at compressing these two 
finite sequences?

01010101010101010101

00100101110101011101

The first one is easy to compress: it can 
be described by saying that 01 should be 
repeated ten times. The second sequence 
on the other hand, again obtained by flip-
ping a coin, does not have a clear pattern 
and hence can only be described by giv-
ing the full sequence. In other words, if 
one looks at any initial segment of a ran-
dom sequence, one should be unable to 
compress that segment, or in other words 
should be unable to give a short descrip-
tion of it. And indeed, this gives us another 
characterisation of Martin-Löf randomness.

Theorem 2 (Schnorr). A sequence x is Mar-
tin-Löf random if and only if its initial seg-
ments cannot be nontrivially compressed 
by a (partial) computable compression 
algorithm.

(For technical reasons, one needs to restrict 
to prefix-free compression algorithms, but 
we will not go into further details here.)

Applications of randomness
Now that we know what randomness means 
mathematically, what can we do with this? 
In the field of algorithmic randomness, one 
way of studying randomness is to consider 
how it interacts with the usual tools and 
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