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would not be compatible with scale invari-
ance. (In other words, at the critical point, 
the thermodynamic functions are powers.) 
It also implies that certain geometric ob-
jects that are sometimes useful to describe 
some aspects of certain systems, such as 
clusters and interfaces, must have a fractal 
nature. Examples of such clusters and in-
terfaces will be provided later, through the 
introduction of models such as percolation 
and the Ising model. But, in general, their 
shapes are determined by random fluctua-
tions, so that, at the critical point, they are 
both random and fractal-like.

The term critical phenomena describes 
the collection of phenomena, such as 
power law behavior of thermodynamic 
functions and fractal behavior of certain 
geometric objects, that take place at the 
critical point; they are mainly due to the 
divergence of the correlation length and 

cally determined by the strength of thermal 
fluctuations, which are random and tend to 
‘wash out’ the correlation that would nor-
mally exist between separate parts of the 
system. This concept is central in the study 
of certain phase transitions that lead to the 
emergence of self-similar patterns.

Phase transition is the term used to 
denote phenomena such as the melting 
of ice and the freezing or the evaporation 
of water. In certain types of phase transi-
tions, the correlation length diverges and a 
sudden ‘structural’ change takes place as 
a parameter (e.g., temperature or densi-
ty) governing the system’s behavior goes 
through a critical point. What is meant by 
the divergence of the correlation length is 
a special balance between thermal fluc-
tuations and correlations that makes the 
system effectively scale-free, or scale-in-
variant. Scale invariance can thus be con-
sidered a new symmetry acquired by the 
system at the critical point. This symmetry 
implies that the thermodynamic behav-
ior of critical systems must be described 
by power laws, since other types of laws 

Fractal-like structures are common in na-
ture. They have a property called self-sim-
ilarity, which means that each portion 
looks like the whole. Some of the most 
famous mathematical fractals, such as the 
Cantor, Julia and Mandelbrot sets or the 
Sierpinski carpet, are produced by a de-
terministic process and contain identical, 
scaled-down copies of themselves. On the 
contrary, natural fractal-like objects usually 
look random and are self-similar only in 
a statistical sense, which means that each 
portion of the object looks similar but not 
identical to the whole. Besides appearing 
naturally in the theory of phase transitions, 
random fractals have many applications to 
various fields of mathematics, the natural 
sciences and economics, and they appear 
in such diverse contexts as the modeling 
of financial markets and cosmology. 

Critical phenomena and scale invariance
A physical system is said to have correlation 
length l if two portions of the system at dis-
tance larger than l are roughly uncorrelated. 
The correlation length of a system is typi-
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Figure 1  Romanesco broccoli. Fractal-like structures are 
abundant in nature.
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scopic variables such as energy, entropy, 
temperature, volume, and pressure, and 
make no reference to the microscopic con-
stituents of matter, such as molecules and 
atoms, and their (quantum-)mechanical in-
teractions. The idea behind statistical me-
chanics is that one can arrive at the laws 
of thermodynamics by way of a statistical 
analysis of the collective behavior of the 
microscopic constituents of matter. Thus, 
in statistical mechanics one typically stud-
ies systems with a large number of ele-
mentary components, and often resorts to 
a useful mathematical idealization, called 
the thermodynamic limit, in which the 
number of elementary components is sent 
to infinity. In doing this, the focus is on 
the average behavior of the system and on 
possible deviations from it. 

One of the most interesting and chal-
lenging topics in statistical mechanics is 
the study of phase transitions.2 A phase 
is a state of a thermodynamic system with 
spatially uniform physical properties, and a 
phase transition is the transformation of a 
thermodynamic system from one phase to 
another by heat transfer. A classic example 
is that of a liquid turning to vapor or vice 
versa. Another example of a phase transi-
tion is what happens to a magnet when 
warmed to a sufficiently high temperature 
(depending on the material). If the tem-
perature is high enough, the magnet loos-
es its ability to attract metals; this signals 
a transition from the ferromagnetic to the 
paramagnetic phase. 

Let’s now explore this phase transition 
more in detail using a simplified model 
based on the observation that the atoms 
inside a magnet act as little magnets them-
selves, and that it is energetically advanta-
geous for nearby atoms to have their ‘north 
poles’ aligned.3 More precisely, the atoms 
of a magnet have magnetic moments 
which naturally tend to align with each 
other because of magnetic interactions. 
This tendency is contrasted by random 
thermal fluctuations which tend to disrupt 
the ‘magnetic order’. The Ising model was 
introduced in 1920 by physicist Wilhelm 
Lenz, who asked his student, Ernst Ising, 
to study its behavior at different tempera-
tures. I will describe the two-dimensional 
version of the model based on a square 
grid, where the vertices of the grid repre-
sent the positions of the atoms (see Figure 
4). The three-dimensional version of the 
model is analogous to the two-dimension-

A canonical example of fractality associ-
ated with randomness is Brownian motion. 
Named after the botanist Robert Brown, 
Brownian motion refers to the jittery motion 
of particles suspended in a fluid. In 1905, 
Albert Einstein published a paper explain-
ing how the random motion observed by 
Brown is a result of the particles colliding 
with the atoms or molecules in the fluid. 
Einstein’s explanation provided a confirma-
tion of the atomic theory of matter.

The mathematical model of Brownian 
motion has numerous real-world applica-
tions, one of the best-known being in fi-
nance, where it is used to model stock mar-
ket fluctuations (e.g., in the Black–Scholes 
model). From a mathematical perspective, 
Brownian motion is a continuous-time 
stochastic process with continuous trajec-
tories and with increments that are inde-
pendent and identically distributed. A sa-
lient feature of a Brownian trajectory is its 
scale invariance, which is responsible for 
its fractal nature. If one takes a portion of 
a Brownian trajectory and scales it up to 
the size of the whole trajectory, the result 
looks the same as the original, but only 
in a statistical sense. Indeed, because of 
randomness one cannot expect a closer re-
semblance. The same type of phenomenon 
can be found on the surface of the moon, 
as shown in Figure 3.

The Ising model and its phase transition
In order to introduce random fractal ob-
jects more relevant to the Vidi project dis-
cussed in this article, we need to turn to 
statistical mechanics. Historically, statisti-
cal mechanics originates from attempts to 
use the laws of mechanics to derive the 
laws and equations of thermodynamics. 
The latter can be seen as either empirical 
laws (e.g., the ideal gas law: PV nRT= ) 
or axiomatic principles that form the basis 
of the theory (the three laws of thermody-
namics). All of them contain only macro-

have some universal features that are inde-
pendent of the specificities of the system 
or model under consideration. Because of 
their universality, critical phenomena are 
well-suited to be analyzed mathematically, 
since they can be studied using simplified 
models. 

Examples of fractal-like objects are not 
difficult to find in nature, as evidenced by 
Figure 1. In mathematics, the prototypical 
example of a fractal is the triadic Cantor 
set, depicted in Figure 2. At each iteration, 
the middle third of each segment is re-
moved according to a scale-invariant con-
struction that looks the same at all scales. 
For example, looking at Figure 2, what lies 
below each of the two equal segments pro-
duced by removing the middle third of the 
original segment is a copy of the whole 
construction scaled down by a factor 1/3. 
The total length removed in the construc-
tion of the triadic Cantor set is
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This tells us that the remaining set has 
total length zero, but it is by no means 
empty, since it contains, for example, 
all points of the type 1/3n, and (un-
countably) many more. What is then the 
‘size’ of the triadic Cantor set? To answer 
the question we need to decide what 
concept of size we want to use. Length 
is clearly not appropriate, since it gives a 
trivial answer that does not reflect the fact 
that the Cantor set is not empty. 

Let’s compare the triadic Cantor set with 
a ‘full’ segment, which is clearly a one-di-
mensional object. If we want to cover 
a segment of length 1 with smaller seg-
ments of length, say, /1 3k

k, = , we need 
exactly N 3k

k=  such segments. In the case 
of the triadic Cantor set instead, we need 
N 2k

k=  segments of length /1 3k
k, = . One 

way of thinking about the dimension D of 
an object is via the relation N 1k k

D, = . For 
the segment this gives the familiar dimen-
sion D 1= , but for the Cantor set it gives 

. .D 0 631log
log
3
2
.=  1

Figure 2  The first few steps in the construction of the 
triadic Cantor set.

Figure 3  Benoit B. Mandelbrot noticed that the distri-
bution of the sizes of lunar craters looks approximately 
scale-invariant [7].
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the tendency of neighboring atoms to align 
their magnetic moments, the latter will av-
erage out at large scales, leaving zero total 
magnetization in any large finite region. 
The presence of a non-zero magnetization, 
on the contrary, implies long-range order. It 
is the presence of a non-zero total magne-
tization that gives ferromagnets the prop-
erty of attracting metals. 

Ising discovered that in one dimension 
thermal fluctuations dominate at every 
non-zero temperature. Hence, the one-di-
mensional Ising model does not have 
a phase transition. But the one-dimension-
al case turns out to be special,4 and the 
Ising model in any dimension higher than 
one exhibits a phase transition. This was 
first demonstrated by Rudolf Peierls, who 
showed that in two dimensions the total 
magnetization in any large region averages 
to zero at sufficiently high temperatures, 
and takes a non-zero value at sufficient-
ly low temperatures. The same is true in 
dimensions three and higher. This is illus-
trated by Figure 5, which depicts the out-
comes of three simulations of the model 
on a large square grid with a small mesh 
size, so that the figure can fit the page. 
(The simulations were carried out by Wout-
er Kager.)

The simulation on the left corresponds 
to low temperature and shows the ferro-
magnetic phase in which the spins tend to 
be aligned with each other. In this phase, 
the system ‘chooses’ one of the two colors 
with equal probability, and most of the spins 
take that color. The high-temperature or 
paramagnetic phase is shown on the right. 
The contrast is very clear, with the spin con-
figuration on the right looking much more 
‘chaotic’ than that on the left: no order can 
be seen and there is no preferred color. 
The reason for this ‘chaos’ is that entropy 
wins over energy. If one were to choose 
a spin configuration uniformly at random 
(i.e., at infinite temperature, or 0b = ), 

It’s not difficult to see that P assigns 
greater probability to spin configurations 
where neighboring vertices have the same 
spin value (or color). Indeed, the two con-
figurations where all spins are +1 or -1 
are always the most probable ones. Infor-
mally, one could say that vertices prefer 
to have the same color, or that a vertex 
has to pay a ‘price’, in terms of probabili-
ty, for ‘disagreeing’ with its neighbors. But 
the extent to which disagreement is pe-
nalized depends on the value of /T1b = . 
For instance, in the idealized case of in-
finite temperature, where 0b = , P is con-
stant and all configurations are equally 
likely. In such a situation, a ‘typical’ con-
figuration would look very different from 
those with all spins +1 or all spins -1, sim-
ply because there are only two such ‘order-
ly’ configurations and many more ‘mixed’ 
configurations. In this case, what is ‘typi-
cal’ is determined uniquely by chance (or 
entropy, to be more precise). However, if 
one increases the value of b, the ‘price’ to 
pay for ‘disagreement’ increases, giving an 
advantage to more ‘orderly’ configurations. 

Thus, the model captures, at least 
qualitatively, the tendency of the mag-
netic moments of the single atoms to be 
aligned with each other, as well as the 
observation that this tendency is less pro-
nounced at high temperatures. But can the 
model reproduce the transition between 
the ferromagnetic phase and the paramag-
netic phase, marked by the loss of the 
ability to attract metals as the temperature 
becomes high enough? 

To answer that question we should look 
at the total magnetization, the sum of all 
magnetic moments within a finite region. 
(A more precise definition of the magne-
tization will be given in the next section, 
together with a discussion of some results 
concerning the magnetization and its im-
portant role in the analysis of the Ising 
model.) If thermal fluctuations win over 

al one except that it uses a cubic grid, but 
much less is known about its behavior. The 
one-dimensional version, defined on sub-
sets of Z, is the one studied by Ising, but 
it does not have a phase transition and is 
therefore uninteresting for our purposes. 

To each vertex x of a square grid, one 
associates a spin variable Sx that takes 
values +1 (represented by a darker color , 
blue, in Figure 4 and 5) or -1 (represent-
ed by a lighter color, yellow). An assign-
ment of a spin +1 or -1 to each vertex 
is called a spin configuration and is de-
noted by S, while S will denote the set 
of all spin configurations. On a finite grid, 
to a spin configuration S S! , one assigns 
probability

( ) ,expSP Z S S1

, : | |
x y

x y x y 1
b=

- =
f p/ (1)

where 0$b  represents the inverse of the 
temperature T (  0b =  corresponds to the 
idealization of ‘infinite temperature’), the 
sum is over all pairs of vertices at distance 
one from each other, and

( ) expZ Z S S
, : | |S

x y
x y x y 1S

b b= =
! - =

f p//

is a normalizing factor which ensures that 
(1) defines a probability distribution.

The exponential form of the probabil-
ity distribution (1) is very important in 
statistical mechanics, where it is called a 
(Boltzmann-)Gibbs distribution. Z is called 
the partition function of the model and, 
despite being introduced here simply as a 
normalization factor, plays a crucial role in 
statistical mechanics. The partition func-
tion depends in general on the (inverse) 
temperature and possibly on other quan-
tities, depending on the physical system 
or the mathematical model under consid-
eration. From this dependence one can 
derive quantities, such as the (average) 
energy, that describe the thermodynamic 
properties of the system.

Sx =  +1 or −1

Figure 4  The two-dimensional Ising model.

Figure 5  The Ising model phase transition.



52	 NAW 5/18  nr. 1  maart 2017	 Phase transitions, Euclidean fields and self-similar random fractals	 Federico Camia

cal point, a complete mathematical under-
standing of scaling limits has proved diffi-
cult. The main goal of my Vidi project was 
to explore the theory of scaling limits at or 
near the critical point for the two-dimen-
sional Ising model and related models of 
statistical mechanics, with a new approach 
that relies on the study of certain random 
geometric objects such as the clusters and 
interfaces shown in Figure 5. One particu-
lar goal of the research was to provide a 
rigorous proof of the connection between 
scaling limits performed at or near the 
critical point and Euclidean field theory, a 
close relative of the relativistic quantum 
field theory developed by physicists to de-
scribe the nature of elementary particles 
and their interactions. 

Despite being one of the most interest-
ing aspects of the theory of scaling limits, 
and well supported by heuristic physics 
arguments, until recently there was little 
mathematically rigorous evidence for this 
connection beyond some well-understood 
but relatively trivial examples. One of the 
main achievements of my Vidi project was 
to rigorously prove that connection in the 
case of the two-dimensional Ising model. 
This is conceptually important because of 
the crucial role played by the Ising model 
in the development of statistical mechan-
ics and the theory of phase transitions. In 
the next and final section, I will describe 
some of the results about the Ising model 
obtained during my Vidi project.

Discussion of some of the main results
This section is going to be somewhat 
more technical than the previous ones, 
but I will try to keep the discussion as 
simple as possible. One of the quantities 
analyzed in my Vidi project is the Ising 
magnetization, already mentioned in the 
previous section. Mathematically, the mag-
netization inside a domain D is the sum of 
the spin variables Sx for all x in D. Physi-
cally, this corresponds to the total magnet-
ic moment generated by all the atoms in D. 
It is an important quantity because its be-
havior is different in the paramagnetic and 
ferromagnetic phases, so it can be used to 
‘detect’ the phase transition. In physics jar-
gon it is referred to as the order parameter 
associated with the phase transition. The 
difference in behavior should be present 
also after taking the scaling limit described 
above. But what does it mean to take the 
scaling limit of the magnetization?

figuration in Figure 5 because it contains 
blue and yellow clusters of all possible siz-
es between the size of the grid’s mesh and 
that of the whole system, so that a scale 
transformation will not make a significant 
difference, as long as the scale factor is 
small compared to the inverse of the mesh 
size. The same is not true in the left and 
right configurations because in both the 
yellow clusters have a definite mean size, 
which would be visibly changed by a scale 
transformation. As a consequence of the 
‘democracy of scales’ of the middle con-
figuration, one can see that the inter-
faces between blue and yellow clusters 
look fractal-like, particularly around large 
clusters, due to their ‘peninsulas’ and 
‘fjords’. This is precisely what one would 
expect from the theory of critical phenom-
ena briefly discussed at the beginning 
of the introduction. But one cannot have 
full scale invariance and real fractals on a 
grid: the presence of the grid will even-
tually be revealed if one blows up the 
system by a sufficiently large scale factor. 

In order to bring the fractal-like aspects 
of the critical spin configuration to full-
blown scale invariance, one can send the 
mesh size of the grid to zero. This proce-
dure is called a scaling limit and is simi-
lar to the thermodynamic limit mentioned 
earlier in that the number of elementary 
components of the system (in this case, 
the number of vertices of the grid) tends to 
infinity. The difference is that the result of 
a scaling limit is a continuum model, not a 
model defined on an infinite grid. The ad-
vantage of this formulation over the ther-
modynamic limit is that a continuum mod-
el can potentially posses more symmetries 
than a model based on a grid, such as full 
scale invariance and rotation invariance. 
In the 1970s–80s, Polyakov observed [9], 
based on heuristic physics arguments, that 
a continuum model obtained by taking the 
scaling limit at the critical point should not 
only be invariant under translations and 
rotations, but under all transformations 
that leave angles unchanged, technically 
called conformal transformations. This ob-
servation provides a tremendously power-
ful tool to study continuum models, and 
led to the development of Conformal Field 
Theory (CFT). (I will say more about confor-
mal fields in the next section.) 

Although simulations and physics argu-
ments give a convincing picture of what 
to expect from a scaling limit at the criti-

with very high probability the configuration 
would look like the one on the right rather 
than that on the left, simply because there 
are many more configurations that look 
like that. This is still true at high enough 
temperatures, when b is sufficiently small. 
But when b becomes large, energy consid-
erations become more important and the 
system tends to ‘choose’ a more ‘ordered’ 
configuration. Intuitively, one can think of 
energy as a currency, and of disordered 
configurations as being more expensive 
than ordered ones. At high temperatures 
the system has a lot of energy and can 
afford to be in an ‘expensive’ configura-
tion, but at low temperatures it is forced 
to choose a ‘cheap’ configuration.

We can conclude that the Ising model 
is successful in reproducing the paramag-
netic-ferromagnetic phase transition. This 
ability has made it one of the most studied 
models of statistical mechanics. Indeed, 
the Ising model has played a crucial role in 
the development of statistical mechanics 
itself and the theory of phase transitions, 
and it continues to be a topic of active 
research.

So far we have focused on the high and 
low temperature configurations and we ha-
ven’t said anything about the configuration 
in the middle of Figure 5, which looks very 
different from the other two. If one were to 
start at high temperature and then grad-
ually lower the temperature, one would 
see the system move from disordered to 
more ordered configurations. In doing so, 
the system would have to make a choice 
of color, breaking the symmetry between 
blue and yellow, or +1 and -1.5 This very 
important phenomenon is called sponta-
neous symmetry breaking and plays a cru-
cial role not only in the theory of phase 
transitions but also in particle physics and 
cosmology.6 

The configuration in the middle of 
Figure 5, in which both colors are rough-
ly equally represented, corresponds to 
the critical temperature, when the phase 
transition happens and the ! symmetry 
is about to be broken; it represents the 
watershed between order and disorder, 
and has very special properties. In fact, I 
will argue that it bears some resemblance 
with Figure 3. In that figure, if you take a 
small part of the whole and blow it up to 
the size of the original, what you see looks 
roughly (statistically) similar to the origi-
nal. The same is true for the middle con-
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The magnetization density U has the 
following property [3]:

( ) ( )z dz s z dz
[ , ]

/

[ , ]sL L0

15 8

0

dist.

2 2

U U=# # (2)

where the equality holds in distribution 
since both sides of the equation are ran-
dom variables. If U were not present, the 
integrals would compute the areas of the 
squares [ , ]sL0 2 and [ , ]L0 2, and the rela-
tion would obviously be

,dz s dz

[ , ] [ , ]sL L0

2

02 2

=# #

where the exponent 2 in the s2 factor re-
flects the two-dimensional nature of the 
area. Based on this simple observation, 
equation (2) reveals that the total magneti-
zation behaves like a fractal object with di-
mension / /15 8 2 1 8= - . The field U, which 
represents a magnetization density and 
should therefore have dimension equal to  
magnetization/area, scales with exponent 
/ /15 8 2 1 8- =- .
A transformation x sx7  like the one 

considered above is called a scale trans-
formation. It belongs to the family of con-
formal transformations, which includes all 
transformations that preserve angles, at 
least in a local, ‘infinitesimal’ sense. Scale 
transformations, translations and rotations 
are all transformations that preserve angles 
globally. Other conformal transformations 
can be thought of as suitable combinations 
of those three basic transformations. In 
the 1970s–80s, some physicists made the 
very interesting and somewhat mysterious 
prediction that, after taking a scaling lim-
it, objects like the Ising magnetization at 
criticality should scale like fractal objects 
not only under scale transformations, but 
under all conformal transformations [2, 9]. 
Such objects were named conformal fields. 
The prediction of the appearance of con-
formal fields in the scaling limit was based 
on heuristic considerations and could not 
be proved rigorously. Despite the lack of 
mathematically rigorous examples, the the-
oretical study of conformal fields, named 
Conformal Field Theory (CFT), expanded 
very rapidly and proved extremely interest-
ing and useful, becoming a central topic in 
theoretical physics, and producing import-
ant applications to various other fields, 
from statistical mechanics to string theory.

Until recently, however, a rigorous math-
ematical connection between statistical 

random variable identically equal to 0. 
The fact that we have to choose 1a =  tells 
us something about the fluctuations of the 
spins, which in this case are normal (or 
Gaussian) in the limit, as one would ex-
pect.

When 0>b , the spin random variables 
Sx are no longer independent, but as long 
as b is sufficiently small, it turns out that 
1a =  is still the correct choice for the 

renormalized magnetization, and that the 
scaling limit still gives a normal random 
variable [1] (see also [8]). This is true for all 
values of ( )log 1 2< c 2

1b b = + . All those 
values correspond to the high-temperature 
phase depicted on the right in Figure 5. 
But what happens at the critical value 

( )log 1 2c 2
1b = + , corresponding to the 

middle picture in Figure 5?
Looking at the figure suggests that 

the fluctuations in the system are very 
different at the critical point than in the 
high-temperature regime. According to 
physics wisdom, the behavior of the renor-
malized magnetization should differ in an 
interesting way at the critical point with 
respect to the high-temperature regime. 
The scaling limit of the magnetization at 
the critical point is studied in detail in [5] 
and [3], where it is proved that, in order 
to obtain a nontrivial limit (i.e., not iden-
tically 0), one needs to choose the value 
( ) /15 8ca b = . With that choice, the renor-

malized magnetization has a limit as a 0" :

.m a S m/
D
a

x
x a D

a
D

15 8 0

Z2
=

"

+!

/

The distribution of the limiting random 
variable mD is still an open question, but 
it is known [4] that there is a positive con-
stant c < 3 such that

( ) .asP m x e x>D
cx16 " 3+ -

In particular, this shows that mD does not 
have a normal distribution.

It is also shown in [3] that in the scaling 
limit one can define a sort of magnetization 
density U such that ( )m z dzD D

U= # . The 
reader should be warned that in writing 
( )zU  I’m committing an abuse of notation 

since U is not a function and cannot be 
evaluated pointwise; only its integral over 
bounded domains or against sufficiently 
smooth functions of bounded support is 
well defined. Such objects are called gen-
eralized functions or Schwartz distributions 
(not to be confused with probability distri-
butions). 

To answer that question, let’s consider 
the Ising model on a large (possibly in-
finite) square grid. We can think of the 
vertices of the grid as (a subset of ) aZ2, 
where a 0>  is the mesh size of the grid. 
Consider now a bounded domain D R21 ; 
the total magnetization in D is given by 

,M SD
a

x
x a DZ2
=

+!

/

where the sum is over all vertices con-
tained in D, so that all spins contained in 
that region, and only those, contribute to 
MD

a . We can now imagine keeping D fixed 
and making a smaller; we will then have 
more vertices inside D and more terms in 
the sum. In order to take the scaling limit, 
we need to send the mesh size to zero, but 
it is not difficult to see that as a tends to 
zero, the sum defining MD

a  diverges. The 
scaling limit of the magnetization MD

a  is 
therefore meaningless.

To understand how to overcome this 
problem, let’s first consider the infinite 
temperature Ising model. In this case, ac-
cording to (1), all the spin configurations 
have the same probability. In other words, 
the spins behave completely independent-
ly of each other (we say that their marginal 
distributions are independent) and each 
spin Sx has the same probability (1/2) of 
being +1 or -1, independently of all other 
spins. This means that the magnetization 
MD

a  is the sum of independent random 
variables (the spin variables Sx), each with 
the same distribution (S 1x =  with proba-
bility 1/2 and S 1x =-  with probability 1/2 
for every x). Since all variables are inde-
pendent and equally distributed, we can 
apply the Central Limit Theorem, one of 
the most important and useful theorems of 
probability theory. Because the number of 
vertices in D is of the order of ( / )a1 2, the 
Central Limit Theorem implies that the ran-
dom variable aMD

a  converges to a normal 
(Gaussian) random variable as a 0" .

Motivated by this result, let’s introduce 
the renormalized magnetization

,m a SD
a

x
x a DZ2

=
+!

a /

where ( )a a b=  is a parameter that may 
depend on the temperature. We’ve already 
seen that in the infinite-temperature case 
( 0b = ), the ‘correct’ choice is ( )0 1a = ; 
any value smaller than 1 would lead to 
no limit, while any value larger than 1 would 
lead, in the limit, to a very uninteresting 
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specific random fractal objects, the renor-
malized Ising magnetization and its den-
sity, whose existence and properties were 
proved rigorously almost one hundred 
years after the Ising model was introduced 
by Lenz. Those years have witnessed the 
birth and development of important fields 
of mathematics deeply connected to the 
Ising model, such as rigorous statistical 
mechanics, Euclidean field theory and, 
more recently, conformal probability, the 
study of conformally-invariant and confor-
mally-covariant random objects.	 s
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that played a crucial role in the develop-
ment of the theory.

Because of the way they transform un-
der conformal transformations, the critical 
Ising magnetization and the magnetization 
density U are called conformally covariant. 
They are also called Euclidean fields be-
cause they are invariant under translations 
and rotations, transformations which leave 
invariant the Euclidean distance, as op-
posed to relativistic fields which are invari-
ant under the Lorentz transformations of 
relativity theory. Their transformation laws 
are examples of the power laws discussed at 
the beginning of this paper. The exponents 
15/8 and 1/8 that appear in those power 
laws are examples of critical exponents.

We started with a general discussion 
about random fractals and ended with two 

mechanics and CFT was largely lacking, 
due to difficulties in the mathematical 
analysis of scaling limits. The situation 
started changing at the end of the 1990s, 
and evolved very rapidly in the first de-
cade of this century. As already mentioned, 
the scaling limit of the critical Ising mag-
netization and of the magnetization densi-
ty U were first shown to exist in [3]. The 
proof that the Ising magnetization behaves 
like a fractal object with dimension 15/8 
under all conformal transformations was 
also proved in [3]. This provides a rigor-
ous example of a conformal field obtained 
from the critical scaling limit of a model of 
statistical mechanics. It is also particularly 
pleasing that the model under consider-
ation is perhaps the most studied model 
of statistical mechanics, and certainly one 
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