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image x3, and the server checks this value 
by testing if ( )f x x3 4=  holds. An eaves-
dropper obtaining x3 cannot imperson-
ate the client later on because the next 
round the server will demand a preimage 
for x3. At this stage, preimage x2 satisfying 

( )f x x2 3=  is known only to the client; it is 
not even known to the server yet, which is 
why the scheme provides asymmetric au-
thentication.

One-way chains and variations thereof 
are often referred to as hash chains since 
cryptographic hash functions such as SHA-
256 are commonly used as alternatives for f. 
Hash chains are fundamental to many con-
structions in cryptography, and even to 
some forms of cryptanalysis (e.g., rainbow 
tables). Bitcoin’s blockchain [15] is prob-
ably the best-known example of a hash 
chain nowadays — but note that block-
chains are costly to generate due to the 
additional ‘proof of work’ requirement for 
the hash values linking successive blocks. 
Hash chains are also used in digital sig-
nature schemes required to be quantum 
secure, building on work by Merkle from 
1979 [14]. Incidentally, Merkle attributes 
the use of iterated functions to Winternitz. 
However, Winternitz’s idea is to use only 
one preimage on a length-n chain, basi-
cally to securely encode an integer in the 

One-way chains
Back in 1981, Lamport (the ‘La’’ in LaTeX) 
proposed an elegant asymmetric identifi-
cation scheme which operates in terms of 
one-way chains [12]. A one-way chain is the 
sequence formed by the successive iter-
ates of f for a given value. For example, in 
a client-server setting, the client may apply 
f four times for a randomly chosen 128-bit 
seed value x0 to obtain a length-4 chain:

.x x x x x0 1 2 3 4$ $ $ $
f f f f

Lamport’s identification scheme then op-
erates as follows. At the start, the client 
registers itself securely with the server, 
as a result of which the server associates 
the endpoint x4 with the client. Depending 
on the details, this registration step may 
be rather involved. However, from now 
on the client may identify itself securely 
to the server simply by releasing the next 
preimage on the chain. In the first round 
of identification, the client releases pre

The problem is formulated in terms of a 
length-preserving one-way function f. A 
concrete example is the classical Davies–
Meyer one-way function constructed from 
a block cipher such as AES:

:
{ , } { , }

AES ( ) .
f

x
0 1 0 1

0x

128 128"

7
*

That is, f(x) is computed as an AES encryp-
tion of the trivial all-zero message 0 under 
the key x, which can obviously be done 
efficiently. On the other hand, recovering 
x from f(x) is tantamount to recovering an 
AES key given a single plaintext–ciphertext 
pair, which is assumed to be computation-
ally hard. Therefore, f is called a one-way 
function, as it is easy to evaluate but hard 
to invert. Block ciphers like AES are nor-
mally used for symmetric encryption to 
provide confidentiality, whereas one-way 
functions like f are often used for asym-
metric authentication, e.g., in the construc-
tion of digital signature schemes.
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addition, the storage requirements are 
low: ( )R xk  needs to store x for the recur-
sive call ( )R xk 1-  later on, which leads to a 
maximum of k 1+  values stored (pebbles) 
at any moment.

The only drawback is that Rk in the worst 
case requires time exponential in k between 
producing successive outputs. Removing 
these slow rounds is exactly what makes 
the problem non-trivial. That is, we seek 
a way to reverse ( )f x*

k  satisfying the per-
formance constraints of using O(k) storage 
(pebbles) and using O(k) applications of f 
(hashes) between producing any two suc-
cessive outputs. To study this problem we 
introduce a specific framework for binary 
pebbling algorithms that operate in rounds.

At this point we like to mention that 
there are many similar notions of ‘peb-
bling’ in the literature. In particular, peb-
bling games (see, e.g., [16]) are somewhat 
related, and have recently been used in the 
context of cryptography to prove memory- 
hardness of certain hash functions [1]. 
Graph pebbling is another well-known 
problem (see, e.g., [9]). Reversible comput-
ing (see, e.g., [18]) gives rise to even more 
uses of pebbling (aka ‘checkpointing’, see 
below). As discussed in [20], however, the 
specific worst-case constraint limiting the 
number of hashes per round is unique to 
the cryptographic setting, starting with the 
work in [10,11].

Framework for binary pebbling
For k 0$ , ( )P xk  will be defined as an al-
gorithm that runs for 2 1k 1 -+  rounds in 
total, and outputs ( )f x*

k  in reverse in its 
last 2 k rounds. It is essential that we in-
clude the initial 2 1k -  rounds (in which no 
outputs are produced) as an integral part 
of pebbler ( )P xk , as this allows for a fully 
recursive definition and analysis of bina-
ry pebbling. In fact, in terms of a given 
schedule { }T t ,k k r r 1

2 1k
= =

- , which fixes the 
number of hashes for each initial round, 
a binary pebbler ( )P xk  is completely spec-
ified by the recursive definition given in 
Figure 1. This means, for example, that 

( )P x0  runs for one round only outputting 
y x0 =  itself, and that ( )P x1  will run for 
three rounds, performing t 1,1 1 =  hash in 
its first round, outputting ( )y f x0 =  in its 
second round, and outputting y x1 =  in 
its last round. In general, ( )P xk  computes 

( )f x2 1k -  using exactly 2 1k -  hashes in total 
in its initial stage, storing only the values 

, ,y yk 0f  along the way. Running pebblers 

Pebbling algorithms
The above provides a solid basis for 
Jakobsson’s wonderful idea of using efficient 
pebbling algorithms to make Lamport’s 
scheme practical even for very long chains 
[11]. Naive implementations would render 
Lamport’s scheme completely impractical: 
both (i) computing ( )x f xn

n
1

1
0=-

-  to 
perform the first round of identification, 
then computing ( )x f xn

n
2

2
0=-

-  from 
scratch, and so on, and (ii) storing all of 

, , , ,x x x xn n0 1 2 1f - -  to perform each round 
of identification instantly, are out of the 
question. The crux of Jakobsson’s pebbling 
algorithm is to achieve a good space-
time trade-off: for chains of length n 2k= , 
Jakobsson’s algorithm stores ( )logO n  hash 
values throughout, and the maximum num-
ber of hashes performed in any round of 
identification is ( )logO n  as well.

Each hash value stored is associated 
with a pebble. For a length-16 chain, five 
pebbles are initially arranged as follows, 
which is typical of a binary pebbling al-
gorithm:

The general pattern is that starting from 
the rightmost pebble, the distance to 
the next pebble doubles each time. From 
this initial arrangement, the first two el-
ements x15 and x14 of the reverse of 
{ , , , }x x x0 1 15f  can be output directly. For 
the third element x13 we need to ap-
ply f once to recompute it from x12. The 
fourth element x12 can be output again 
without any effort.

To produce x11, something interesting 
happens. Because f is one-way, the only 
sensible option is to recompute it from x8 
as ( )x f x11

3
8= . But while doing so, the val-

ue of ( )x f x10
2

8=  is also stored for later 
use. Hence, just before x11 is output, the 
pebbles are arranged as follows:

Proceeding this way and computing out-
puts just-in-time, the rushing binary peb-
bling algorithm Rk is obtained:

output( ) ,

( ) ( ( )); ( ) .

R x x

R x R f x R xk k k

0

1
2

1
k 1

=

= - -
-

The reader may check that ( )R xk  outputs 
the sequence

( ) { ( )}f x f x*
k

i
i 0
2 1k

= =
-

in reverse, using k2k-1 hashes in total. In 

set { , , }n0 1f - , whereas Lamport’s idea is 
to use all of the n preimages. The CAFE 
phone-tick scheme [2, Section 3.5] (see 
also [17]) and later micropayment schemes 
(e.g., PayWord [19]) actually combine these 
two ideas. In the case of phone-ticks, the 
caller releases the endpoint of a chain at 
the start of a call; at each tick, the caller 
simply releases the next preimage (as in 
Lamport’s scheme) to pay for continuing 
the call. After the call ends, the phone 
company only needs to keep the last pre-
image released by the caller to claim the 
amount due (as in Winternitz’s encoding).

Security of one-way chains
The use of a cryptographic hash function to 
create a one-way chain is overkill, however. 
A function like SHA-256 is not just one-way 
but is also designed to compress bit strings 
of practically unlimited length, and related 
to this, SHA-256 is required to be colli-
sion-resistant as well. For the security of a 
one-way chain, f should be one-way, that is, 
given y in the range of f it must be hard to 
find any x such that ( )f x y= . Or rather, as 
recognized in [13, 17], f should necessarily 
be one-way on its iterates, which says that, 
for a length-n chain, given an nth iterate 
image y (in the range of f n) it must be hard 
to find any x such that ( )f x y= .

Viewing f as a random function (as in 
the random oracle model for hash func-
tions), it follows that finding such a pre-
image x takes 2128/n time approximately. If 
n 1=  this is simply the problem of invert-
ing f, which can only be solved by making 
random guesses for x; on each attempt 
one succeeds with probability 1/2128. For 
n 1> , however, one should not guess ran-
domly. First, observe that the set of nth 
iterate images y (range of f n) is much 
smaller than { , }0 1 128. In fact, the expected 
number of nth iterate images y is equal 
to ( )1 2n

128x- , where 00x = , en
1 n 1x = x- + -  

for n 1$  [4, Theorem 2(v)]. To take ad-
vantage of the given that y is not just 
any image but an nth iterate image, start 
with a random guess x0 and then check if 

( )x f x1 0=  happens to match y. Next, com-
pute ( )x f x2 1=  and again test for equality 
with y, and continue to do so until xn is 
reached. The overall probability of hitting y 
and thus obtaining a preimage of y as well 
works out as n/2128 approximately. Hence, 
even for very long chains of length n 232= , 
say, the security level is still 296. See also 
[8, Theorem 3] for a further analysis.

x0• x1· x2· x3· x4· x5· x6· x7· x8• x9· x10· x11· x12• x13· x14• x15•

x0• x1· x2· x3· x4· x5· x6· x7· x8• x9· x10• x11•
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pebbler obtained this way is called the 
speed-2 pebbler, illustrated in Figure 2.

Compared to a speed-1 pebbler, the 
crucial idea of a speed-2 pebbler is to 
remain idle for the first half of the initial 
stage — preventing that too many peb-
blers are active at the same time — and 
then make up for this by hashing at dou-
ble speed in the remaining time. It can be 
proved that ( )max W k 1k = -  for k 1$  also 
holds for a speed-2 pebbler, but compared 
to a speed-1 pebbler storage is now re-
duced by 50%, achieving ( )max S k 1k = + . 
For binary pebbling algorithms, storage Sk 
of up to k 1+  hash values is optimal, since 
this amount of storage is already need-
ed during the first output round r 2k= , 
for any binary pebbler Pk. The interesting 
question is whether the work ( )max Wk  can 
be reduced any further?

Optimal binary pebbling
An elementary analysis yields ( )max Wk $ 

/k 2^ h, k 2$ , as lower bound for any binary 
pebbling algorithm (see [20, Theorem 2]). 
So, the best that can be achieved is to 
reduce the maximum number of hashes 
for any output round to k/2 roughly. The 
problem of optimally efficient hash chain 
reversal was extensively studied by Cop-
persmith and Jakobsson [3]. They achieved 
nearly optimal space-time complexity for 
a complicated pebbling algorithm using 

( )logk k 12+ +^ h pebbles and no more than 
k
28 B hashes per round. Hence, an excess 

storage of approximately log k2  hash val-
ues compared to optimal binary pebbling.

Fortunately, Yum et al. [21] observed that 
a greedy implementation of Jakobsson’s 
original pebbling algorithm already 
achieves the optimal space-time trade-off 
for binary pebbling. Their idea is to greedi-
ly use up a budget of k

2` j hashes per round 
subject to the constraint that no more than 
about k hash values are stored at any time. 
The only drawback of the greedy approach 
is that no apparent structure is revealed.

In contrast, we have found an explicit, 
essentially unique solution for optimal bi-
nary pebbling, which leads to a complete 
understanding of the problem and paves 
the way for fully optimized in-place imple-
mentations. As a closed formula, the op-
timal schedule Tk is obtained by setting 
t 0,k r =  for r1 2< k 1# - , and setting tk,r to

(( )

len(( ) ))

mod

mod

k r k

r

2 1

2 2len( )r

2
1

2k

+ + +

- -

8
B

The rushing pebbler Pk corresponding 
to Rk introduced above is obtained by tak-
ing schedule Tk with t 2 1,k

k
2 1k = --  and 

t 0,k r =  elsewhere. Rushing pebbler P4 is 
illustrated in Figure 1 in our framework for 
binary pebbling. The storage S4 is minimal 
throughout, but for the work W4 there are 
big peaks: e.g., in round 23, in total seven 
hashes are performed, while the pebbler is 
idle in all even rounds.

Towards optimal solution
As it turns out, our framework admits a sim-
ple solution obtained by taking schedule 

{ }T 1k r 1
2 1k

= =
- , resulting in the speed-1 peb-

bler illustrated in Figure 2. The above recur-
rence relation for Wk yields ( )max W k 1k = -  
for k 1$ , and it can also be shown that 

( ) ( , ) ( )max maxS k k O k1 2 2k = + - = . The 
speed-1 pebbler thus achieves the desired 
asymptotic bounds. For practical purposes, 
however, further savings are needed to lim-
it the costs as much as possible. E.g., to 
enable a lightweight client device to iden-
tify itself every half hour for a period of 
three years using a length-216 chain.

Jakobsson’s pebbling algorithm [11] 
provides a clever way to cut storage 

( )max Sk  in half essentially. Translated to 
our framework for binary pebbling, the 
corresponding schedule Tk is obtained 
by setting t 0,k r =  for r1 2< k 1# - , t 2,k r =  
for r2 2 1<k k1 # -- , and t 1,k 2 1k =- . The 

, ,P Pk 1 0f-  in parallel in the output stage 
means that pebblers take turns to execute 
for one round each, where the order in 
which this happens within a round is irrel-
evant. It is not hard to prove that in every 
round exactly one of the pebblers running 
in parallel will be in its first output round, 
and that the sequence of outputs is always 
equal to ( )f x*

k . 
Schedule Tk specifies the number of 

hashes for the initial stage of Pk. To analyze 
the work done by Pk in its output stage, 
we let sequence Wk of length 2 1k -  denote 
the number of hashes performed by Pk in 
each of its last 2 1k -  rounds — noting that 
by definition no hashes are performed by 
Pk in round 2 k. The following recurrence 
relation for Wk will be useful throughout:

{}, { } ,W W T W W0k k k k0 1 1 1= = +- - -

where T Wk k1 1+- -  denotes elementwise 
addition of Tk-1 and Wk-1 and < concate-
nation of sequences (+ takes precedence 
over <).

To analyze the storage needed by Pk the 
number of hash values stored by Pk will be 
counted for each round. We let sequence 

{ }S s ,k k r r 1
2 1k 1

= =
-+

 denote the total storage 
used by Pk at the start of each round. For 
instance, s 1,k 1 =  as Pk only stores x at the 
start, and s k 1,k 2k = +  as Pk stores , ,y yk0 f  
at the start of round 2 k independent of 
schedule Tk.

x

Pk−1

Pk−2

Initial stage:

- set yi = f2k−2i(x),
for i = k, . . . , 0,
using tk,r hashes
in round r ∈ [1, 2k).

Output stage:
- output y0 in round r = 2k;
- run Pi−1(yi) in parallel,
for i = 1, . . . , k,
in rounds r ∈ (2k, 2k+1).

•yk •yk−1 •yk−2• • y0•

−

−

−

r = 1

r = 2k

r = 2k+1−1
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Figure 1  Binary pebbler ( )P xk  for schedule { }T t ,k k r r 1
2 1k

= =
-  satisfying t 2 1

,r k r
k

1

2 1k
= -

=

-/  (left). Schedule T4, work W4, 
and storage S4 for rushing pebbler P4 in rounds r 1=  to r 31=  (right). Bullets represent stored values (pebbles), right-
wards arrows represent hashing, vertical lines represent copying.
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we are using MD5 as a 128-bit length-pre-
serving one-way function — MD5 is readily 
available in Python, also no practical at-
tacks against the one-wayness of MD5 are 
known to this day.

By exploiting specific properties of the 
optimal schedule, we will next show how 
to implement binary pebblers with minimal 
overhead. In fact, we present in-place hash 
chain reversal algorithms, where the en-
tire state of these algorithms (apart from 
the hash values) is represented between 
rounds by a single k-bit counter only. Be-
low, this is shown for Jakobsson’s speed-2 
pebblers; refer to [20] for further results.

We use the following terminology to de-
scribe the state of a pebbler Pk (which ap-
plies to both speed-2 pebblers and optimal 
pebblers). Pebbler Pk is said to be idle if it is 
in rounds [ , )1 2k 1- , hashing if it is in rounds 
[ , ]2 2k k1- , and redundant if it is in rounds 
( , )2 2k k 1+ . An idle pebbler performs no 
hashes at all, while a hashing pebbler will 
perform at least one hash per round, except 
for round 2 k in which Pk outputs its y0 val-
ue. The work for a redundant pebbler Pk is 
taken over by its child pebblers , ,P Pk0 1f -  
during its last 2 1k -  output rounds.

The important observation is that for 
each round r the complete state of a pebbler 
Pk can be deduced quickly from the binary 
representation of the counter c r2k 1= -+ , 
which counts down how many rounds are 

defined in Table 1. These sequences are 
defined over Z2

1  — rather than over Z as 
will ultimately be required for use in a peb-
bling algorithm. Without rounding of these 
half-integers, the optimal schedule satis-
fies the following key equation in terms of 
sequences Uk, Vk, k 2$ :

( ) ({ } ) { } .U V W0k k k
k

1 2
1 2k 1

+ =-
+ -

This equation basically says that the opti-
mal schedule does not leave any gaps: in 
each round exactly the maximum number 
of hashes are performed to meet the lower 
bound for binary pebbling.

Efficient in-place implementations
Without strict performance requirements, 
our framework for binary pebbling allows 
for relatively straightforward implementa-
tions. Figure 4 is showcasing a conceptual-
ly simple implementation based on Python 
generators. For demonstration purposes, 

for r2 2<k k1 #- , where len( )n  denotes the 
bit length of nonnegative integer n. Opti-
mal pebbler P4 is illustrated in Figure 2, 
which uses the following optimal sched-
ules:

{},
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In general, an optimal pebbler Pk will use 
up to ( ) /max W k 2k = ^ h hashes in any out-
put round. For the optimal pebbler P4 in 
Figure 2, this works out as ( )max W 24 =  
hashes, compared to the speed-2 pebbler 
P4 which needs 3 hashes in output round 
r 21= .

The fractal nature of the optimal sched-
ule Tk is revealed by the recursive char-
acterization in terms of sequences Uk, Vk 
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Figure 2  Schedule T4, work W4, storage S4 for three types of binary pebblers P4 in rounds 1–31

Table 1  Recursive definition of optimal schedule { }T U V0k k k
2 1k 1

= --
 over Z2

1  (no rounding). Explicit formula is in this 

case given by { } { ( len(( ) ))}modT k r0 1 2 2len( )
k

r
r

2 1
2
1 2

2
2 1k k

k

k1
1<= + -- -

=
--

- .
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41 • • • •
5W4 • • • • •
41 • • • •
42 • • • •
41 • • • •
42 • • • •
43 • • • •
42 • • • •
41 • • • •
40 • • • •
31 • • •
32 • • •
31 • • •
30 • • •
21 • •
20 • •
10 •

rT4S4

optimal
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
12 •
22 • •
21 • •
21 • •
22 • •
22 • •
32 • • •
33 • • •
5W4 • • • • •
41 • • • •
41 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
40 • • • •
31 • • •
31 • • •
32 • • •
30 • • •
21 • •
20 • •
10 •

Figure 2. Schedule T4, work W4, storage S4 for three types of binary pebblers P4 in rounds 1–31.

chain reversal algorithms, where the entire state of these
algorithms (apart from the hash values) is represented be-
tween rounds by a single k-bit counter only. Below, this
is shown for Jakobsson’s speed-2 pebblers; refer to [20] for
further results.

We use the following terminology to describe the state
of a pebbler Pk (which applies to both speed-2 pebblers
and optimal pebblers). Pebbler Pk is said to be idle if it
is in rounds [1, 2k−1), hashing if it is in rounds [2k−1, 2k],
and redundant if it is in rounds (2k, 2k+1). An idle peb-
bler performs no hashes at all, while a hashing pebbler will
perform at least one hash per round, except for round 2k in
which Pk outputs its y0 value. The work for a redundant
pebbler Pk is taken over by its child pebblers P0, . . . , Pk−1

during its last 2k − 1 output rounds.

The important observation is that for each round r the
complete state of a pebbler Pk can be deduced quickly
from the binary representation of the counter c = 2k+1−r,
which counts down how many rounds are still left. This
is illustrated in Figure 3 for a speed-2 pebbler Pk(x). The
pseudocode shows how to run the pebbler in-place, that
is, in such a way that the storage between rounds is lim-
ited to a length-k array z of hash values and counter r.
The information about the states of all pebblers running
in parallel is deduced directly from c. This information
includes which pebblers are present, whether these peb-
blers are idle or hashing, which hash values have already
been computed by a pebbler, and where these are stored
in array z, etc.

The example in Figure 3 shows the details for a P9 peb-
bler at round r = 664. Four child pebblers P8, P6, P5, P3

Table 1. Recursive definition of optimal schedule Tk = {0}2k−1−1 ‖Uk ‖Vk over 1
2Z (no rounding).

Explicit formula is in this case given by Tk = {0}2k−1−1 ‖ { 1
2 (k + 1− len((2r) mod 2len(2

k−r)))}2
k−1

r=2k−1 .

U2 = { 3
2}, Uk = Uk−1 +

1
2 ‖ {1}2k−3

V2 = { 3
2}, Vk = Uk−1 +

1
2 ‖ Vk−1 +

1
2

U3 21 V3 22

U4
5
2
3
211 V4

5
2
3
2
5
2
5
2

U5 32 3
2
3
21111 V5 32 3

2
3
23233

U6
7
2
5
222

3
2
3
2
3
2
3
211111111 V6

7
2
5
222

3
2
3
2
3
2
3
2
7
2
5
222

7
2
5
2
7
2
7
2

U7 43 5
2
5
22222

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
21111111111111111 V7 43 5

2
5
22222

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
243

5
2
5
2222243

5
2
5
24344

avg. speed 2 speed 1 avg. speed 2 avg. speed 3
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gave a lower bound of . k0 25 2, but whether 
this bound can be attained is doubtful: the 
lower bound is derived without taking into 
account any limits on the number of hash-
es per output round.

Incidentally, the lower bound of . k0 25 2 
had been found already in a completely 
different context [7], for a similar problem 
studied in the area of algorithmic (or, au-
tomatic, computational) differentiation [6]. 
The lower bound applies to the space-time 
complexity of so-called checkpointing for 
the reverse (or, adjoint, backward) mode 
of algorithmic differentiation. In contrast to 
our case, however, there it is even possible 
to attain the lower bound [5]. The critical 
difference is that in the setting of algo-
rithmic differentiation the goal is basically 
to minimize the total time for performing 
this task (or, equivalently, to minimize the 
amortized time per output round). This 
contrasts sharply with the goal in the 
cryptographic setting, where we want to 
minimize the worst case time per output 
round while performing this task.	 s

length of these segments divided by 2. In 
case of P8 this works out as 2

3  hashes, and 
for P5 we get 2

6  hashes, hence exactly 2
9  

hashes are used in total for this round.
In general, this rule implies that no more 

than k
2  hashes are performed in any output 

round of Pk. Moreover, this simple rule will 
orchestrate the entire computation, ensur-
ing that all intermediate hash values are 
computed right on time — not too late to 
fail producing an output on time, and not 
too early, before another free entry in array 
[ , )z k0  becomes available. The optimized im-

plementations in [20] are based on this rule.

Lower bound
Optimal binary pebbling achieves a space-
time product of . k0 50 2 for a chain of length 
n 2k= . In an upcoming paper with Niels de 
Vreede, we will show how to reduce the 
space-time product to . k0 46 2 by means 
of Fibonacci pebbling and how to reduce 
this even further down to just . k0 37 2 by 
more intricate pebbling algorithms. We 
note that Coppersmith and Jakobsson [3] 

still left. This is illustrated in Figure 3 for 
a speed-2 pebbler ( )P xk . The pseudocode 
shows how to run the pebbler in-place, that 
is, in such a way that the storage between 
rounds is limited to a length-k array z of 
hash values and counter r. The information 
about the states of all pebblers running 
in parallel is deduced directly from c. This 
information includes which pebblers are 
present, whether these pebblers are idle or 
hashing, which hash values have already 
been computed by a pebbler, and where 
these are stored in array z, et cetera.

The example in Figure 3 shows the de-
tails for a P9 pebbler at round r 664= . 
Four child pebblers P8, P6, P5, P3 are running 
in parallel: P8 is hashing and has entries 
[ , ]z 7 8  in use, P6 is idle occupying one entry 
[ ]z 6 , P5 is hashing and has entries [ , ]z 4 5  in 

use. The P3 pebbler has just reached its 
first output round occupying four entries 
[ , ]z 0 3  and outputs its y0 value stored in [ ]z 0 . 

Subsequently, this P3 pebbler becomes 
redundant and is replaced by its child 
pebblers P2, P1, P0, which will each use 
one entry of array z. Entry [ ]z 3  has been 
freed, but is immediately used again by the 
P5 pebbler, which just reached the point 
where it starts working on its y3 value.

The schedule for a speed-2 pebbler is 
integrated in the pseudocode of Figure 3. 
For optimal pebbling, however, we need to 
evaluate the formula for the optimal sched-
ule to find the exact number of hashes to 
be performed by each pebbler. An intuitive 
way to interpret this formula is explained 
by means of the following example, cf. 
Figure 3. Consider optimal pebbler P9 at 
c 360=  rounds from the end:

The formula of Table 1 for the optimal 
schedule (before rounding) partitions the 
bits of c into the two colored segments 
as indicated. The underlying rule is as fol-
lows. First, all the hashing pebblers are 
identified, ignoring the rightmost one: this 
results in two hashing pebblers P8 and P5 
(idle pebbler P6 and the rightmost hash-
ing pebbler P3 are ignored). Then, each of 
these hashing pebblers Pi gets the seg-
ment assigned starting at bit ci and ex-
tending to the right. The number of hashes 
to be performed by each of these hashing 
pebblers — as given by the formula of the 
optimal schedule — exactly matches the 

Figure 3  Pseudocode for in-place speed-2 pebbler ( )P xk  at output round r, r2 2< <k k 1+  . Initially, array [ , )z k0  satisfies 

[ ] ( )z i f x1 2 2k i
- = -  for , ,i k1 f=  (left). Transition of P9 from round r 664=  to r 665= , hence from ( )c 360 101101000 2= =  

to ( )c 359 101100111 2= =  (right).

Round r:
1: output z[0]
2: c ← 2k+1 − r
3: i ← pop0(c)
4: z[0, i) ← z[1, i]
5: i ← i+ 1; c ← �c/2�
6: q ← i− 1
7: while c �= 0 do
8: z[q] ← f(z[i])
9: if q �= 0 then z[q] ← f(z[q])

10: i ← i+ pop0(c) + pop1(c)
11: q ← i

c8 c7 c6 c5 c4 c3 c2 c1 c0
1 0 1 1 0 1 0 0 0

P hashing

8/y8/y7
P idle
6/y6

P hashing

5/y5/y4
P hashing

3/y3/y2/y1/y0

1 0 1 1 0 0 1 1 1

P hashing

8/y8/y7
P idle
6/y6

P hashing

5/y5/y4/y3
P idle
2/y2

P idle
1/y1

P hashing

0/y0

z[8] z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

P state
i
/hash values

: Pi with state and hash values stored in array z

pop0(c) / pop1(c): count and remove trailing 0-bits / 1-bits from c

c8 c7 c6 c5 c4 c3 c2 c1 c0
1 0 1 1 0 1 0 0 0
P hashing

8 P hashing

5

Figure 4  Python program for recursive binary pebblers  without any optimizations, cf. definition of ( )P xk  in Figure 1. 
Inputs: tR/t1/t2/tS for rushing/speed-1/speed-2/optimal and nonnegative integer k. P(k,x) is a Python generator: 
each evaluation of a yield expression corresponds to a round of ( )P xk .

import hashlib, itertools

f = lambda x: hashlib.md5(x).digest()

tR = lambda k,r: 0 if r < 2 k − 1 else 2 k − 1
t1 = lambda k,r: 1
t2 = lambda k,r: 0 if r < 2 (k−1) else 2 if r < 2 k − 1 else 1
tS = lambda k,r: 0 if r < 2 (k−1) else ((k + r) % 2 + k + 1 − ((2 r) % (2 (2 k − r).bit length())).bit length()) // 2

def P(k,x):
y = [None] k + [x]
i = k; g = 0
for r in range(1, 2 k):

for in range(t(k,r )):
z = y[i ]
if g == 0: i −= 1; g = 2 i
y[ i ] = f(z)
g −= 1

yield
yield y[0]
for v in itertools . zip longest ( (P(i−1, y[i ]) for i in range(1, k+1))):

yield next( filter (None, v))

t = eval(input())
k = int(input())
x = f(b )
for v in P(k, x):

if v: print(v.hex())
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