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Urbe Condita, XXV.31) and as depicted in 
Figure 2. Figure 3 again shows geometry 
drawn in Greek sand. As the inscription ex-
plains, it is based on a story about ship-
wrecked men finding hope in these signs 
of intelligent life on the beach where they 
washed ashore.

This do-it-yourself element of ancient 
mathematics makes it a lot of fun and 
also well-suited to modern pedagogical 

only one is actually doing something with 
an instrument: Euclid, who is busy draw-
ing figures with his compass. Likewise, 
Archimedes was killed by invading sol-
diers while tracing figures in the sand, 
as ancient sources report (e.g., Livy, Ab 

Mathematics was for many thousands of 
years something you drew in the sand. It 
was active, hands-on. We can see this for 
instance in Rafael’s fresco The School of 
Athens (Figure 1). Among the many phi-
losophers and scientists shown, one and 
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Figure 1 Rafael’s School of Athens. Early 16th century, the Vatican.
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in exact numerical form? Does it even exist 
at all?

If we take the ruler and the compass 
as the basis of mathematical ontology this 
problem disappears at once. By the simple 
construction of Figure 5 the elusive 7 is 
readily caught on paper in the form of a 
line segment as humble as any other. Fur-
thermore the construction is as precise as 
it is simple. I carried out this construction 
with my students the other day. We did it 
back-of-an-envelope style, with some ba-
sic compasses I bought at a toy store. We 
made no special efforts to ensure accuracy. 
Yet when we measured our 7 segment 
and averaged our values we were off by 
less than 0.0001 from the true value.

But there is much more at stake here 
than the problem of incommensurability. 
Zeuthen famously advocated the thesis 
of “the geometrical construction as ‘exis-
tence proof’ in ancient geometry”, i.e., that 
“the construction ... served to ensure the 
existence of that which were to be con-
structed” [19, p. 223]. Phenomena such as 
the fact that 7 “does not exist” in the 
world of rational numbers could very well 
have suggested that concerns of this type 
are not as paranoid as they may seem at 
first sight. And legitimate existence doubts 
are by no means confined to intuitively 
obvious matters: the existence of the five 
regular polyhedra, for example, is far from 
obvious by any standard, until one sees 
constructions of them such as those with 
which Euclid crowned the Elements around 
300 BC.

But the matter goes deeper still. Even 
existence questions aside, constructions 
are in the Greek tradition the very source 
of meaning in mathematics. It is a war-
rant guaranteeing that every mathematical 
proposition, no matter how subtle, has a 
definite ‘cash value’, as it were, i.e., that 
it has theory-independent, jargon-free, em-
pirical content. Constructions, then, serve 
the purpose of grounding geometry in a 
concrete, pre-theoretical reality that is ac-
cessible and indisputable even to outsid-
ers.

This means in particular that any prop-
osition is in principle checkable without 
any understanding of its proof, since it 
can ultimately be boiled down to a con-
struction recipe and an empirically check-
able assertion about the resulting figure. 
That is to say, theorems in the Euclidean 
tradition are of the form “if you perform 

ing the very essence of mathematical 
meaning and method, a fact that is easily 
obscured by how deceptively simple and 
natural they are. Indeed, one could argue 
that the ruler and the compass are as old 
as geometry itself. According to ancient 
sources [15, p. 52], geometry began, as its 
name suggests, as a form of ‘earth-mea-
surement’. This was necessitated by the 
yearly overflowing of the Nile in Egypt: the 
flooding made the banks of the river fer-
tile in an otherwise desert land, but it also 
wiped away boundaries between plots, so 
a geometer, or ‘earth-measurer’, had to be 
called upon to redraw a fair division of the 
precious farmable land. In fact, Egyptian 
geometers were not called ‘earth-measur-
ers’ as in Greek but rather ‘rope-stretchers’. 
The rope was their basic tool, as Figure 4 
illustrates. There are two basic ways of 
generating a curve using a rope: if you pull 
both ends you get a straight line, and if 
you hold one end fixed and move the other 
while holding the rope fully stretched you 
get a circle. In this way the ruler and the 
compass can be seen as arising immedi-
ately from the most basic motivation for 
geometry in practical necessity.

But in Greek times, around the fifth cen-
tury BC, these simple tools took on a much 
more sophisticated theoretical importance 
(see for example the historical introduction 
in [8]). Consider for instance 7 . Today we 
think of 7 as a number, but this is highly 
problematic since it cannot be written as 
a fraction of integers or a finite or repeat-
ing decimal expansion. What, then, is this 
mysterious number called 7 , which no 
one has ever seen actually written down 

inclinations. But at the time the purpose 
of this kind of mathematics was not ped-
agogical, for engaging students. Rather, it 
was cutting-edge research pursued by the 
very best mathematicians of their time, 
and, as we shall see, these mathemati-
cians had excellent and sophisticated rea-
sons for insisting on drawing everything 
in the sand.

The significance of the ruler and compass
The simplest embodiment of the tradition 
of which I speak is the ruler and compass 
of Euclidean geometry. In classical times, 
these simple tools were seen as embody-
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Figure 2 The death of Archimedes in an 18th-century engraving. From Giovanni Maria Mazzuchelli, Notizie Isotoriche e 
Critiche Intorno alla Vita, alle Invenzioni, ed agli Scritti di Archimede Siracusano.

Figure 3 Frontispiece from Apollonii Pergaei Conicorum, 
Oxford, 1710.
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or that the earth was in the center of the 
solar system, or that planetary motion con-
sists of combinations of circular motions, 
despite these theories having been consid-
ered virtually the pinnacle of human un-
derstanding for thousands of years. Geom-
etry, however, fared differently; it passed 
the test of time with flying colours. Not 
a single theorem of ancient mathematics 
needed to be revised.

It was only natural, therefore, to seek 
the distinguishing characteristic that set 
geometry apart from the other sciences. 
And thinkers such as Descartes, Leibniz, 
and Hobbes found the answer in the con-
structive character of geometry. It is in this 
light that we must understand for instance 
Hobbes’s otherwise peculiar-sounding 
claim (in 1656) that political philosophy, 
rather than physics or astronomy, is the 
field of knowledge most susceptible to 
mathematical rigour:

“Of arts, some are demonstrable, others 
indemonstrable; and demonstrable are 
those the construction of the subject 
whereof is in the power of the artist him-
self, who, in his demonstration, does no 
more but deduce the consequences of 
his own operation. The reason whereof 
is this, that the science of every subject 
is derived from a precognition of the 
causes, generation, and construction 
of the same; and consequently where 
the causes are known, there is place for 
demonstration, but not where the caus-
es are to seek for. Geometry therefore is 
demonstrable, for the lines and figures 
from which we reason are drawn and 
described by ourselves; and civil phi-
losophy is demonstrable, because we 
make the commonwealth ourselves.” 
[10, pp. 183–184]

As bizarre as this may sound to modern 
ears, it makes perfect sense when we keep 
in mind the all-important role of construc-
tions in classical geometry.

translate into a recipe for concrete mea-
surement, no matter how convincing a 
story one might be able to spin in such 
‘metaphysical’ terms. Greek geometry lives 
by this principle too. It speaks of noth-
ing it cannot exhibit in the most tangible, 
concrete form right before our eyes. The 
definition of 7 as a number such that 
7 7 7# =  could certainly be accused 

of being ‘metaphysical’ and therefore an-
ti-scientific in the positivist sense. But 
once it has been concretely exhibited by a 
ruler-and-compass construction there is no 
longer any room for such a critique.

This foundational role of constructions 
was arguably the key characteristic that 
separated geometry from other scientif-
ic and philosophical theories in Greek 
times. For instance, the Greeks (following 
a program laid out by Plato in the fourth 
century BC) attempted to account for plan-
etary motions using combinations of cir-
cles. This science was virtually a branch 
of mathematics. In particular, it was based 
on axiomatic-deductive reasoning, with its 
axioms even being supposedly ‘obvious’ 
assumptions such as that heavenly mo-
tions must be composed of circles since 
this is the most ‘perfect’ shape. But the 
one fundamental respect in which this sci-
ence differed from geometry is that it was 
not constructive. It spoke of preexisting 
phenomena and tried to fit mathematical 
constructs to them, unlike geometry which 
built up all the objects of its theory from 
scratch using ruler and compass. Much the 
same can be said of many other branches 
of ancient science, such as the theory that 
all bodies are composed of four elements 
(earth, water, air, fire).

The importance of this distinction be-
came all the more crucial when the scien-
tific theories in question were refuted and 
abandoned in the sixteenth and seven-
teenth centuries. By the end of the seven-
teenth century no one believed anymore 
in the Aristotelian theory of the elements, 

such-and-such operations, this will result”, 
e.g., if you draw a triangle and add up its 
angles they will make two right angles. By 
thus speaking about measurements and 
relations in figures whose constructions 
have been specified, theorems in the Eu-
clidean tradition imply a recipe for check-
ing them empirically in as many instances 
as desired. This has many potential uses, 
from convincing sceptic outsiders to aiding 
explorative research. It also makes it pos-
sible to display expertise without reveal-
ing one’s methods — a common practice 
in mathematics as late as the seventeenth 
century, where constructions published 
without proofs are commonplace. These 
kinds of advantages of construction-based 
mathematics are quite incompatible with 
the emphasis in modern mathematics on 
grand ‘systemic’ theorems such as Rolle’s 
Theorem in analysis, Cayley’s Theorem in 
group theory, and so on. These modern 
kinds of theorems are not of the construc-
tive, Euclidean type, whose very formula-
tion implies a verification procedure.

Another way of putting it is in terms 
of the positivist paradigm that has dom-
inated much of empirical science in mod-
ern times. The positivist principle is that 
science should only speak of that which 
is observable or measurable; it should 
not engage in speculation about qualities 
and sympathies and whatnot that do not 
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Figure 4  Egyptian geometers, or ‘rope-stretchers’, delineating a field by means of a stretched rope. From the tomb of Menna, Egypt, c. 14th century BC.

√7
_

7 1
Figure 5 Ruler-and-compass construction of 7 . A line 
segment of length 7 1+  is used as the diameter of a circle. 
A perpendicular line is erected at the point between the 
two subsegments. The height of the perpendicular is 7 , 
as is easily seen by similar triangles.
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enthusiasts among us, building Nicome-
des’s instrument is easier than it looks if 
you have access to a well-stocked hard-
ware store. I found a tool called a ‘templat-
er’ consisting of linked rulers (see Figure 9) 
which served the purpose very well. As a 
plane of construction I found it useful to 
use a large sheet of very thick paper. To 
mark points in a manner that can attach 
to and support rulers I used flat-headed 
nails piercing through the paper from un-
derneath.

I would argue that even conic sections 
were defined in terms of an instrument-con-
struction along the above lines. Certainly 
the definition in terms of slicing a cone at 
first seems very different in character from 
the instrument-based constructions of cir-
cles or conchoids. But, in fact, one might 
argue that it really is a constructive defi-
nition precisely in the mould of Euclid. At 

But how exactly are we supposed to 
find the point E? This can in fact not be 
done by ruler and compass only. For this 
purpose Nicomedes invented a new curve 
and an instrument for drawing it. The curve 
is the conchoid of Figure 7, and the in-
strument must have been something like 
that shown in Figure 8. The point E in the 
above construction can be found using this 
instrument, by setting it up using O as the 
origin point, AB as the axis, and 2OB as 
the protruding length. The intersection of 
the resulting conchoid with the horizontal 
through B determines the desired point E.

This construction is strongly analogous 
to the ruler-and-compass construction of 
7 above. In both cases, we would per-

haps be inclined to think of the sought en-
tity as an unproblematic numerical quan-
tity. But in Greek geometry the task is to 
exhibit it concretely by carrying out defi-
nite construction steps using exact tools.

In terms of practical feasibility, however, 
the analogy rather breaks down. This in it-
self is quite illuminating and tells us a lot 
about Greek geometry. As we saw above, 
the 7 construction is theoretically pro-
found as well as practically precise. So we 
could not know what relative importance 
Euclid and others attached to these two 
factors. But the conchoid construction is 
nowhere near as accurate in practice and 
surely not the best way to trisect an angle 
for any practical purpose. Thus it strongly 
suggests that the Greeks indeed attached 
great importance to the more philosophical 
reasons for insisting on constructions.

If you don’t want to take my word for 
it you can build a conchoid instrument for 
yourself and use it to trisect an angle. I 
have done this with my students, and most 
of us were off by several degrees in our 
trisections. Fortunately for the construction 

Higher curves in Greek geometry
This strong emphasis on constructions 
was by no means a seventeenth-century 
afterthought. Rather, it was a key tenet of 
the Greek tradition all along. Beyond Eu-
clidean ruler-and-compass geometry, three 
construction problems dominated in large 
part the development of Greek geometry: 
the duplication of the cube (finding a cube 
with twice the volume of a given cube), 
the quadrature of the circle (finding a 
square with area equal to that of a giv-
en circle), and the trisection of an angle 
(dividing an angle into three equal parts). 
(See for instance [17, IX].) And it is with 
good reason that these problems were 
seen as fundamental. They are very pure, 
prototypical problem — not to say pictur-
esque embodiments — of key concepts of 
geometry: proportion, area, angle. The 
doubling of a plane figure, the area of a 
rectilinear figure, and the bisection of an 
angle are all fundamental results that the 
geometer constantly relies upon, and the 
three classical problems are arguably noth-
ing but the most natural way of pushing 
the boundaries of these core elements of 
geometrical knowledge. The great majority 
of higher curves and constructions stud-
ied by the Greeks were pursued solely or 
largely because one or more of the classi-
cal construction problems can be solved 
with their aid.

For trisecting an angle, one of the Greek 
methods went as follows (see Figure 6). 
Consider a horizontal line segment OA. 
Raise the perpendicular above A and let B 
be any point on this line. We wish to trisect 

AOB+ . Draw the horizontal through B and 
find (somehow!) a point E on this line such 
that when it is connected to O, the part EC 
of it to the right of AB is twice the length 
of OB. I say that AOC AOB3

1+ += , so we 
have trisected the angle, as desired. This 
is easy to show by introducing the mid-
point D of EC, and drawing the horizontal 
through this point. This line will bisect BC, 
and by comparing angles in the resulting 
triangles the result follows easily.

Figure 7  The  defining  property  of  the  conchoid  of  Ni-
comedes.

Figure 8 Instrument for drawing the conchoid of Nico-
medes.

= =

=

O A

B

C
D

E

Figure 6 Trisecting an angle AOB+  by finding an auxi-
liary point E.

Figure 9 A hardware-store tool useful for building classi-
cal curve-tracing instruments.
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By tracing both of these curves we have 
solved the problem of the duplication of 
the cube, for the x-coordinate of the in-
tersection of /y x 22=  and xy 1=  is 23 , 
which is the side length needed for the 
cube of twice the volume of a unit cube.

Of course the Greeks did not have mod-
ern algebraic notation, vectors and inner 
products, so their proofs would have been 
more laborious. Nevertheless the fact re-
mains that starting with the pen in a per-
pendicular position is very natural and 
convenient in this context. Moreover, the 
above demonstrations are very well suited 
for modern classroom use, not only to in-
vestigate this bit of history but to show the 
great power of the notion of inner product. 
In these examples, an otherwise very com-
plicated geometrical problem is reduced to 
a line or two of simple algebra; it’s a gen-
uinely impressive application of the inner 
product that would go well in any vector 
geometry class.

In my view it is highly plausible that the 
Greeks solved the problem of the duplica-
tion of the cube by giving a conic-compass 
construction of precisely the above kind, 
and that this was how conic sections were 
first encountered by mathematicians. This 
is a new hypothesis regarding the origin of 
the study of conic sections. For previous 
attempts — less convincing ones, in my 
opinion — at explaining the origin of the 
study of conic sections and the perpen-
dicularity condition in particular, see [18, 
chapter 21] and [14], or, for a brief overview 
of their views, [1] . For an overview of the 
early history of conic sections, see [9, I.I].

Greek tradition in the seventeenth century
The importance of constructions in the 
Greek geometrical tradition was still keenly 
felt in the seventeenth century. In partic-
ular, it plays a crucial role in Descartes’s 
Géométrie of 1637. In this work Descartes 
taught the world coordinate geometry and 
the identification of curves with equations. 
However, Descartes’s take on these top-
ics is radically different from the modern 
view in numerous respects. In particular, 
Descartes did not argue that the geome-
try of algebraic curves was a replacement 
for classical geometry, or a radically new 
approach to geometry. On the contrary, 
he argued at great length that it was in 
fact subsumed by classical geometry, 
and he would never have accepted it 
if it wasn’t.

conic compass approach of Figure 10. For 
suppose you want to set up this compass 
to trace for instance a parabola. How would 
you go about doing this, in such a way that 
you knew exactly what parabola you would 
get? The easiest way is to start with the 
pen arm BP perpendicular to the ground 
plane P, which corresponds precisely to 
the perpendicularity condition in (ii).

To explain the complete construction of 
the parabola, it is convenient for us to use 
modern algebraic notation and modern 
coordinates. Of course the ancient Greeks 
did not have such methods, but everything 
we shall do was well within their reach by 
other means. Start with BP perpendicular 
to P, and let this initial position of the pen 
point be denoted 'P  to distinguish it from a 
general point on the traced curve. The next 
step is to choose the angle i. To get a pa-
rabola this angle needs to be 45%. If we take 

'BP 1=  as our unit length, ’AP  will be 1 as 
well. Let us introduce a coordinate system 
with ( , , )'P 0 0 0=  as the origin, ( , , )A 0 1 0=  
as the point determining the direction of 
the y-axis, and ( , , )B 0 0 1= . As we now let 
the pen arm BP rotate about the axis AB, 
the pen point ( , , )P x y 0=  traces out a cer-
tain curve. We can find the equation for 
this curve by considering the inner product 
of ( , , ) ( , , ) ( , , )BA 0 1 0 0 0 1 0 1 1= - = -  with 

( , , ) ( , , ) ( , , )x y x yBP 0 0 0 1 1= - = - . The in-
ner product identity 

cosa b a b a b a b a b1 1 2 2 3 3$ i= + + =v v v v

in this case becomes 

y x y1 2 1
2
12 2+ = + +

which reduces to

.y x2
1 2=

If we want to trace the hyperbola xy 1=  
instead, we can define our coordinate 
system by ( , , )'P 1 1 0= , ( , , )B 1 1 1= , and 
( , , )A 2 2 0= . Then 'AP 2=  and AB 3= , 

so that ( ) /cos 1 3i = . In this case 
( , , ) ( , , ) ( , , )BA 2 2 0 1 1 1 1 1 1= - = -  and BP

( , , ) ( , , ) ( , , )x y x y0 1 1 1 1 1 1- = - - - , and 
the inner product identity is 

( ) ( )

x y

x y

1 1 1

3 1 1 1
3
12 2

- + - +

= - + - +

which reduces to 

.xy 1=

least if one thinks of a cone as generated 
by the rotation of a line about an axis, for 
then, in a sense, a construction by ‘gener-
alised compasses’ as in Figure 10 is really 
nothing but the physical manifestation of 
the literal meaning of the definition of a 
conic section. Such generalised compass-
es were described in the medieval Islamic 
commentary literature and could very well 
have been considered quite evident in 
Greek times. A tip for building these kinds 
of conic compasses today is to use a laser 
pointer in place of the pen, which removes 
the otherwise mechanically quite tricky is-
sue of the pen needing to be able to slide 
freely up and down.

Very little is known about the early his-
tory of conic sections, but arguably the two 
main facts known about it are: (i) at an 
early stage conics were used for the dupli-
cation of the cube (since this amounts in 
modern terms to solving x 23 = , it can be 
accomplished by combining the hyperbo-
la xy 1=  with the parabola /y x 22= ) and 
other problems of this type; (ii) in the ear-
liest records, cones were defined as line 
segments rotated about an axis and conic 
sections as the intersection of a cone with 
a plane perpendicular to its side. The per-
pendicularity restriction in (ii) at first ap-
pears very artificial and strange. It makes 
no sense in terms of the natural applica-
tions of conic section theory in astronomi-
cal gnomonics and perspective optics, nor 
does it make any theorems about conics 
easier to prove. This suggests that the 
study of conic sections was not originally 
an end in itself, but only a way of interpret-
ing curves already necessitated elsewhere. 
The solution of (i) came first, and the no-
tion of a conic section was concocted as a 
way of explicating the curves involved in 
this important construction.

In fact, in my view, the reason for the 
perpendicularity condition in (ii) lies in the 

A

∏

B

θ

P

Figure 10 Generalised compasses for drawing conic sec-
tions. The angle i and the direction of the axis AB are 
fixed. As the other leg rotates around the axis, the pen sli-
des up and down in its cylinder, so as to always reach the 
plane P. Figure from [16, p. 29], with altered notation.
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the intersection of those two rulers. One 
can then move the pen without touching 
any other part of the setup. Because of the 
constraints of the rulers, the pen is restrict-
ed to move only along the sought curves.

Once a curve has been generated this 
way it in turn can be taken in place of the 
initial straight line KNC, and so on. An ex-
ample used by Descartes himself is that 
replacing the line KNC by a circle produces 
a conchoid (see Figure 13). Thus we have 
seen how Descartes’s curve-tracing method 
quickly yields two of the key curves from 
the Greek tradition that were already cru-
cial in our story above. This is no coin-
cidence. Descartes was intimately familiar 
with the Greek tradition, and firmly devot-
ed to preserving it. He did so with aplomb, 
and that was his proudest achievement in 
mathematics.

It goes without saying that the virtues 
Descartes saw in his construction proce-
dures were theoretical in nature. His con-

AG a=  and /m KL NL= . Thus t is variable 
while c, a and m are constants. In term 
of these quantities we can then express 
the equations of the lines CNK and GCL, 
and then combine them so as to eliminate 
t, which gives the equation for the traced 
curve in terms of x, y, and constants.

We may ask ourselves: how can we 
use this method to generate for exam-
ple the standard hyperbola xy 1= ? This 
comes down to finding a suitable choice 
of constants in the equation we just de-
rived. In fact, the choices a c 1= =  and 
m 0=  will do; this gives xy x 1= +  which 
is the sought curve except for a trivial 
vertical shift by one unit. Once you know 
the necessary constants, the instrument in 
question can quite easily be built using the 
‘templater’ tool of Figure 9. I have done 
this with my students. Figure 12 shows the 
result. One sees that a quite small portion 
of the curve xy 1=  has been traced. I did 
this by placing a pen through the hole at 

Descartes, accordingly, began by gen-
eralising the curve-tracing procedures of 
Euclid and then went on to show that the 
curves that could be generated in this way 
were precisely the algebraic curves (i.e., 
curves with polynomial equation of any de-
gree), thereby establishing a pleasing har-
mony between classical construction-based 
geometry and the new methods of analyt-
ic geometry. Indeed, the historical record 
shows that Descartes’s early geometrical 
research was devoted to curve-tracing pro-
cedures and instruments, and it was in this 
context that Descartes was gradually led to 
the idea of analytic and coordinate geom-
etry. (See [5].)

By the time he published his Géométrie, 
Descartes had settled on his favoured 
curve-tracing method and become con-
vinced that it encompassed all algebraic 
curves, and nothing else. Convincing his 
readers of this — and thereby justifying 
the new algebraic methods in terms of the 
standards of classical, construction-based 
geometry — is the dominant theme of the 
entire Géométrie. As he writes:

“To treat all the curves I mean to intro-
duce here [i.e., all algebraic curves], only 
one additional assumption [beyond rul-
er and compasses] is necessary, namely, 
that two or more lines can be moved, 
one by the other, determining by their 
intersection other curves. This seems to 
me in no way more difficult [than the 
classical constructions].” [7, p. 43]

An example of this curve-tracing pro-
cedure is shown in Figure 11. To find the 
equation for the curve traced by the in-
tersection C, take A as the origin of a co-
ordinate system with AB y=  and BC x= , 
and introduce the notation AK t= , LK c= , 

Figure 11 Descartes’s method for tracing a hyperbola. 
The triangle KNL moves vertically along the axis ABLK. 
Attached to it at L is a ruler, which is also constrained by 
the peg fixed at G. Therefore the ruler makes a mostly ro-
tational motion as the triangle moves upwards. The inter-
section C of the ruler and the extension of KN defines the 
traced curve, in this case a hyperbola. (From [6, p. 321].)

= c ,xy = 1 hyperbola. Include the coordinate axes in your
figure.

= a. Find the equation for the traced curve in terms ofxy = 1 hyperbola. Include the coordinate axes in your
figure.

de helling m =
vergelijking af tussen de coördinaten van

Figure 6: Early mathematical activity coincides with favourable agri-
cultural conditions.
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Tablet in the Yale Babylonian Collection, showing a square with its diagonals. (Yale

Babylonian Collection, Yale University.)

rectangles having areas of 60 square cubits and diagonals of 13 and 15 cubits. One is

required to find the lengths of their sides. Writing, say, the first of the problems in modern

notation, we have the system of equations

x2 + y2 = 169, xy = 60.

The scribe’s method of solution amounts to adding and subtracting 2xy = 120 from the

equation x2 + y2 = 169, to get

(x + y)2 = 289, (x − y)2 = 49;

or equivalently,

x + y = 17, x − y = 7.

From this it is found that 2y = 10, or y = 5, and as a result x = 17 − 5 = 12.

The second problem,

x2 + y2 = 225, xy = 60,

is similar, except that the square roots of 345 and 105 are to be found. There were several

methods for approximating the square root of a number that was not a perfect square. In this

case, the scribe used a formula generally attributed to Archimedes (287–212 B.C.), which is

Figure 7: Clay tablet YBC 7289 from the Yale Babylonian Collection.

4.1. Argue that 60 has favourable divisibility properties. In
which context might this have been important? Hint: in
which contexts do people count in “dozens”?

4.2. Explain how you can count to 60 on your fingers in a nat-
ural way. Hint: curl your fingers.

4.3. Argue that in the reader there are passages that can be seen
as supporting each of these factors as explanations for the
origin of the base-60 system.

Base 60 means that, for example, 42,25,35= 42+ 25
60 +

35
602 .

4.4. (a) Explain the meaning of the numbers on the tablet
above. Hint: there are three numbers and one of
them is ⇡

p
2.

(b) Convert the tablet’s value for
p

2 into decimal form.

(c) If you use this value to compute the diagonal of a
square of side 100 meters (i.e., roughly the size of a
football field), how big is the error? Draw this length.

The Babylonians were very good at solving problems that in our
terms correspond to quadratic equations. Such problems are re-
lated to areas of fields, though the problems solved on the tablets
ask contrived questions that go beyond any practical need and
seem to serve no other purpose than posing challenges or show-
ing off one’s skills. So one can easily imagine that this math-
ematical tradition stemmed from practical land-measurements
which eventually produced a specialised class of experts who
started taking an interest in mathematics for its own sake.

The following is an example of such a problem. I give here the
translation of Høyrup; in the reading from his book you will
find some further discussion of its context and significance.

“The surface and my confrontation I have accumulated: 45’ it
is.” It is to be understood that “the surface” means the area of
a square, and the “confrontation” its side. So the problem is
x2 + x=45’. Again the numbers are sexagesimal, so 45’ means
45/60=3/4.

“1, the projection, you posit.” This step gives a concrete geomet-
rical interpretation of the expression x2+ x. We draw a square
and suppose its side to be x. Then we make a rectangle of base 1
protrude from one of its sides. This rectangle has the area 1 · x,
so the whole figure has the area x2 + x, which is the quantity
known.

“The moiety of 1 you break, 30’ and 30’ you make hold.” We
break the rectangle in half and attach the half we cut off to an
adjacent side of the square. We have now turned our area of 45’
into an L-shaped figure.

“15’ to 45’ you append: 1.” We fill in the hole in the L. This hole
is a square of side 30’, so its area is 15’. So when we fill in the
hole the total area is 45’+15’=1.

“1 is equalside.” The side of the big square is 1.

“30’ which you have made hold in the inside of 1 you tear out:
30’ is the confrontation.” The side of the big square is x+30’ by

6

Figure 12 A practical implementation of Descartes’s method of Figure 11 in the case xy 1= .

L A

G

C

Figure 13  Construction of the conchoid using Descartes’s method of Figure 11 with a circle in place of the line KNC.
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nothing but algebraic curves. The next 
frontier, thus, was non-algebraic curves, 
i.e., graphs of functions that cannot be ex-
pressed by a polynomial equation. The log-
arithm function is arguably the most funda-
mental function of this type. So Huygens 
faced the problem of finding a curve-trac-
ing method, analogous to those above, 
which could be used to find the logarithm 
of any number.

Huygens [12] found the answer in the 
tractrix (Figure 14). In the physique de sa
lon of seventeenth-century Paris, a pocket 
watch on a chain was a popular way for 
gentlemen to trace this curve, as shown in 
Figure 15. A pocket watch is quite well-suit-
ed for the purpose since it is quite heavy 
and has a low center of mass, which pre-
vents undue slippage or wobbling. Also, 
since its back is typically somewhat round-
ed it only has one point of contact with 
the table top surface, as the mathematical 
idealisation requires. By dipping the watch 
in paint or rubbing it with soot one can en-
sure that it leaves a trace of its path. This 
is all very replicable in a modern class-
room. Huygens himself investigated such 
matters in great detail and decided in fa-
vour of a more ambitious method: having 
a small boat trace the tractrix in a tub of 
syrup (Figure 16).

dere door de instrumenten daertoe ge-
inventeert. Want de linien met de handt 
van punt tot punt getrocken alleenlijck 
de gesochte quantiteyt ten naesten bij 
konnen geven en dienvolgens niet naer 
de Geometrische perfectie. Want wat 
helpt het sooveel puncten te vinden als 
men wil, indien men dat eene punct dat 
gesocht werdt niet en vindt?” [11]

[“One cannot say that the description of a 
curved line through found points is geomet-
rical, that is to say complete, or that lines 
so described can serve as a geometrical 
construction for some problems, because for 
this, in my opinion, no curved lines can serve 
except those that can subsequently be de-
scribed by some instrument, as the circle by 
a pair of compasses; and the conic sections, 
conchoids and others by the instruments in-
vented thereto. For the lines drawn by hand 
from point to point can only give the sought 
quantity approximately and consequently 
not according to geometrical perfection. For 
what does it help to find as many points as 
one wishes, in case one does not find the 
one point that is sought?”]

Indeed this is what happens in the ex-
ample above of using the intersection of 

/y x 22=  and xy 1=  to solve the duplica-
tion of the cube. We solve the problem by 
finding the x-coordinate of the point of 
intersection. If the curves were defined in 
terms of plugging in x-values this would 
clearly be circular reasoning.

Finding the equation for the traced curve 
in Descartes’s construction in the above 
manner is certainly a good exercise in any 
course on analytic geometry. This is made 
all the more satisfying if it is followed by 
the physical tracing of the curve. And it will 
certainly be very healthy for students to 
be confronted with the excellent reasons 
seventeenth-century mathematicians had 
for preferring such methods of curve con-
struction. Note well that Huygens’s critique 
of pointwise curve constructions applies to 
the way graphing calculators plot curves: 
Descartes and Huygens would have been 
none to impressed by such gadgets as 
far as exact geometry is concerned; on 
grounds of theoretical rigour they had 
good reason to stick with their mechanical 
instruments instead.

“A little boat will serve”
Huygens himself continued the construc-
tion tradition where Descartes had left off. 
According to Descartes, his curve-tracing 
could produce all algebraic curves, and 

structions are obviously quite hopeless 
to apply in practice in any but the very 
simplest cases. The setup of Figure 12 is 
already crude to say the least, and it soon 
gets much worse when curves of higher 
degree are involved. Thus the following 
anecdote could very well have much truth 
in it:

“[Descartes] was so learned that all 
learned men made visits to him, and 
many of them would desire him to show 
them ... his instruments ... He would 
drawe out a little drawer under his ta-
ble, and show them a paire of Compass-
es with one of the legges broken: and 
then, for his ruler, he used a sheet of 
paper folded double.” (Aubrey’s Brief 
Lives, 1898 ed., vol. 1, p. 222, quoted 
from [13, p. 42].)

Nevertheless, as we stressed already in 
the case of Nicomedes’s instrument above, 
even when practical feasibility goes out 
the window, constructions remain the the-
oretical cornerstone of mathematics. They 
are indeed what gives meaning to mathe-
matical concepts. Without them, an equa-
tion such as xy 1=  is nothing but empty, 
meaningless symbols.

From a modern point of view we might 
object that the equation xy 1= , or its 
equivalent /y x1= , has a definite geomet-
rical meaning without the peculiar tracing 
tools of Descartes. Namely: fill in various 
x-values, compute the corresponding y-val-
ues, and plot the corresponding points. In 
this way as many points of the curve as 
desired can be produced, making its geo-
metrical meaning clear. The problem with 
this, in seventeenth-century eyes, is that 
it does not generate the curve as a whole, 
and therefore it might ‘miss’ the one point 
we are looking for. Christiaan Huygens ex-
pressed this well. For the present audience 
I may quote him in the original Dutch:

“Doch soo en kan men niet seggen 
dat het beschrijven van een kromme 
linie door gevonden puncten geome-
trisch ofte volkomen sij, of dat sulcke 
beschreven linien konnen dienen tot 
geometrische constructie van eenighe 
problemata, dewijl hiertoe, nae mijn 
opinie, geen kromme linien en konnen 
dienen als die door eenigh instrument 
vervolgens beschreven konnen worden, 
gelijck den Cirkel door een passer; en 
de Conische Sectien, Conchoides en an-

y

x

Figure 15 Tracing the tractrix by means of a pocket 
watch. From Giovanni Poleni, Epistolarum mathematicarum 
fasciculus, 1729.

Figure 14 The tractrix, i.e., the curve traced by a weight 
dragged along a horizontal surface by a string whose other 
end moves along a straight line.
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the hypothenuse, as in the second part of 
Figure 17. Here we find that b y 12 2 2+ = , 
so that b y1 2= - , and y

a Y1
1= + , so that 

y
Y

Y
1
2
2

=
+

, which when substituted into 
the above solution formula for the tractrix 
gives 

( / ) .

log

log

log

x y
y

y

Y
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Y
Y

b

Y b

1 1
1

1
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1 1
1
2

1
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2

2

2

2
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Thus measuring x b+  gives ( / )log Y1 , so 
we have found the sought logarithm as a 
concrete, measurable line segment. This 
construction fits very well in the long tra-
dition outlined above. As ever, the sought 
quantity is determined by the intersections 
of curves generated by continuous motion. 
Nor was this the end of such attempts. 
Leibniz for instance devised a generali-
sation of the tractrix, involving a variable 
string length, which can be used to solve 
even more problems in the same spirit 
(see [2]). My recent dissertation [3] shows 
that these kinds of constructions were a 
key part of mainstream mathematics at 
this time and played an important role in 
the early development of the infinitesimal 
calculus.

Interestingly, the arc length of the trac-
trix from y 1=  to any point y C=  is ( )log C . 
So in fact all the hassle with the auxilia-
ry triangles in Figure 17 could have been 
avoided and instead the result could have 
been found by simply putting a measuring 
tape along the tractrix and directly reading 
off the answer. But that would have been 
unacceptable and in violation of tradition. 
Above, for instance, we found the trisec-
tion of an angle in a complicated fashion. 
If we could simply have put a measuring 
tape along a circular arc and marking it 
into three equal pieces the problem would 
obviously have been trivial; or, perhaps 

each of which we can integrate by making 
the substitutions t u11 = -  and t u12 = +  
respectively, giving 

( ) ( ) .log logx t t t t C2
1

1 1 2 2= - + + - +^ h
Substituting back and simplifying, we get 

.logx y
y

y
1 1

1
2

2=
+ -

- -d n

The desired configuration corresponds to 
C 0=  since ( )x 1 0=  and x " 3 as y 0" . 
By log we mean the natural logarithm.

This solution shows that the tractrix is 
related to logarithms. It does not reveal 
an easy way of finding the logarithm of 
some given number, but Huygens managed 
to extract such a recipe. Let’s say that we 
seek ( / )log Y1 . Huygens’s construction 
goes as follows. Consider first the auxil-
iary triangle shown in Figure 17, where the 
length of the leg a is chosen so that the 
hypothenuse equals this leg plus Y. We 
see that ( )a Y a 12 2 2+ = + , so a Y

Y
2
1 2
= - , 

which tells us how to find the a (and thus 
construct the triangle) for the given Y. Next 
Huygens cuts off a portion of length 1 of 

The connection between the tractrix and 
the logarithm may be seen as follows. Let’s 
say that the length of the string is 1. At 
any point during the motion, we can con-
sider it as the hypothenuse of a triangle 
with its other sides parallel to the axes. 
Thus the sides of this triangle are 1 for 
the hypothenuse, y for the height, and 

y1 2-  for the last side by the Pythagore-
an Theorem. We can now find a differential 
equation for the tractrix by equating two 
different expressions for its slope: first the 
usual /dy dx and then the slope expressed 
in terms of the above triangle. This gives 

.dx y
y

dy
1 2

=-
-

To solve this differential equation we make 
the substitution u y12 2= - , which gives 

.dx
u

u du
1 2

2
=
-

We can split the right-hand-side expression 
into the partial fractions 

,
u

u
u

u
u

u
1 2

1
1 12

2

-
= - - +` j

a

a+Y 1

Figure 16  Detail of a 1692 manuscript by Christiaan Huygens on the tractrix (reproduced from [4, p. 30]). The sentence 
in the top left corner reads: “Une charette, ou un batteau servira a quarrer l’hyperbole” (“a little cart or boat will serve to 
square the hyperbola”). “Squaring a hyperbola” means finding the area under a hyperbola such as  /y x1= , so it is equiva-
lent to computing logarithms, as Huygens was well aware. The bottom line reads: “sirop au lieu d’eau” (“syrup instead of 
water”). Syrup offers the necessary resistance and a boat leaves a clear trace in it.

b

1
y

Figure 17 Huygens’s construction of logarithms from a tractrix.
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constructions was a major guiding force in 
the development of mathematics from an-
cient to early modern times. How dismayed 
these classical mathematicians would be at 
the casual neglect of constructions in mod-
ern mathematics! Today we are happy to 
reason about entities such as the square 
root or logarithm of a given number, the 
third of a given angle, a cube of a given 
volume, or the graph of an algebraic func-
tion, without first asking ourselves how 
we could produce these things from first 
principles on the blank canvas of a Med-
iterranean beach using nothing but sticks 
and stones. By ancient standards we live 
in a state of blissful ignorance. We may 
yet learn a thing or two from our ancient 
friends by opening our eyes from this com-
placent slumber. s

what is sought they come dangerously 
close to simply assuming it to be done. 
But one wonders if the real reason is not 
a more opportunistic one: tape-measure 
methods could not sustain a mathematical 
research programme. Allowing such meth-
ods would solve too much: the quadra-
ture of the circle and the multisection of 
an angle would collapse into trivialities at 
once, and where’s the fun in that? These 
problems are supposed to be the great 
prizes of mathematics, not child’s play. 
This in itself is reason enough to deem 
such methods to be beyond the rules 
of the game.

Conclusion
In conclusion, we have seen that a consis-
tent vision of mathematics as founded on 

better put, not a problem at all. The same 
goes for one of the other famous problems 
of antiquity: the quadrature of the circle. 
This too becomes elementary if one is al-
lowed to simply measure the circumference 
of a circle with a measuring tape.

In all of these cases, the measuring tape 
solution is simple and very accurate for all 
practical purposes. Yet it was not accepted, 
and convoluted constructions based on in-
tersections of curves were sought instead. 
This confirms once again that the construc-
tion paradigm was very much a theoretical 
obsession in the seventeenth century. But 
why insist on these standards, even theo-
retically? An official rationale can be given 
along the lines that tape-measure methods 
are not constructions in the proper sense; 
instead of straightforwardly producing 
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