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The school
The first week of the program was devoted 
to the school. There were three main short 
courses, each of which was taught by two 
experts on the subject. The aim of these 
lectures was to get everyone ‘up to speed’ 
for the incoming workshop, and they 
served this purpose excellently, providing 
very clear exposition on the subjects of the 
program.

Each day of the school concluded with a 
discussion session, where the participants 
were invited to raise their doubts about 
the lectures, or to ask for clarifications 
regarding some of the points that were 
raised during them. This favoured a thor-
ough understanding of the subjects taught, 
as well as the possibility to debate the 
physical motivations and applications for 
the mathematical tools that were illustrat-
ed and developed in the courses.

Index theory
The foundations of modern-day non-
commutative geometry can be found in 
index theory [15]. Two introductory lec-
tures on this subject were delivered by 
Matthias Lesch (Bonn, DE). The main aim 
was to state and discuss the celebrated 
Atiyah–Singer index theorem [3], one of 
the milestones of modern mathematics 
which draws a bridge between analysis 
(elliptic pseudo-differential operators on 
manifolds), topology (characteristic class-
es of vector bundles) and operator alge-
bra (the theory of Fredholm operators). 
For this result Sir Michael F. Atiyah got 
both the Fields Medal (in 1966) and the 

the algebras of continuous functions over 
(Hausdorff, locally compact) topological 
spaces, and generalize topological notions 
to a noncommutative algebraic setting. Be-
sides, C)-algebras have repeatedly proved 
to be useful in modelling physical systems 
as well, most notably in quantum mechan-
ics, where Max Born’s commutation rela-
tions [ , ] ix p '=  (which imply the paradig-
matic result of quantum physics, namely 
Heisenberg’s uncertainty principle) are con-
sidered to be the archetype of a noncom-
mutative phase space.

Since its early days the field of noncom-
mutative geometry and operator algebras 
has produced results of striking mathemat-
ical beauty, but also of profound relevance 
for mathematical physics. In the recent 
years, noncommutative index theory and 
KK-theory have provided insight in prob-
lems in particle physics [34], and in the 
mathematical formulation of the so-called 
‘bulk-edge correspondence’ in solid state 
physics (see the subsection ‘Topological 
phases’ below). With these recent applica-
tions of KK-theory to gauge theories and 
topological quantum matter, Wigner’s ‘un-
reasonable effectiveness of mathematics’ 
strikes once again.

The program of ‘KK-theory, Gauge Theory 
and Topological Phases’, organized by Alan 
Carey (Canberra, AU), Steve Rosenberg 
(Boston, USA), and Walter van Suijlekom 
(Nijmegen, NL), aimed both at young and 
more senior scientists in mathematics and 
physics, focusing on the recent applica-
tions of Kasparov’s bivariant K-theory in 
both high-energy and solid state physics. 

This event was able to bring together 
experts from several diverse communities, 
creating an environment that stimulated 
fruitful interactions, fostering new inter-
disciplinary collaborations, and allowing 
participants to learn about cutting-edge 
research on the topics of the program from 
the leaders in the field. 

The main subject of the program was  
KK-theory, an apparently abstract notion 
from operator algebra which has recently 
emerged as an important tool for applica-
tions of noncommutative geometry in mathe-
matical physics, to describe gauge-theoretic 
phenomena originating both in high-energy 
physics and in condensed matter. Roughly 
speaking, KK-theory produces ‘topological 
invariants’ for C)-algebras, which are a 
particular class of operator algebras often 
considered to be geometric: they include 
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Fredholm operator, as the difference be-
tween the dimensions of its kernel and its 
cokernel — in terms of certain characteristic 
classes of the manifold and of the bun-
dles on which the operator acts (on the 
‘topological’ side). We refer to the popular 
article [24] for an introduction. At a more 
abstract level, the index can be realized 

manifold which, roughly speaking, act in 
the Fourier representation by multiplica-
tion times a function (the symbol of the 
operator) which is smooth and doesn’t 
grow too fast at infinity. The Atiyah–Singer 
theorem computes the index of an ellip-
tic pseudo-differential operator — a purely 
analytic concept which is defined, for any 

Abel Prize, together with Isadore Singer 
(in 2004). 

Fredholm operators are characterized 
by the property of having finite-dimen-
sional kernel and cokernel. Many examples 
of such operators come from the field of 
pseudo-differential operators, a class of 
operators between vector bundles over a 

KK-theory
Kasparov’s bivariant K-theory [21], or  KK-theory, is a framework 
which incorporates and generalizes both K-theory and K-homol-
ogy for C)-algebras. In the spirit of noncommutative geometry, 
it can be thought of as an extension of index theory in which 
smooth closed manifolds are replaced by singular spaces, in the 
form of C)-algebras.

Elements of the group ( , )KK A B , also called Kasparov mod-
ules, are (homotopy classes of ) triples ( , , )E Tz , where

1. E is a (Z2-graded) right Hilbert B-module,
2. z is a representation of A on E as adjointable operators, and
3. T is an adjointable operator on E (of odd degree) such that 

the operators [ , ( )]T az , ( ) ( )T T a) z-  and ( ) ( )T a12 z-  are 
compact for all a A! .

One can show that ( , )KK BC  reproduces ( )K B0 , the usual K-group 
of the C)-algebra B, while ( , )KK A C  gives back the K-homology 
group of the algebra A, that is, the group of K-cycles (or Fred-
holm modules) over A. 

One of the deepest and most powerful features of Kasparov’s 
bivariant K-theory is the fact that KK-cycles can be composed: 
one can define the internal Kasparov product

( , ) ( , ) ( , ) .KK A B KK B C KK A C"#

In the case A C C= = , the internal Kasparov product reduces 
to the well-known index pairing of K-theory classes on B with 
Fredholm modules, landing in ( , )KK C C Z- . Thus, one recovers 
classical index theory within the framework of KK-theory.

Motivated by the appearance of Dirac type operators in the 
index pairing, an unbounded version of KK-theory has also been 
formulated [4], where instead of an adjointable operator one con-
siders a densely defined, self-adjoint and regular operator T on 
the Hilbert B-module E, satisfying the following two conditions:

1. ( )( )a T i1 1z + -  is a compact operator on E for all a A! , and
2. there exists a dense *-subalgebra AA 1  such that for all 

a A!  the operator ( )az  leaves the domain D of T invariant, 
and moreover the (graded) commutator [ , ( )]T az , initially de-
fined on D, admits a bounded extension to the whole E.

In particular, unbounded representatives of K-cycles — i.e. ele-
ments in ( , )KK A C  — are spectral triples ( , , )DA H , where A is a 
dense subalgebra of A, whose elements have bounded commu-
tators with D.

The two pictures are related via the bounded transform: giv-
en an unbounded Kasparov module, the formula

( )F D D1 /
D

2 1 2|= + -

gives a bounded (A,B)-Kasparov module. Note that the bounded 
transform is what allows one to move from Dirac operators to 
Fredholm operators.

While the unbounded theory presents more complication due 
to analytic subtleties, it also offers several advantages because 
it is more explicit and more geometric. Moreover, it allows to 
give, up to equivalence, an explicit realisation of the Kasparov 
product. This constructive approach to the Kasparov product, 
initiated by Mesland [26] and rigorously developed by Mesland, 
Kaad, Lesch, Rennie and others [19, 27, 28], has opened the door 
to a wide range of applications of geometric and physical na-
ture. In the wake of these developments come new applications 
of Kasparov theory to index theory, with new proofs of many 
classical theorems by KK-methods.

The poster for the school and workshop depicts the complex Hopf fibration, an example 
of geometry that can be factorised using the Kasparov product.
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The presentation of index theory by 
Lesch and Nest served as an essential 
‘motivating example’ for the other lectures 
taught during the school.

KK-theory
Siegfried Echterhoff (Münster, DE) gave an 
introductory overview on the main protag-
onist of the program, namely KK-theory  
(see box ‘KK-theory’).

In its complex, bounded variant, this 
theory associates to pairs of (Z2-graded) 
C)-algebras (A,B) an abelian group, de-
noted by ( , )KK A B . In order to construct 
the KK-group, one needs to move be-
yond Hilbert spaces, the natural spaces 
on which C)-algebras are represented as 
operators, and deal with more general 
modules, endowed with a scalar prod-
uct taking values in a (possibly different) 

ics to model the behaviour of particles like 
electrons. Conversely, the notion of spec-
tral triple, as introduced by Alain Connes, 
is modeled on these examples, and gen-
eralizes them to the noncommutative 
realm.

Coming back to the program of the 
school, more advanced topics in index 
theory, related to Kontsevich formality the-
orem, were discussed instead by Ryszard 
Nest (Copenhagen, DK). These shed some 
light on the connection between index 
theory and Poisson geometry, and on 
how this link naturally leads to the study 
of Hochschild cohomology of manifolds. 
This inspired Connes to formulate his cy-
clic cohomology for spectral triples, which 
heuristically plays the role for a noncom-
mutative manifold of the usual de Rham 
cohomology of differential forms.

as a pairing between K-theory (vector bun-
dles) and K-homology (elliptic differential 
operators).

In the paradigm of noncommutative 
geometry due to Connes [11, 12] a central 
notion is that of a spectral triple ( , , )DA H . 
This consists of an involutive algebra of 
operators acting on a Hilbert space H and 
a self-adjoint operator D on the same Hil-
bert space, subject to certain conditions. 
Such Dirac operators are ‘unbounded ver-
sions’ of Fredholm operators, as described 
in the box on KK-theory. Commutative 
examples of spectral triples are provided 
by the Hodge–de Rham operator on differ-
ential forms over a Riemannian manifold, 
and the spin Dirac operator that is natu-
rally defined when the manifold has also a 
spin structure, which is a structure slightly 
finer than orientability [25] used in phys-

Gauge theory
In the mathematical approach to gauge theories, gauge fields 
are realized as connections on principal bundles up to equiva-
lence under the action of the gauge group. 

The Atiyah–Singer index theorem has proven to be an effec-
tive tool in understanding the mathematical aspects of gauge 
theories: in the study of four-dimensional Yang–Mills gauge the-
ories, this theorem was used to determine the dimension of the 
moduli space of self-dual connections [2]. With this in mind, it 
is not surprising that KK-theory, which sets its roots in index 
theory, has important and promising applications in the field of 
gauge theories.

In the framework of noncommutative geometry, gauge the-
ories naturally arise from spectral triples [11]. Indeed, out of 
the ingredients of a spectral triple ( , , )DA H , one can naturally 
obtain the defining elements of a gauge theory.

 – Starting from the algebra A one constructs the gauge group 
G, by looking at the group of inner automorphisms, which in 
the case of noncommutative algebras is non-trivial. In many 
situations, one can identify the group Inn( )A  with the gauge 
group of the theory.

 – The gauge fields are obtained from the spectral data con-
tained in the Dirac operator, with its spectrum playing a cen-
tral role in the theory.

 – The gauge group G acts on the Dirac operator (i.e., on fields) 
by conjugation with a unitary operator D UDU7 ), giving rise 
to a perturbation in terms of pure gauge fields. Since the 
spectrum of the Dirac operator is invariant under the action 
of unitary gauge transformations, one can define the spectral 
action, which is interpreted as an action functional for the 
theory, describing the dynamics and interactions of the gauge 
fields coming from D.

As described amply in [34], this notion is compatible with the 
classical definition of gauge theories in terms of connections 

on a vector bundle. Moreover, one of the greatest achieve-
ments of the noncommutative approach to gauge theories is 
the derivation of the full Standard Model of particle physics 
starting from a spectral triple on a noncommutative manifold 
which is the product of a commutative geometry and a matrix 
algebra (cf. [33]).

Motivated by this product structure, one looks at the un-
bounded version of KK-theory, which allows for a bundle- 
theoretic description of gauge theories, both on commuta-
tive and noncommutative base spaces. In [9] the constructive 
Kasparov product is used to factorize a class of noncommutative 
differential geometries, in the form of spectral triples, into the 
product of two pieces: a commutative horizontal spectral triple 
on the base manifold, and a Kasparov module which describes 
the vertical noncommutative geometry.

More generally, it is interesting to understand whether a giv-
en spectral triple factorizes as the product of an unbounded 
Kasparov bimodule with another spectral triple, on a possibly 
noncommutative manifold, which would then represent the base 
manifold on which the gauge theory is defined. Many amongst 
the participants and speakers of the program have been dealing 
with this question in the past years, and their work has shed 
light on the problem, as well as on the technical aspects of 
Kasparov’s theory.

In lattice gauge theories, ‘refining’ the lattice yields the thermodynamic limit. This 
procedure is best described in terms of limits of C*-algebras.
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Topological phases
The recent years have witnessed a booming expansion in the 
theoretical understanding and experimental realization of so-
called topological insulators [10, 17], a class of materials which 
are insulating in the bulk but display robust edge modes, ca-
pable of conducting charge or spin without dissipation and vir-
tually without being affected by the presence of impurities and 
defects in the system. Such topological materials, whose theo-
retical proposal has already lead to the assignment of several 
Nobel Prizes in Physics (including the latest one from 2016), 
could potentially be employed in the future in spintronic devices 
and in quantum computers.

At a theoretical level, topological insulators are classified ac-
cording to the symmetries satisfied by the Hamiltonian H that 
models an effective one-particle picture of the quantum system. 
The fundamental symmetries come in three flavours:

 – charge-conjugation (also called particle-hole): it is imple-
mented by an antiunitary operator C over the one-particle 
Hilbert space which can square to 1! , and H is said to be 
charge-conjugation symmetric if

 –

;H HC C 1 =--

time-reversal: it is also implemented by an antiunitary op-
erator T squaring to 1! , and H is said to be time-reversal 
symmetric if

 –

;H HT T 1 =-

chiral: this symmetry S is implemented unitarily, squares to 1, 
and H is said to be chiral symmetric if

.H HS S 1 =--

Owing to the fact that C and T can square either to 1+  or 1- , 
and that the combination CT is a chiral symmetry S, one is 
lead to ten distinct symmetry classes: two of them, the one 
with absence of any symmetry and the one where only a chi-
ral symmetry is present, are dubbed complex, while the other 
eight, which have at least one antiunitary symmetry and hence 
need the specification of a complex conjugation operator, are 
instead called real. When the underlying system is a crystal, oth-
er (spatial) symmetries may be imposed, like invariance under 
translations of the crystalline Bravais lattice and possibly under 
reflections or discrete rotations.

To each of these symmetry classes, and depending on the 
dimensionality of the system, one can attach certain topological 
labels, which essentially encode how many inequivalent Hamil-
tonian there exist obeying the prescribed symmetries: two Ham-
iltonians are considered equivalent if they can be adiabatically 
deformed one into the other, that is, if there is an homotopy of 
Hamiltonians between them for which the bulk gap stays open. 
Some of these topological labels have actual physical meaning 
as measurable quantities: the most celebrated of these instances 
is the quantization of the quantum Hall transverse conductivity, 
which occurs in a 2-dimensional gapped periodic system where 
all the other symmetries above are broken (the so-called Class A), 
and which is driven by the integer Chern number associated 
to the occupied Bloch states (see [16] and references therein). 
However, some of these classes, like the one corresponding to 
time-reversal symmetric systems in dimensions 2 and 3 under 
the assumption that 1T 2 =-  (Class AII), have more peculiar 
features, like the appearance of torsion invariants, with values 
in Z2 [13, 14, 20].

This classification scheme has lead to the compilation of ‘peri-
odic tables’ of topological insulators [23, 31], depicted in Table 1. 
The realization that these tables are indeed periodic is the first 
success of mathematics, and more specifically of K-theory, in this 
field: Bott periodicity can be applied to show how to relate sym-
metry classes in different dimensions and how the classification 
repeats itself with an 8-fold periodicity in the dimension [32].

which instead presented the unbound-
ed picture of KK-theory. Much like in the 
case of spectral triples, in this framework 
the Fredholm operator which enters in the 
definition of a KK-class is replaced by a 
Dirac-like (unbounded) operator. This re-
quires first of all to set up a theory for un-
bounded self-adjoint operators on Hilbert 
C)-modules, which unfortunately combines 
the technical difficulties arising in the the-
ory of unbounded operators on standard 
Hilbert spaces with those of operators on 

Starting from a brief reminder on K-the-
ory for C)-algebras, Echterhoff presented 
the theory of Hilbert C)-modules, of the 
classes of operators acting on them (e.g. 
adjointable and compact operators), and 
of C)-correspondences (in particular Mori-
ta equivalences), concluding with the defi-
nition of KK-theory in its bounded version 
and with the construction of a representa-
tive for the Kasparov product.

Echterhoff’s lectures were followed by 
the ones given by Jens Kaad (Odense, DK), 

C)-algebra. These objects are known as 
Hilbert C)-modules. Much of the theory 
of Hilbert spaces and operators thereon 
carries through to this more general set-
ting, but with notable exceptions: not all 
bounded operators posseses an adjoint, 
and the class of adjointable operators 
plays a fundamental role in the theory. 
In particular, elements in the KK-group 

( , )KK A B  are Hilbert B-modules on which 
A acts (that is, is represented) as adjoint-
able operators.

The transverse resistivity exhibits plateaus in the quantum Hall effect. Index pairings 
in KK-theory lurk behind the curtains of this and many other quantization phenomena 
in condensed matter physics.
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Bourne focused instead on the inclu-
sion in this framework of disorder effects 
by means of C)-algebraic techniques. This 
theory originated in the works of Jean 
Bellissard and collaborators, who gave a 
mathematical description of the quantum 
Hall effect based on the Connes–Chern 
character. The latter can be understood as 
a pairing between the K-theory class of the 
occupied states of the Hamiltonian (living 
in the K-theory of a crossed product C)

-algebra of the disorder configurations by 
the action of the group of translations by 
integer shifts) and a certain K-cycle (that 
is, a Fredholm module or a spectral triple), 
dictated essentially by the symmetries of 
the system. The fact that this pairing takes 
values in the group of integers is in turn a 
consequence of an index theorem.

This approach has been recently gen-
eralized to explain all the classes of the 
periodic table, as Bourne illustrated in his 
lectures. KK-theory arises as a description 
of the cycle needed to pair with the physi-
cal input from the Hamiltonian. Antiunitary 
symmetries like charge-conjugation and 
time-reversal require in particular certain 
‘reality’ conditions, both in the algebra and 
in this KK-cycle, which in turn give rise to 
the torsion invariants, with values in Z2, 
via some index pairings in KK-theory.

Bourne’s lectures also covered the so-
called bulk-edge correspondence, a prin-
ciple which allows to ‘read’ the topology 
of the bulk physical system from the ef-
fects it induces on boundary states. It is 
this principle that underlies, for example, 
the quantization of the Hall current on 
the boundary of a sample of a quantum 
Hall system. This effect can be understood 
in terms of Toepliz-like extensions of the 
‘bulk’ algebra: the long-exact sequences in 
KK-theory then explain how to relate bulk 
and edge invariants.

and robustness of their edge states even 
in the disordered regime [6, 7, 8, 22].

An introduction to the physics and 
mathematics of topological phases of mat-
ter was delivered by Guo Chuan Thiang (Ad-
elaide, AU) and Chris Bourne (Sendai, JP).

Thiang introduced the periodic table of 
topological insulators (see Table 1), dis-
cussing symmetries of a quantum system 
from the point of view of K-theory and 
Clifford algebras. Indeed, the topology en-
coded in the bundle of occupied states of 
a gapped Hamiltonian determines a K-the-
ory class of a C)-algebra which essentially 
depends on the spatial symmetries (for ex-
ample, a noncommutative torus in the case 
of periodic systems). Charge-conjugation, 
time-reversal and chiral symmetries form 
a representation of some Clifford algebra 
on the Hilbert space of the system, which 
turns the above-mentioned bundle into a 
Clifford module, and refines its geometry 
in terms of topological invariants. Thiang 
illustrated the general theory with two main 
examples from the periodic table, namely 
Class A in dimension 2 (the quantum Hall 
effect) and Class AII in dimensions 2 and 3 
(the time-reversal symmetric topological in-
sulators first proposed by Liang Fu, Charlie 
Kane and Eugene Mele [13, 14] ), which are 
paradigmatic for what concerns Z-valued 
and Z2-valued invariants, respectively.

C)-modules, as for example the definition 
of the adjoint. Kaad gave an exposition of 
this theory, proceeding with the illustration 
of the main issues and possible solutions 
thereof for the definition of an unbound-
ed representative of the Kasparov product 
(see box ‘KK-theory’). The general theory 
was corroborated with several instructive 
examples, both from the commutative and 
the noncommutative perspective.

Topological phases
Index theory and K-theory have found 
applications also in the thriving field of 
topological quantum matter (see box ‘To-
pological phases’). The seemingly trivial 
observation that the index of a Fredholm 
operator, being defined as a difference of 
dimensions of vector spaces, is an integer, 
has profound implications, underlying for 
example the quantization of the noncom-
mutative topological invariants that label 
certain symmetry classes of topological 
insulators. These are a class of recently 
discovered materials, which offer promis-
ing applications in quantum devices due to 
their peculiar transport properties, induced 
mainly by their symmetry properties.

New advancements of the theory, which 
were discussed during the program, wide-
ly generalize the treatment of topological 
phases of matter to include disordered sys-
tems, quasi-crystals and aperiodic solids 
[29, 30]. Inspired by the Bellissard–Connes 
approach to the quantum Hall effect [5], 
the correct framework to describe the sym-
metry classes of such systems was recent-
ly shown to be the KK-theory of certain 
C)-algebras of observables, which are es-
sentially constructed from the Hamiltonian 
of the system and the space of disorder or 
atomic configurations. Kasparov’s K-theory 
has indeed proven to be a flexible tool to 
incorporate all the relevant classes of sym-
metries, by considering in particular real 
and Real C)-algebras (in the sense of Ati-
yah [1]: Real C)-algebras are noncommuta-
tive spaces endowed with an involution). 
Furthermore, the use of the Kasparov prod-
uct allowed to prove certain mathematical 
versions of the bulk-edge correspondence, 
which relates the topology of the bulk 
Hamiltonian to an effective description of 
the boundary of the system when this is 
terminated by an edge. These results prove 
rigorously the defining property of topo-
logical insulators, namely that their ‘topo-
logical’ character reflects in the stability 

Symmetry Dimension

AZ T C S 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1 The periodic table of topological insulators 
[23, 31, 32]. In the first column, ‘AZ’ stands for the Alt-
land–Zirnbauer (sometimes called Cartan) label. The la-
bels for the symmetries are: T (time-reversal), C (char-
ge-conjugation), S (chirality). Time-reversal symmetry 
and charge conjugation are Z2-symmetries implemented 
antiunitarily, and hence can square to plus or minus the 
identity: this is the sign appearing in the respective co-
lumns (0 stands for a broken symmetry). Chirality is in-
stead implemented unitarily: 0 and 1 stand for absent 
or present chiral symmetry, respectively. Notice that the 
composition of a time-reversal and a charge conjugation 
symmetry is of chiral type. The table repeats periodically 
after dimension 8 (i.e. for example the column correspon-
ding to d 9=  would be equal to the one corresponding to 
d 1= , and so on).

Robust boundary currents and an insulating bulk are the 
defining properties of topological insulators. The bulk-
edge correspondence has been established mathematically 
thanks to KK-theory methods.
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theoreticians alike lies in particular in the 
measurement of bulk torsion invariants: the 
topology of Z2 insulators is usually probed 
through the edge states of the system. 

The discussion sessions reflected sev-
eral aspects of problems being currently 
investigated by participants in the work-
shop, and fostered both new and ongoing 
collaborations.

With its comfortable facilities and ample 
office space, the Lorentz Center proved to be 
a more than adequate accommodation for 
this kind of event, allowing and encouraging 
discussions and collaboration between the 
participants, and taking the ‘bureaucratic’ 
load off of the shoulders of the scientific 
organizers, under the motto “You focus on 
the science — we do the rest!” s
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box ‘Gauge theory’), chaired by Gianni 
Landi (Trieste, IT). The discussion con-
cerned both open problems and applica-
tions of KK-theory, including the interpre-
tation of KK-cycles as morphisms in the 
category of C)-algebras, but also unique-
ness of KK-theory and connections with 
the theory of extension of C)-algebras. 
On the mathematical physics side, various 
applications were discussed, including the 
use of factorization in KK-theory to decom-
pose space-time into hypersurfaces.

Ralph Meyer (Göttingen, DE) presided 
over a second discussion session focused on 
‘KK-theory and topological phases’. The in-
terdisciplinary atmosphere of the conference 
aroused the curiosity of the mathematicians 
in the audience for the physical aspects of to-
pological quantum matter. For example, the 
discussion dealt with the possibility of mea-
suring the invariants produced by KK-theory 
in the lab, in the spirit of the observation of 
Chern number as quantum Hall conductiv-
ity. The challenge for experimentalists and 

The workshop
The five-days workshop followed the school 
and built on the topics introduced there. 
Elaborating on the material presented in the 
school, the newest uses of KK-theory in in-
dex theory, gauge theories and topological 
phases of quantum matter were illustrated 
by leading experts like Simon Brain (Nijme-
gen, NL), Maxim Braverman (Boston, USA), 
Motoko Kotani (Sendai, JP), Bram Mesland 
(Bonn, DE), and Emil Prodan (New York, 
USA). Together with several other interna-
tional experts, the speakers reported on 
cutting-edge research, recently developed 
in the fields of interest to the program.

The more topical advancements and ap-
plications of KK-theory were debated both 
alongside the presentations and during 
dedicated discussion sessions, which 
served as well as a means to outline future 
lines of investigation for the communities 
which came together during this program.

The first discussion session was devot-
ed to ‘KK-theory and gauge theory’ (see 
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