
Berry Schoenmakers	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 NAW 5/18  nr. 3  september 2017	 199

image x3, and the server checks this value
by testing if ()f x x3 4= holds. An eaves-
dropper obtaining x3 cannot imperson-
ate the client later on because the next
round the server will demand a preimage
for x3. At this stage, preimage x2 satisfying

()f x x2 3= is known only to the client; it is
not even known to the server yet, which is
why the scheme provides asymmetric au-
thentication.

One-way chains and variations thereof
are often referred to as hash chains since
cryptographic hash functions such as SHA-
256 are commonly used as alternatives for f.
Hash chains are fundamental to many con-
structions in cryptography, and even to
some forms of cryptanalysis (e.g., rainbow
tables). Bitcoin’s blockchain [15] is prob-
ably the best-known example of a hash
chain nowadays — but note that block-
chains are costly to generate due to the
additional ‘proof of work’ requirement for
the hash values linking successive blocks.
Hash chains are also used in digital sig-
nature schemes required to be quantum
secure, building on work by Merkle from
1979 [14]. Incidentally, Merkle attributes
the use of iterated functions to Winternitz.
However, Winternitz’s idea is to use only
one preimage on a length-n chain, basi-
cally to securely encode an integer in the

One-way chains
Back in 1981, Lamport (the ‘La’’ in LaTeX)
proposed an elegant asymmetric identifi-
cation scheme which operates in terms of
one-way chains [12]. A one-way chain is the
sequence formed by the successive iter-
ates of f for a given value. For example, in
a client-server setting, the client may apply
f four times for a randomly chosen 128-bit
seed value x0 to obtain a length-4 chain:

.x x x x x0 1 2 3 4$ $ $ $
f f f f

Lamport’s identification scheme then op-
erates as follows. At the start, the client
registers itself securely with the server,
as a result of which the server associates
the endpoint x4 with the client. Depending
on the details, this registration step may
be rather involved. However, from now
on the client may identify itself securely
to the server simply by releasing the next
preimage on the chain. In the first round
of identification, the client releases pre

The problem is formulated in terms of a
length-preserving one-way function f. A
concrete example is the classical Davies–
Meyer one-way function constructed from
a block cipher such as AES:

:
{ , } { , }

AES () .
f

x
0 1 0 1

0x

128 128"

7
*

That is, f(x) is computed as an AES encryp-
tion of the trivial all-zero message 0 under
the key x, which can obviously be done
efficiently. On the other hand, recovering
x from f(x) is tantamount to recovering an
AES key given a single plaintext–ciphertext
pair, which is assumed to be computation-
ally hard. Therefore, f is called a one-way
function, as it is easy to evaluate but hard
to invert. Block ciphers like AES are nor-
mally used for symmetric encryption to
provide confidentiality, whereas one-way
functions like f are often used for asym-
metric authentication, e.g., in the construc-
tion of digital signature schemes.

Binary pebbling algorithms
for in-place reversal
of one-way hash chains

Berry Schoenmakers is associate professor (UHD) in the Coding and Crypto Group at Eind­
hoven University of Technology. Schoenmakers is known for his work on cryptographic pro­
tocols for electronic voting, electronic payment, and secure computation. In this article he
discusses an algorithmic problem pertaining to the backward traversal of a one-way hash
chain, which has a unique motivation in cryptography. At the core of its recently obtained
solution lies an intricate fractal structure which turns out to have a very nice and simple
characterization.

Berry Schoenmakers
Department of Mathematics & Computer Science
Eindhoven University of Technology
berry@win.tue.nl

200	 NAW 5/18  nr. 3  september 2017	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 Berry Schoenmakers

addition, the storage requirements are
low: ()R xk needs to store x for the recur-
sive call ()R xk 1- later on, which leads to a
maximum of k 1+ values stored (pebbles)
at any moment.

The only drawback is that Rk in the worst
case requires time exponential in k between
producing successive outputs. Removing
these slow rounds is exactly what makes
the problem non-trivial. That is, we seek
a way to reverse ()f x*

k satisfying the per-
formance constraints of using O(k) storage
(pebbles) and using O(k) applications of f
(hashes) between producing any two suc-
cessive outputs. To study this problem we
introduce a specific framework for binary
pebbling algorithms that operate in rounds.

At this point we like to mention that
there are many similar notions of ‘peb-
bling’ in the literature. In particular, peb-
bling games (see, e.g., [16]) are somewhat
related, and have recently been used in the
context of cryptography to prove memory-
hardness of certain hash functions [1].
Graph pebbling is another well-known
problem (see, e.g., [9]). Reversible comput-
ing (see, e.g., [18]) gives rise to even more
uses of pebbling (aka ‘checkpointing’, see
below). As discussed in [20], however, the
specific worst-case constraint limiting the
number of hashes per round is unique to
the cryptographic setting, starting with the
work in [10,11].

Framework for binary pebbling
For k 0$, ()P xk will be defined as an al-
gorithm that runs for 2 1k 1 -+ rounds in
total, and outputs ()f x*

k in reverse in its
last 2 k rounds. It is essential that we in-
clude the initial 2 1k - rounds (in which no
outputs are produced) as an integral part
of pebbler ()P xk , as this allows for a fully
recursive definition and analysis of bina-
ry pebbling. In fact, in terms of a given
schedule { }T t ,k k r r 1

2 1k
= =

- , which fixes the
number of hashes for each initial round,
a binary pebbler ()P xk is completely spec-
ified by the recursive definition given in
Figure 1. This means, for example, that

()P x0 runs for one round only outputting
y x0 = itself, and that ()P x1 will run for
three rounds, performing t 1,1 1 = hash in
its first round, outputting ()y f x0 = in its
second round, and outputting y x1 = in
its last round. In general, ()P xk computes

()f x2 1k - using exactly 2 1k - hashes in total
in its initial stage, storing only the values

, ,y yk 0f along the way. Running pebblers

Pebbling algorithms
The above provides a solid basis for
Jakobsson’s wonderful idea of using efficient
pebbling algorithms to make Lamport’s
scheme practical even for very long chains
[11]. Naive implementations would render
Lamport’s scheme completely impractical:
both (i) computing ()x f xn

n
1

1
0=-

- to
perform the first round of identification,
then computing ()x f xn

n
2

2
0=-

- from
scratch, and so on, and (ii) storing all of

, , , ,x x x xn n0 1 2 1f - - to perform each round
of identification instantly, are out of the
question. The crux of Jakobsson’s pebbling
algorithm is to achieve a good space-
time trade-off: for chains of length n 2k= ,
Jakobsson’s algorithm stores ()logO n hash
values throughout, and the maximum num-
ber of hashes performed in any round of
identification is ()logO n as well.

Each hash value stored is associated
with a pebble. For a length-16 chain, five
pebbles are initially arranged as follows,
which is typical of a binary pebbling al-
gorithm:

The general pattern is that starting from
the rightmost pebble, the distance to
the next pebble doubles each time. From
this initial arrangement, the first two el-
ements x15 and x14 of the reverse of
{ , , , }x x x0 1 15f can be output directly. For
the third element x13 we need to ap-
ply f once to recompute it from x12. The
fourth element x12 can be output again
without any effort.

To produce x11, something interesting
happens. Because f is one-way, the only
sensible option is to recompute it from x8
as ()x f x11

3
8= . But while doing so, the val-

ue of ()x f x10
2

8= is also stored for later
use. Hence, just before x11 is output, the
pebbles are arranged as follows:

Proceeding this way and computing out-
puts just-in-time, the rushing binary peb-
bling algorithm Rk is obtained:

output() ,

() (()); () .

R x x

R x R f x R xk k k

0

1
2

1
k 1

=

= - -
-

The reader may check that ()R xk outputs
the sequence

() { ()}f x f x*
k

i
i 0
2 1k

= =
-

in reverse, using k2k-1 hashes in total. In

set { , , }n0 1f - , whereas Lamport’s idea is
to use all of the n preimages. The CAFE
phone-tick scheme [2, Section 3.5] (see
also [17]) and later micropayment schemes
(e.g., PayWord [19]) actually combine these
two ideas. In the case of phone-ticks, the
caller releases the endpoint of a chain at
the start of a call; at each tick, the caller
simply releases the next preimage (as in
Lamport’s scheme) to pay for continuing
the call. After the call ends, the phone
company only needs to keep the last pre-
image released by the caller to claim the
amount due (as in Winternitz’s encoding).

Security of one-way chains
The use of a cryptographic hash function to
create a one-way chain is overkill, however.
A function like SHA-256 is not just one-way
but is also designed to compress bit strings
of practically unlimited length, and related
to this, SHA-256 is required to be colli-
sion-resistant as well. For the security of a
one-way chain, f should be one-way, that is,
given y in the range of f it must be hard to
find any x such that ()f x y= . Or rather, as
recognized in [13, 17], f should necessarily
be one-way on its iterates, which says that,
for a length-n chain, given an nth iterate
image y (in the range of f n) it must be hard
to find any x such that ()f x y= .

Viewing f as a random function (as in
the random oracle model for hash func-
tions), it follows that finding such a pre-
image x takes 2128/n time approximately. If
n 1= this is simply the problem of invert-
ing f, which can only be solved by making
random guesses for x; on each attempt
one succeeds with probability 1/2128. For
n 1> , however, one should not guess ran-
domly. First, observe that the set of nth
iterate images y (range of f n) is much
smaller than { , }0 1 128. In fact, the expected
number of nth iterate images y is equal
to ()1 2n

128x- , where 00x = , en
1 n 1x = x- + -

for n 1$ [4, Theorem 2(v)]. To take ad-
vantage of the given that y is not just
any image but an nth iterate image, start
with a random guess x0 and then check if

()x f x1 0= happens to match y. Next, com-
pute ()x f x2 1= and again test for equality
with y, and continue to do so until xn is
reached. The overall probability of hitting y
and thus obtaining a preimage of y as well
works out as n/2128 approximately. Hence,
even for very long chains of length n 232= ,
say, the security level is still 296. See also
[8, Theorem 3] for a further analysis.

x0• x1· x2· x3· x4· x5· x6· x7· x8• x9· x10· x11· x12• x13· x14• x15•

x0• x1· x2· x3· x4· x5· x6· x7· x8• x9· x10• x11•

Berry Schoenmakers	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 NAW 5/18  nr. 3  september 2017	 201

pebbler obtained this way is called the
speed-2 pebbler, illustrated in Figure 2.

Compared to a speed-1 pebbler, the
crucial idea of a speed-2 pebbler is to
remain idle for the first half of the initial
stage — preventing that too many peb-
blers are active at the same time — and
then make up for this by hashing at dou-
ble speed in the remaining time. It can be
proved that ()max W k 1k = - for k 1$ also
holds for a speed-2 pebbler, but compared
to a speed-1 pebbler storage is now re-
duced by 50%, achieving ()max S k 1k = + .
For binary pebbling algorithms, storage Sk
of up to k 1+ hash values is optimal, since
this amount of storage is already need-
ed during the first output round r 2k= ,
for any binary pebbler Pk. The interesting
question is whether the work ()max Wk can
be reduced any further?

Optimal binary pebbling
An elementary analysis yields ()max Wk $

/k 2^ h, k 2$, as lower bound for any binary
pebbling algorithm (see [20, Theorem 2]).
So, the best that can be achieved is to
reduce the maximum number of hashes
for any output round to k/2 roughly. The
problem of optimally efficient hash chain
reversal was extensively studied by Cop-
persmith and Jakobsson [3]. They achieved
nearly optimal space-time complexity for
a complicated pebbling algorithm using

()logk k 12+ +^ h pebbles and no more than
k
28 B hashes per round. Hence, an excess

storage of approximately log k2 hash val-
ues compared to optimal binary pebbling.

Fortunately, Yum et al. [21] observed that
a greedy implementation of Jakobsson’s
original pebbling algorithm already
achieves the optimal space-time trade-off
for binary pebbling. Their idea is to greedi-
ly use up a budget of k

2` j hashes per round
subject to the constraint that no more than
about k hash values are stored at any time.
The only drawback of the greedy approach
is that no apparent structure is revealed.

In contrast, we have found an explicit,
essentially unique solution for optimal bi-
nary pebbling, which leads to a complete
understanding of the problem and paves
the way for fully optimized in-place imple-
mentations. As a closed formula, the op-
timal schedule Tk is obtained by setting
t 0,k r = for r1 2< k 1# - , and setting tk,r to

(()

len(()))

mod

mod

k r k

r

2 1

2 2len()r

2
1

2k

+ + +

- -

8
B

The rushing pebbler Pk corresponding
to Rk introduced above is obtained by tak-
ing schedule Tk with t 2 1,k

k
2 1k = -- and

t 0,k r = elsewhere. Rushing pebbler P4 is
illustrated in Figure 1 in our framework for
binary pebbling. The storage S4 is minimal
throughout, but for the work W4 there are
big peaks: e.g., in round 23, in total seven
hashes are performed, while the pebbler is
idle in all even rounds.

Towards optimal solution
As it turns out, our framework admits a sim-
ple solution obtained by taking schedule

{ }T 1k r 1
2 1k

= =
- , resulting in the speed-1 peb-

bler illustrated in Figure 2. The above recur-
rence relation for Wk yields ()max W k 1k = -
for k 1$, and it can also be shown that

() (,) ()max maxS k k O k1 2 2k = + - = . The
speed-1 pebbler thus achieves the desired
asymptotic bounds. For practical purposes,
however, further savings are needed to lim-
it the costs as much as possible. E.g., to
enable a lightweight client device to iden-
tify itself every half hour for a period of
three years using a length-216 chain.

Jakobsson’s pebbling algorithm [11]
provides a clever way to cut storage

()max Sk in half essentially. Translated to
our framework for binary pebbling, the
corresponding schedule Tk is obtained
by setting t 0,k r = for r1 2< k 1# - , t 2,k r =
for r2 2 1<k k1 # -- , and t 1,k 2 1k =- . The

, ,P Pk 1 0f- in parallel in the output stage
means that pebblers take turns to execute
for one round each, where the order in
which this happens within a round is irrel-
evant. It is not hard to prove that in every
round exactly one of the pebblers running
in parallel will be in its first output round,
and that the sequence of outputs is always
equal to ()f x*

k .
Schedule Tk specifies the number of

hashes for the initial stage of Pk. To analyze
the work done by Pk in its output stage,
we let sequence Wk of length 2 1k - denote
the number of hashes performed by Pk in
each of its last 2 1k - rounds — noting that
by definition no hashes are performed by
Pk in round 2 k. The following recurrence
relation for Wk will be useful throughout:

{}, { } ,W W T W W0k k k k0 1 1 1= = +- - -

where T Wk k1 1+- - denotes elementwise
addition of Tk-1 and Wk-1 and < concate-
nation of sequences (+ takes precedence
over <).

To analyze the storage needed by Pk the
number of hash values stored by Pk will be
counted for each round. We let sequence

{ }S s ,k k r r 1
2 1k 1

= =
-+

 denote the total storage
used by Pk at the start of each round. For
instance, s 1,k 1 = as Pk only stores x at the
start, and s k 1,k 2k = + as Pk stores , ,y yk0 f
at the start of round 2 k independent of
schedule Tk.

x

Pk−1

Pk−2

Initial stage:

- set yi = f2k−2i(x),
for i = k, . . . , 0,
using tk,r hashes
in round r ∈ [1, 2k).

Output stage:
- output y0 in round r = 2k;
- run Pi−1(yi) in parallel,
for i = 1, . . . , k,
in rounds r ∈ (2k, 2k+1).

•yk •yk−1 •yk−2• • y0•

−

−

−

r = 1

r = 2k

r = 2k+1−1

rT4 S4

rushing
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
10 •
115 •
5W4 • • • • •
41 • • • •
40 • • • •
33 • • •
40 • • • •
31 • • •
30 • • •
27 • •
40 • • • •
31 • • •
30 • • •
23 • •
30 • • •
21 • •
20 • •
10 •

Figure 1  Binary pebbler ()P xk for schedule { }T t ,k k r r 1
2 1k

= =
- satisfying t 2 1

,r k r
k

1

2 1k
= -

=

-/ (left). Schedule T4, work W4,
and storage S4 for rushing pebbler P4 in rounds r 1= to r 31= (right). Bullets represent stored values (pebbles), right-
wards arrows represent hashing, vertical lines represent copying.

202	 NAW 5/18  nr. 3  september 2017	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 Berry Schoenmakers

we are using MD5 as a 128-bit length-pre-
serving one-way function — MD5 is readily
available in Python, also no practical at-
tacks against the one-wayness of MD5 are
known to this day.

By exploiting specific properties of the
optimal schedule, we will next show how
to implement binary pebblers with minimal
overhead. In fact, we present in-place hash
chain reversal algorithms, where the en-
tire state of these algorithms (apart from
the hash values) is represented between
rounds by a single k-bit counter only. Be-
low, this is shown for Jakobsson’s speed-2
pebblers; refer to [20] for further results.

We use the following terminology to de-
scribe the state of a pebbler Pk (which ap-
plies to both speed-2 pebblers and optimal
pebblers). Pebbler Pk is said to be idle if it is
in rounds [,)1 2k 1- , hashing if it is in rounds
[,]2 2k k1- , and redundant if it is in rounds
(,)2 2k k 1+ . An idle pebbler performs no
hashes at all, while a hashing pebbler will
perform at least one hash per round, except
for round 2 k in which Pk outputs its y0 val-
ue. The work for a redundant pebbler Pk is
taken over by its child pebblers , ,P Pk0 1f -
during its last 2 1k - output rounds.

The important observation is that for
each round r the complete state of a pebbler
Pk can be deduced quickly from the binary
representation of the counter c r2k 1= -+ ,
which counts down how many rounds are

defined in Table 1. These sequences are
defined over Z2

1  — rather than over Z as
will ultimately be required for use in a peb-
bling algorithm. Without rounding of these
half-integers, the optimal schedule satis-
fies the following key equation in terms of
sequences Uk, Vk, k 2$:

() ({ }) { } .U V W0k k k
k

1 2
1 2k 1

+ =-
+ -

This equation basically says that the opti-
mal schedule does not leave any gaps: in
each round exactly the maximum number
of hashes are performed to meet the lower
bound for binary pebbling.

Efficient in-place implementations
Without strict performance requirements,
our framework for binary pebbling allows
for relatively straightforward implementa-
tions. Figure 4 is showcasing a conceptual-
ly simple implementation based on Python
generators. For demonstration purposes,

for r2 2<k k1 #- , where len()n denotes the
bit length of nonnegative integer n. Opti-
mal pebbler P4 is illustrated in Figure 2,
which uses the following optimal sched-
ules:

{},

{ },

{ , , },

{ , , , , , , },

{ , , , , , , , , , , , , , , } .

T

T

T

T

T

1

0 1 2

0 0 0 2 1 2 2

0 0 0 0 0 0 0 2 2 1 1 2 2 2 3

0

1

2

3

4

=

=

=

=

=

In general, an optimal pebbler Pk will use
up to () /max W k 2k = ^ h hashes in any out-
put round. For the optimal pebbler P4 in
Figure 2, this works out as ()max W 24 =
hashes, compared to the speed-2 pebbler
P4 which needs 3 hashes in output round
r 21= .

The fractal nature of the optimal sched-
ule Tk is revealed by the recursive char-
acterization in terms of sequences Uk, Vk

rT4S4

speed-1
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

11 •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
31 • • •
31 • • •
31 • • •
31 • • •
41 • • • •
41 • • • •
5W4 • • • • •
43 • • • •
62 • • • • • •
52 • • • • •
51 • • • • •
42 • • • •
51 • • • • •
41 • • • •
40 • • • •
32 • • •
41 • • • •
31 • • •
30 • • •
21 • •
20 • •
10 •

rT4S4

speed-2
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
12 •
22 • •
22 • •
22 • •
22 • •
32 • • •
32 • • •
41 • • • •
5W4 • • • • •
41 • • • •
42 • • • •
41 • • • •
42 • • • •
43 • • • •
42 • • • •
41 • • • •
40 • • • •
31 • • •
32 • • •
31 • • •
30 • • •
21 • •
20 • •
10 •

rT4S4

optimal
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
12 •
22 • •
21 • •
21 • •
22 • •
22 • •
32 • • •
33 • • •
5W4 • • • • •
41 • • • •
41 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
40 • • • •
31 • • •
31 • • •
32 • • •
30 • • •
21 • •
20 • •
10 •

Figure 2  Schedule T4, work W4, storage S4 for three types of binary pebblers P4 in rounds 1–31

Table 1  Recursive definition of optimal schedule { }T U V0k k k
2 1k 1

= --
 over Z2

1 (no rounding). Explicit formula is in this

case given by { } { (len(()))}modT k r0 1 2 2len()
k

r
r

2 1
2
1 2

2
2 1k k

k

k1
1<= + -- -

=
--

- .

rT4S4

speed-1
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

11 •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
21 • •
31 • • •
31 • • •
31 • • •
31 • • •
41 • • • •
41 • • • •
5W4 • • • • •
43 • • • •
62 • • • • • •
52 • • • • •
51 • • • • •
42 • • • •
51 • • • • •
41 • • • •
40 • • • •
32 • • •
41 • • • •
31 • • •
30 • • •
21 • •
20 • •
10 •

rT4S4

speed-2
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
12 •
22 • •
22 • •
22 • •
22 • •
32 • • •
32 • • •
41 • • • •
5W4 • • • • •
41 • • • •
42 • • • •
41 • • • •
42 • • • •
43 • • • •
42 • • • •
41 • • • •
40 • • • •
31 • • •
32 • • •
31 • • •
30 • • •
21 • •
20 • •
10 •

rT4S4

optimal
pebbler P4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10 •
10 •
10 •
10 •
10 •
10 •
10 •
12 •
22 • •
21 • •
21 • •
22 • •
22 • •
32 • • •
33 • • •
5W4 • • • • •
41 • • • •
41 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
42 • • • •
40 • • • •
31 • • •
31 • • •
32 • • •
30 • • •
21 • •
20 • •
10 •

Figure 2. Schedule T4, work W4, storage S4 for three types of binary pebblers P4 in rounds 1–31.

chain reversal algorithms, where the entire state of these
algorithms (apart from the hash values) is represented be-
tween rounds by a single k-bit counter only. Below, this
is shown for Jakobsson’s speed-2 pebblers; refer to [20] for
further results.

We use the following terminology to describe the state
of a pebbler Pk (which applies to both speed-2 pebblers
and optimal pebblers). Pebbler Pk is said to be idle if it
is in rounds [1, 2k−1), hashing if it is in rounds [2k−1, 2k],
and redundant if it is in rounds (2k, 2k+1). An idle peb-
bler performs no hashes at all, while a hashing pebbler will
perform at least one hash per round, except for round 2k in
which Pk outputs its y0 value. The work for a redundant
pebbler Pk is taken over by its child pebblers P0, . . . , Pk−1

during its last 2k − 1 output rounds.

The important observation is that for each round r the
complete state of a pebbler Pk can be deduced quickly
from the binary representation of the counter c = 2k+1−r,
which counts down how many rounds are still left. This
is illustrated in Figure 3 for a speed-2 pebbler Pk(x). The
pseudocode shows how to run the pebbler in-place, that
is, in such a way that the storage between rounds is lim-
ited to a length-k array z of hash values and counter r.
The information about the states of all pebblers running
in parallel is deduced directly from c. This information
includes which pebblers are present, whether these peb-
blers are idle or hashing, which hash values have already
been computed by a pebbler, and where these are stored
in array z, etc.

The example in Figure 3 shows the details for a P9 peb-
bler at round r = 664. Four child pebblers P8, P6, P5, P3

Table 1. Recursive definition of optimal schedule Tk = {0}2k−1−1 ‖Uk ‖Vk over 1
2Z (no rounding).

Explicit formula is in this case given by Tk = {0}2k−1−1 ‖ { 1
2 (k + 1− len((2r) mod 2len(2

k−r)))}2
k−1

r=2k−1 .

U2 = { 3
2}, Uk = Uk−1 +

1
2 ‖ {1}2k−3

V2 = { 3
2}, Vk = Uk−1 +

1
2 ‖ Vk−1 +

1
2

U3 21 V3 22

U4
5
2
3
211 V4

5
2
3
2
5
2
5
2

U5 32 3
2
3
21111 V5 32 3

2
3
23233

U6
7
2
5
222

3
2
3
2
3
2
3
211111111 V6

7
2
5
222

3
2
3
2
3
2
3
2
7
2
5
222

7
2
5
2
7
2
7
2

U7 43 5
2
5
22222

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
21111111111111111 V7 43 5

2
5
22222

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
243

5
2
5
2222243

5
2
5
24344

avg. speed 2 speed 1 avg. speed 2 avg. speed 3

Berry Schoenmakers	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 NAW 5/18  nr. 3  september 2017	 203

gave a lower bound of . k0 25 2, but whether
this bound can be attained is doubtful: the
lower bound is derived without taking into
account any limits on the number of hash-
es per output round.

Incidentally, the lower bound of . k0 25 2
had been found already in a completely
different context [7], for a similar problem
studied in the area of algorithmic (or, au-
tomatic, computational) differentiation [6].
The lower bound applies to the space-time
complexity of so-called checkpointing for
the reverse (or, adjoint, backward) mode
of algorithmic differentiation. In contrast to
our case, however, there it is even possible
to attain the lower bound [5]. The critical
difference is that in the setting of algo-
rithmic differentiation the goal is basically
to minimize the total time for performing
this task (or, equivalently, to minimize the
amortized time per output round). This
contrasts sharply with the goal in the
cryptographic setting, where we want to
minimize the worst case time per output
round while performing this task.	 s

length of these segments divided by 2. In
case of P8 this works out as 2

3 hashes, and
for P5 we get 2

6 hashes, hence exactly 2
9

hashes are used in total for this round.
In general, this rule implies that no more

than k
2 hashes are performed in any output

round of Pk. Moreover, this simple rule will
orchestrate the entire computation, ensur-
ing that all intermediate hash values are
computed right on time — not too late to
fail producing an output on time, and not
too early, before another free entry in array
[,)z k0 becomes available. The optimized im-

plementations in [20] are based on this rule.

Lower bound
Optimal binary pebbling achieves a space-
time product of . k0 50 2 for a chain of length
n 2k= . In an upcoming paper with Niels de
Vreede, we will show how to reduce the
space-time product to . k0 46 2 by means
of Fibonacci pebbling and how to reduce
this even further down to just . k0 37 2 by
more intricate pebbling algorithms. We
note that Coppersmith and Jakobsson [3]

still left. This is illustrated in Figure 3 for
a speed-2 pebbler ()P xk . The pseudocode
shows how to run the pebbler in-place, that
is, in such a way that the storage between
rounds is limited to a length-k array z of
hash values and counter r. The information
about the states of all pebblers running
in parallel is deduced directly from c. This
information includes which pebblers are
present, whether these pebblers are idle or
hashing, which hash values have already
been computed by a pebbler, and where
these are stored in array z, et cetera.

The example in Figure 3 shows the de-
tails for a P9 pebbler at round r 664= .
Four child pebblers P8, P6, P5, P3 are running
in parallel: P8 is hashing and has entries
[,]z 7 8 in use, P6 is idle occupying one entry
[]z 6 , P5 is hashing and has entries [,]z 4 5 in

use. The P3 pebbler has just reached its
first output round occupying four entries
[,]z 0 3 and outputs its y0 value stored in []z 0 .

Subsequently, this P3 pebbler becomes
redundant and is replaced by its child
pebblers P2, P1, P0, which will each use
one entry of array z. Entry []z 3 has been
freed, but is immediately used again by the
P5 pebbler, which just reached the point
where it starts working on its y3 value.

The schedule for a speed-2 pebbler is
integrated in the pseudocode of Figure 3.
For optimal pebbling, however, we need to
evaluate the formula for the optimal sched-
ule to find the exact number of hashes to
be performed by each pebbler. An intuitive
way to interpret this formula is explained
by means of the following example, cf.
Figure 3. Consider optimal pebbler P9 at
c 360= rounds from the end:

The formula of Table 1 for the optimal
schedule (before rounding) partitions the
bits of c into the two colored segments
as indicated. The underlying rule is as fol-
lows. First, all the hashing pebblers are
identified, ignoring the rightmost one: this
results in two hashing pebblers P8 and P5
(idle pebbler P6 and the rightmost hash-
ing pebbler P3 are ignored). Then, each of
these hashing pebblers Pi gets the seg-
ment assigned starting at bit ci and ex-
tending to the right. The number of hashes
to be performed by each of these hashing
pebblers — as given by the formula of the
optimal schedule — exactly matches the

Figure 3  Pseudocode for in-place speed-2 pebbler ()P xk at output round r, r2 2< <k k 1+ . Initially, array [,)z k0 satisfies

[] ()z i f x1 2 2k i
- = - for , ,i k1 f= (left). Transition of P9 from round r 664= to r 665= , hence from ()c 360 101101000 2= =

to ()c 359 101100111 2= = (right).

Round r:
1: output z[0]
2: c ← 2k+1 − r
3: i ← pop0(c)
4: z[0, i) ← z[1, i]
5: i ← i+ 1; c ← �c/2�
6: q ← i− 1
7: while c �= 0 do
8: z[q] ← f(z[i])
9: if q �= 0 then z[q] ← f(z[q])

10: i ← i+ pop0(c) + pop1(c)
11: q ← i

c8 c7 c6 c5 c4 c3 c2 c1 c0
1 0 1 1 0 1 0 0 0

P hashing

8/y8/y7
P idle
6/y6

P hashing

5/y5/y4
P hashing

3/y3/y2/y1/y0

1 0 1 1 0 0 1 1 1

P hashing

8/y8/y7
P idle
6/y6

P hashing

5/y5/y4/y3
P idle
2/y2

P idle
1/y1

P hashing

0/y0

z[8] z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

P state
i
/hash values

: Pi with state and hash values stored in array z

pop0(c) / pop1(c): count and remove trailing 0-bits / 1-bits from c

c8 c7 c6 c5 c4 c3 c2 c1 c0
1 0 1 1 0 1 0 0 0
P hashing

8 P hashing

5

Figure 4  Python program for recursive binary pebblers without any optimizations, cf. definition of ()P xk in Figure 1.
Inputs: tR/t1/t2/tS for rushing/speed-1/speed-2/optimal and nonnegative integer k. P(k,x) is a Python generator:
each evaluation of a yield expression corresponds to a round of ()P xk .

import hashlib, itertools

f = lambda x: hashlib.md5(x).digest()

tR = lambda k,r: 0 if r < 2 k − 1 else 2 k − 1
t1 = lambda k,r: 1
t2 = lambda k,r: 0 if r < 2 (k−1) else 2 if r < 2 k − 1 else 1
tS = lambda k,r: 0 if r < 2 (k−1) else ((k + r) % 2 + k + 1 − ((2 r) % (2 (2 k − r).bit length())).bit length()) // 2

def P(k,x):
y = [None] k + [x]
i = k; g = 0
for r in range(1, 2 k):

for in range(t(k,r)):
z = y[i]
if g == 0: i −= 1; g = 2 i
y[i] = f(z)
g −= 1

yield
yield y[0]
for v in itertools . zip longest ((P(i−1, y[i]) for i in range(1, k+1))):

yield next(filter (None, v))

t = eval(input())
k = int(input())
x = f(b)
for v in P(k, x):

if v: print(v.hex())

204	 NAW 5/18  nr. 3  september 2017	 Binary pebbling algorithms for in-place reversal of one-way hash chains	 Berry Schoenmakers

1	 J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and
S. Tessaro, Scrypt is maximally memory-hard,
Advances in Cryptology – EUROCRYPT ’17,
LNCS 10212, Springer, 2017, pp. 33–62.

2	 J. P. Boly, A. Bosselaers, R. Cramer, R.
Michelsen, S. MjØlsnes, F. Muller, T. Peder-
sen, B. Pfitzmann, P. de Rooij, B. Schoen-
makers, M. Schunter, L. Vallée and M. Waid-
ner, The ESPRIT project CAFE – High security
digital payment systems, Computer Securi-
ty – ESORICS 94, LNCS 875, Springer, 1994,
pp. 217–230.

3	 D. Coppersmith and M. Jakobsson, Almost
optimal hash sequence traversal, Financial
Cryptography 2002, LNCS 2357, Springer,
2002, 102–119.

4	 P. Flajolet and A. Odlyzko, Random mapping
statistics, Advances in Cryptology – EURO-
CRYPT ’89, LNCS 434, Springer, 1989, pp.
329–354.

5	 A. Griewank, Achieving logarithmic growth
of temporal and spatial complexity in re-
verse automatic differentiation, Optimization
Methods and Software 1(1) (1992), 35–54.

6	 A. Griewank and A. Walther, Evaluating De-
rivatives: Principles and Techniques of Al-
gorithmic Differentiation, SIAM, 2008, 2nd
edition.

7	 J. Grimm, L. Potter and N. Rostaing-Schmidt,
Optimal time and minimum space-time

product for reversing a certain class of pro-
grams, Computational Differentiation – Tech-
niques, Applications, and Tools, SIAM, 1996,
pp. 95–106.

8	 J. Håstad and M. Näslund, Key feedback
mode: a keystream generator with provable
security, First Modes of Operation Work-
shop, Baltimore, MD, October 2000, NIST.

9	 G. Hurlbert, Recent progress in graph peb-
bling, Graph Theory Notes of New York 49
(2005), 25–37.

10	 G. Itkis and L. Reyzin, Forward-secure sig-
natures with optimal signing and verifying,
Advances in Cryptology – CRYPTO ’01, LNCS
2139, Springer, 2001, pp. 332–354.

11	 M. Jakobsson, Fractal hash sequence rep-
resentation and traversal, Proc. IEEE Inter-
national Symposium on Information Theory
(ISIT ’02), IEEE, 2002, p. 437. Full version
eprint.iacr.org/2002/001.

12	 L. Lamport, Password authentication with
insecure communication, Communications
of the ACM 24(11) (1981), 770–772.

13	 L. Levin, One-way function and pseudor-
andom generators, Proc. 17th Symposium
on Theory of Computing (STOC ’85), ACM,
1985, pp. 363–365.

14	 R. Merkle, A digital signature based on a
conventional encryption function, Advanc-

es in Cryptology – CRYPTO ’87, LNCS 293,
Springer, 1987, 369–378.

15	 S. Nakamoto, Bitcoin: A peer-to-peer electron-
ic cash system, October 31, 2008, bitcoin.org/
bitcoin.pdf.

16	 J. Nordström, Pebble games, proof complex-
ity, and time-space trade-offs, Logical Meth-
ods in Computer Science 9(3:15) (2013),
1–63.

17	 T. P. Pedersen, Electronic payments of small
amounts, Security Protocols, LNCS 1189,
Springer, 1996, pp. 59–68.

18	 K. Perumalla, Introduction to Reversible
Computing, CRC Press, 2013.

19	 R. L. Rivest and A. Shamir, Payword and
micromint: Two simple micropayment
schemes, Security Protocols, LNCS 1189,
Springer, 1996, pp. 69–87.

20	 B. Schoenmakers, Explicit optimal binary
pebbling for one-way hash chain reversal,
Financial Cryptography 2016, LNCS 9603,
Springer, 2016, pp. 299–320. Sample code
in Python, Java, C at www.win.tue.nl/~berry/
pebbling.

21	 D. H. Yum, J. W. Seo, S. Eom and P. J. Lee,
Single-layer fractal hash chain traversal with
almost optimal complexity, Topics in Cryp-
tology – CT-RSA ’09, LNCS 5473, Springer,
2009, pp. 325–339.

References

