
214 NAW 5/17 nr. 3 september 2016 Model checking dynamic systems Pieter Collins

electrical systems with switches and/or di-
odes.

The problem of model checking hybrid
systems is a very rich domain, encom-
passing many of the important parts of
continuous mathematics: real numbers,
continuous functions, open and compact
sets, algebraic and differential equations,
and constraint feasibility problems. There
are important theoretic questions of which
properties of the evolution are even com-
putable [48], and practical problems in
the development of tools for efficient and
rigorous numerical computation [25]. As I
had already developed an interest in these
issues in the context of chaos theory, I
saw collaboration on Ariadne as a perfect
opportunity to actually develop software,
both as an industrially-viable tool for the
model checking problem itself, and a flex-
ible, general-purpose package for rigorous
numerical computation.

My work on Ariadne led to a rich vein
of both theoretical research and practical
software development, and to a success-
ful Vidi grant proposal on ‘Computation-
al Topology for Systems and Control’. An
initial version of Ariadne focused solely
on reachability analysis of hybrid systems
using affine sets as a fundamental internal
representation, and rigorous linear algebra
and linear programming to perform compu-
tations. While this provided fast computa-
tions with reasonable accuracy, the under-

working with physical prototypes, and may
be more powerful, since exhaustive testing
may not be feasible, or scenarios may oc-
cur which had not been considered during
testing.

I first started work in model checking
as a postdoctoral researcher in the group
of Jan H. van Schuppen at the Centrum
Wiskunde & Informatica in Amsterdam,
on an EU-funded project ‘Control and
Computation’. A part of this project was
the development of a model checking
tool Ariadne for hybrid systems, led by
the group of Tiziano Villa in Udine, and a
small Rome-based company Parades with
links to the automotive industry. Hybrid
systems [45] first appeared in [18, 41], and
are characterised by continuous evolution
interspersed by discrete events causing an
instantaneous jump in the system state, or
a switch in the mode of behaviour. They
typically arise in the control of a physical
system via discrete sensors and actuators,
but are also encountered in systems with
impacts, such as robot locomotion, or as

Engineers design and build things: me-
chanical engineers build machines, genetic
engineers design lifeforms, and software
engineers make computer programs. And
of course, these things should serve some
purpose and properly perform the tasks
they were designed to do. Trains on a rail-
way track should not crash into each other,
radiotherapy machines should not deliver
a lethal dose, and your computer’s oper-
ating systems should never display a ‘blue
screen of death’. To this end, designs are
analysed, prototypes tested, and the final
product trialled. This process is known as
verification, and is one of the most import-
ant and challenging parts of engineering.

Model checking [5, 11] is a computa-
tional approach to verification, in which a
(mathematical) model of the system is an-
alysed to determine whether it satisfies its
specification as expressed by some tempo-
ral logical formula. The analysis must be
performed entirely rigorously to avoid the
possibility of dangerous or costly errors.
Working with models is often cheaper than

Model checking
dynamic systems

Pieter Collins started work on model checking hybrid systems as a postdoctoral research
fellow at the Centrum Wiskunde & Informatica in the group of Prof. Jan H. van Schuppen,
working on an EU-funded project ‘Control and Computation’. He contributed to the software
project Ariadne for reachability analysis and verification of hybrid systems, developed by
the company Parades (now Ales) in Rome, and the group of Tiziano Villa in Udine (now
Verona). This project led to a Vidi grant on ‘Computational Topology for Systems and Con-
trol’. Since 2011 he has been a lecturer in the Department of Data Science and Knowledge
Engineering and Maastricht University.

Pieter Collins
Department of Data Science and Knowledge Engineering
Maastricht University
pieter.collins@maastrichtuniversity.nl

Pieter Collins Model checking dynamic systems NAW 5/17 nr. 3 september 2016 215

checking linear temporal logic is undecid-
able. A a yes/no question is decidable, or
a function computing a string or numeri-
cal value computable, if it can be imple-
mented on a Turing machine, which can
be thought of as a program running on a
digital computer with unlimited memory. It
is easy to see that there must be unde-
cidable problems and uncomputable func-
tions, since there are uncountably many
functions { , }0 1N " , but only countably
many programs. The halting problem, of
determining whether a computer program
will terminate or run forever, is the most
famous undecidable problem, and can
actually be formulated as a model check-
ing problem. Note that undecidability of a
problem class does not mean that particu-
lar instances of a problem are unsolvable;
for example, termination of a program
can always be proved by running it long
enough (so halting is verifiable), and the
infinite loop while(true) {...} clearly
never terminates.

Hybrid automata were seen by com-
puter scientists as a natural extension of
discrete automata to include continuous
dynamics. They consist of finitely many
discrete states , ,q qn1 f , in each of which
the continuous state x Xi i! satisfies a
differential equation () (())x t f x ti i i=o . When
the continuous state satisfies a guard con-
dition (())g x t 0,i k i $, a discrete event ek

occurs, with the discrete state changing
to qj, and the continuous state being re-
set to () (())x t r x t,j i k i= . Hybrid automata
are often described by a graph with state
dynamics in the vertices, and guards/re-

ical operations, and temporal operators:
next (denoted &), always (x), eventually
(Z), until and release. For example, the
property a b0&xZ (eventually a or next al-
ways b) means that either property a holds
at some time in the future, or that after
one time step, property b always holds. Of
particularly importance are safety proper-
ties ax (always a). These can be checked
by computing the reachable set of states
which it is possible to attain from a start-
ing state.

There are many tools for model checking
of linear temporal logic for finite automata,
such as [23]. They either prove that the
specification is satisfied for all executions
of the system, or output an execution not
satisfying the specification. This counter-
example may indicate a flaw in the system
design, or that the specification has not
been properly thought-out.

The main practical difficulty in model
checking is state-space explosion caused
by the so-called curse of dimensionality —
for a moderately-sized system with 100 on–
off switches, there are 2 10100 30+ states,
which would take approximately the age of
the universe (13.8 billion years) to analyse
even when looking at a trillion states per
second! Discrete model checkers therefore
use a variety of data representations and
algorithmic tricks to speed up the calcula-
tion. Since the result must be rigorously
correct, randomised algorithms cannot be
used.

As soon as the number of states be-
comes infinite, such as by introducing inte-
ger variables, then it turns out that model

lying technology was only appropriate for
fairly coarse safety properties. Subsequent
versions of Ariadne featured a full rigorous
numerical calculus for numbers, vectors,
functions and sets.

Of course, there were already tools
for rigorous numerical computation, in-
cluding the interval arithmetic package
INTLAB [43], differential equation solvers
AWA [31], VNODE [39] and COSY Infini-
ty [33], and dynamical systems analysers
CAPD-Lib [38] and GAIO [14]. Hybrid system
solvers included d/dt [2] and HyTech [20]
for linear continuous dynamics, and Hyper-
Tech [21] and Checkmate [10] for nonlin-
ear dynamics. With Ariadne we aimed to
extend the scope and flexibility of these
tools, in particular to provide an extensible
framework where sets and functions could
be manipulated as first-class objects, and
to study highly nonlinear and/or nonde-
terministic systems. Later hybrid systems
tools include HSolver [42], Phaver [16],
SpaceEx [17], Flow* [9] and AERN [15], with
the latter three featuring a similar rigorous
numerical calculus to Ariadne.

Model checking hybrid systems
Model checking was originally developed
for verifying the flow-of-control of software
systems. System models are given by dis-
crete automata with a finite state set X
specifying the set of possible executions
(, , ,)x x x0 1 2 f . Specifications are given by a
temporal logic formula describing the al-
lowable executions. A linear temporal logic
formula is built up from atomic proposi-
tions a, which are sets of states, basic log-

R

E

L

I

C
V

S =

t ≤ αT

S =

S =

İ = (E − V)/L

ṫ = 1

t ≤ αT

I ≥ 0

V̇ = I/C−V/RC V̇ = −V/RC

I = 0

ṫ = 1

V ≥ E

V̇ = −V/RC

İ = E/L

ṫ = 1

t ≤ T

I = 0

V = E

t := 0
t = T

t = αTt = αT

Figure 1 (a) Circuit diagram for a boost power converter. (b) A hybrid automaton representing the boost power converter. (c) Time-evolution of the capacitor voltage.

(a) (b) (c)

216 NAW 5/17 nr. 3 september 2016 Model checking dynamic systems Pieter Collins

.

[. : .]

[. : .]

[. : .]

[. : .]

. .

3 0 33333

3 0 3333399 0 3333399

3 0 33332 0 33334

0 99996 1 00002

1 00004 1 00002

1 0000

#

#

#

g

g g

g

!

1

=

=

=

rr

r

There are other representations of the
real numbers which are equivalent to
the signed-digit representation. The Cau-
chy representation describes a real num-
ber x by a sequence of rationals qn with
| |x q 2n

n#- - , and the Dedekind repre-
sentation by a sequence of rational in-
tervals [,]a bn n with a a b bn n n n1 1# # #+ +
and lim lima b xn n n n= =" "3 3 . Note that
the Cauchy representation focusses on
the metric structure of the real numbers,
whereas the Dedekind representation fo-
cusses on the order structure.

A real number x is computable, as per
Turing’s definition [47], if there is a comput-
er program which outputs its signed-digit
(or an equivalent) representation. All alge-
braic numbers are computable, as are im-
portant constants such as e and r, but only
countably many real numbers are comput-
able.

The usual arithmetical operators +, -,
#, ' are computable, as are elementary
functions such as exp, log, sin and arctan.
Further, it is possible to take the limit of a
sequence xn with a known a rate of conver-
gence ne i.e. | |x x { , }minn n n n1 2 1 2

e- .
Comparison of real numbers is undecid-

able, since we can never tell that a num-
ber x actually equals 0 from finite piece
of its signed-digit expansion .0 0000g.
For this reason, we need Kleenean logic
for comparison x yK , with three values

{ , , }K -< == representing true, false and
indeterminate (“don’t know”), the latter
for the case x and y are equal. Note that
while a symbolic approach may allow one
to decide whether x 0= in some cases
e.g. ()sin 3 0r = , it is an open problem as
to whether a number defined in terms of
rationals and elementary functions can al-
ways be tested for being zero.

To define more complicated types, we
can fall back on some very general con-
structions. For types , ,X Xn1 f , there is
a product type X Xn1 # #g of tuples
(, ,)x xn1 f with x Xi i! . For types ,X Y, there
is an exponent type YX which consists of
sequentially continuous functions X Y" .
The operations of evaluation (,) ()f x f x7

useful information about a value from a
finite piece of its describing stream. Com-
putation is still performed using Turing ma-
chines, but a program runs forever, reading
data from its input streams and writing to
its output stream.

It turns out that there is a deep link
between topology and computation; a rep-
resentation of a set of objects by streams
induces a natural topology on the set [46],
and only continuous functions can be com-
putable. Indeed, the set of all functions
with uncountable domain has higher than
continuum cardinality, so cannot be de-
scribed by streams. Two representations of
the same set are equivalent if each can
be computably converted into the other. A
type is defined to be a set with an equiva-
lence class of representations.

We start developing computable anal-
ysis by constructing the type of real num-
bers. We are used to describing real num-
bers either by algebraic formulae, such as
1/7, r or /7)sin(r , or as a decimal expan-
sion, such as .0 142857o o , or .3 14159g. Since
the real numbers are uncountable, only
infinite representations such as decimal
expansions can represent them all.

Unfortunately, there is also a problem
with decimal expansions: They do not
support arithmetic! What is the value of

.3 0 33333# g? Clearly, if the second num-
ber is exactly 3

1 , then the result is .1 00000g,
or equivalently, .0 99999g. But we can nev-
er output .1 0g, because maybe we have

.3 0 333332# g, which is definitely less
than 1. And we can never output .0 9g,
because maybe we have .3 0 333334# g.
Hence we can never give the first digit of
the answer!

Thankfully, there are ways around this
conundrum. The most straightforward way
is to use a signed-digit representation,
which allows negative digits such as 2r (rep-
resenting ‘ 2- ’) as well as positive digits.
The signed-digit representation is equiva-
lent to allowing an error of 1! in the last
given digit, since .3 1416g could represent

. . ,3 14169 3 1415=ro

. . ,3 14169 3 1417=o

or any number in the interval

[. : .] . [:] . [] .3 1415 3 1417 3 141 5 7 3 141 6 1!= =

Use of signed digits resolves our arithmeti-
cal dilemma, since

sets on the edges. An example of a hybrid
automaton and its dynamics is shown in
Figure 1.

For a simple class of hybrid systems, the
timed automata, in which the only contin-
uous dynamics are clocks satisfying t 1i =o ,
model checking was shown to be decid-
able [1]. This result led to the development
of tools such as UPPAAL [29] for the anal-
ysis of timed automata. For slightly more
complicated classes of hybrid system, in-
cluding saturated linear systems [7], mod-
el checking becomes undecidable [3, 22].
Clearly model checking more general non-
linear hybrid systems is also undecidable;
the real question is whether we can veri-
fy any such systems at all. Since proper-
ties of continuous systems may be highly
sensitive to small changes; for example, a
small change in a parameter may cause a
bifurcation or catastrophe, we should not
expect to be able to say very much unless
the property we are considering is robust
with respect to parameter uncertainty and
noise.

Computable analysis
To answer the question of what is possi-
ble to verify for nonlinear hybrid systems,
we need a theory of (rigorous) computa-
tion for continuous mathematics, a subject
known as computable analysis [26, 48].
The roots of such a theory lie in construc-
tive mathematics, and computable math-
ematics can be derived from a suitable
constructive mathematics using realization
theory [6]. However, while in Brouwer’s
intuitionistic mathematics [12] and other
constructive logics, axioms are admitted
depending on whether one believes them
to be self-evident, in computational math-
ematics, we have a much clearer criterion:
can we implement it? Hence the principle
of the excluded middle is not accepted (as
there are statements that can be neither
proved nor disproved), but the axiom of
dependent choice (that we can make an
unending sequence of choices, each de-
pending on the one before) is accepted.
Computable mathematics is uniform in the
way that constructive/intuitionistic mathe-
matics is not.

The main difficulty in continuous math-
ematics is that objects lie in uncountable
sets, which means we can only describe
them exactly using an infinite stream of
data. The key idea of computable analy-
sis is that it should be possible to extract

Pieter Collins Model checking dynamic systems NAW 5/17 nr. 3 september 2016 217

tion, namely to work with sets of values
which are guaranteed to contain the cor-
rect result. The sets used are called ba-
sic sets, and ideally are kept small. This
means, for example, that if xt is a basic
set containing x and y y"t , then a validat-
ed version *t of a binary operator * satis-
fies x y x y* *"tt t . In a metric space, basic
sets of the form { (,) }x d x x e; #s are most
useful, where xs lies in a countable dense
subset Xs of X.

Continuous functions R Rn " can be
approximated uniformly accurately by
polynomials on bounded domains. In Ari-
adne, we provide basic sets of continuous
functions on domains which are coordi-
nate-aligned boxes

[:] [:] [:] [:] .ai bi a b a b an bn
i

n

1 1 2 2
1

#g=
=
%

A simple class of representation are Taylor
models [34], in which basic sets of func-
tions over a box domain D Rn1 are given
as

| () (()) | ,max f x p s x e
x D

1 #-
!

-

where p c x xn1
n1g=

a a
a a/ is a polynomial

on [:]1 1 n- + with floating-point coeffi-
cients ca, and : [:]s D1 1 n "- + is a coor-
dinate scaling function, as shown in Fig-
ure 2. The scaling to the unit box domain
improves the accuracy of operations on the
polynomial p, and allows for easy simpli-
fication of the representation by sweeping
small terms into the error bound e. Other
polynomial model representations are pos-
sible by using a different basis. The Taylor
basis of monomials is easiest to perform
arithmetic on, but the Chebyshev basis or
Bernstein bases may yield more accurate
evaluation. For problems in partial differen-

possible, we give an algorithm, but this
algorithm is usually given to be theoret-
ically clean and need not be particularly
efficient. In order to implement a practical
model checker, we also need fast rigorous
numerical algorithms.

In almost any computational environ-
ment, if you type in x=0.6+0.3+0.1 you will
get the answer x=0.9999999999999999
(and if you get something different, it will
probably be 1.00000, but then x-1 yields
-1.1102e-16). The reason for this is that
most numerical computational tools use
(double-precision) floating-point arithme-
tic, in which numbers are represented by
a binary expansion with 53 significant (bi-
nary) digits, and results of any arithmetical
operation are rounded to the nearest rep-
resentable value. For many applications,
the roundoff-errors are so small as to have
negligable effect on the answer. But we
don’t know this for sure.

In interval arithmetic [25, 35, 36], finite-
accuracy approximation to a real number
is represented by an interval, either with
lower and upper bounds [:x x! ,]x or a
midpoint and error, x x e!= s . Ariadne pro-
vides intervals with endpoints which can
be either builtin double-precision float-
ing-point numbers, or multiple-precision
floating-point numbers (as provided by the
MPFR library [37]). Operations on intervals
are implemented by rounding the results
of finite-precision calculations outward. For
example, working to three decimal places

[. : .] [. : .]

[. : .]

[. : .] .

e 3 141 3 142 2 718 2 719

8 537 8 544

8 537238 8 543098

#!

2

r

=

t

Interval arithmetic illustrates the core
idea of rigorous numerical computa-

and composition (,)g f g f7 % are both
computable. A foundation of functional
programming languages is that the types
X Y Z"# and ()X Y Z" " are equiva-
lent. Hence if for every x, the function fx is
computable, then the function f defined by

(,) ()f x y f yx|= is also computable.
For real-valued functions X R" , it

follows from computability of composi-
tion that pointwise arithmetic operations

,f f f f1 2 1 27 * are computable. For more
complicated operators, we may need to re-
turn to first principles to prove computabil-
ity. In particular, solutions of the algebraic
equation ()f x 0= for :f R Rn n" are com-
putable if, and only if, they are isolated
and have non-zero index. The solution of a
differential equation (,)x f t x=o starting at
x0 is computable if it is unique [44].

We define the type of open subsets
()U XO! in terms of the membership

function :X SU "| , where { , }S -<= is the
Sierpinskian type. Computable open sets
therefore have a logical characterisation
as sets for which membership is verifi-
able. The type of compact sets is defined
as the subtype of ()X SO " satisfying

() () () .C V V C V C V1 2 1 2++ /1 1 1 Com-
putable compact sets as those for which
being a subset of an open set is verifiable.
It is easy to show computablility of unions
and intersections of open and compact
sets, of the preimage ()f V1- of an open
set V under a continuous function f, and
the image ()F C of a compact set C under
a compact-valued function F.

Rigorous numerics
Computability theory addresses the prob-
lem of what it is possible to compute with
a digital computer. To show something is

ba

s
−1

−1 +10

e

f(x)

p(z)

x z

Figure 2 A Taylor model.

218 NAW 5/17 nr. 3 september 2016 Model checking dynamic systems Pieter Collins

Implementation
At the beginning of the project, a decision
was made to use C++ as the implementa-
tion language, as this is a powerful and
efficient language widely used in industry.
Later, I added an interface in the scripting
language Python to facilitate interactive
use of the tool. Considerable attention has
been devoted to designing a clean and un-
derstandable interface; indeed, most of my
time working on Ariadne has been spent
on issues of interface design and software
engineering rather than algorithm develop-
ment.

To organise the data types, each class
of objects has an underlying mathemati-
cal type, such as Number, VectorFunc-
tion or CompactSet, and a tag specifying
to kind of information provided about the
quantity. The information may be Exact,
Effective, meaning arbitrarily-accurate
approximations can be computed, Val-
idated, which means finitely-accurate
bounds can be computed, or Approxi-
mate, which means no information about
accuracy is given. These abstractions are
implemented by concrete classes, such
as FloatMPBounds (an interval with mul-
tiple-precision floating-point bounds) im-
plementing a ValidatedNumber. Although
this separation is conceptually clean, how
to implement it causes problems, espe-
cially regarding automatic conversions
which are prevalent in C++. For although
any Effective description contains more
information than a ‘Validated’ description,
so should be convertible to validated, any
conversion requires a precision or accuracy
parameter, which must either be given ex-

start by considering computation of the
evolution (,)x t} from at a point x. The con-
tinuous dynamics can be computed by solv-
ing the differential equation in each mode

(,) ((,))x t f x ti} }=o , the times ()xx of the
discrete events can be computed by solv-
ing the equation ((, ()))g x x 0j } x = , and
the discrete transitions can be computed by
composition ’(, ()) ((, ()))x x r x xk} x } x= .
The only difficulty which may occur is in
computing the crossing time, for if a tra-
jectory (,)x t} grazes a guard set ()g y 0j = ,
then the further evolution is discontinu-
ous in the initial condition. In this case,
we need to consider both the case that
a transition occurs, and that a transition
does not occur, leading to multivalued dy-
namics.

By computing the evolution (,)x t} as a
function of both the initial point and time,
we can compute the reach sets (, [,])B t0}
starting from a set of initial states B over
a time interval [,]t0 , and the evolved sets

(,)B t} attained at time t, both as con-
strained image sets, as shown in Figure
3(a). To verify a safety property, we par-
tition the state space X into boxes, and
construct an over-approximation of the in-
finite-time reachable set by discretising the
reach- and evolve-sets on this partition, as
shown in Figure 3(b), continuing until no
more reachable boxes are found. If safe-
ty has not been verified, we check for an
unsafe evolution, or refine the partition. It
can be shown that safety is verifiable if,
and only if, the chain-reachable set, which
is an over-approximation to the set of
points which the state of the system may
attain, is a subset of the safe set.

tial equations, a Fourier basis of ()cos n xr ,
()sin n xr may be used [13].
Parameterised algebraic equations of

the form (, ())f x h x 0= with x D! and
()h x E! , are solved in Ariadne using a

version of the efficient interval Newton
method [36]. Differential equations of the
form (,) ((,))x t f x tz z=o can be solved in
Ariadne either using an interval version
of the Picard operator for the correspond-
ing integral equation or by computing
the Taylor series of the flow with error
bounds [49].

In Ariadne, we provide two different
kinds of sets. Accurate representations are
given in terms of functions, with constraint
sets

() { () }S g C x g x CRn1 ! ; != =-

being regular/open, and constrained image
sets

(())

{ () () }

S h D g C

h w w D g w C

1+

; ! ; !

=

=

-

being located/compact. The intersection of
a constraint set with a constrained image
set, or the image of a constrained image
set, can both be realised using function
composition. Coarser representations are
given by pavings, which are unions of box-
es with disjoint interiors, and support effi-
cient intersection, union, and subset test-
ing. An over-approximation of a constrained
image set by a paving is computed be test-
ing emptiness of sets (())h D g C B1+ +- ,
which reduces to the constraint satisfac-
tion problem : () ()z D g z C h z B/7 ! ! ! .

We now have all the operators we need
to verify hybrid systems in Ariadne. We

Figure 3  (a) Behaviour of a hybrid system. (b) Discretising a flow tube.

(a) (b)

Pieter Collins Model checking dynamic systems NAW 5/17 nr. 3 september 2016 219

focus on the considerably simpler case of
continuous-time systems. This would have
allowed testing and showcasing the tool
on industrially-relevant problems with con-
siderably less technical demands, leading
to more robust software and more oppor-
tunity to attract broader scientific interest.
The idea that moving straight from discrete
automata to hybrid systems may have
been a challenge too far, and an incremen-
tal approach would have perhaps been
better, is also seen in recent workshops
explicitly focussing on continuous as well
as hybrid systems.

My other main vision with Ariadne was
to have general-purpose rigorous numer-
ics package, and the current version does
provide a broad interoperative functional-
ity for numbers, functions and sets. Fur-
ther, the combination of a solid theoretical
foundation based on computable analysis,
clean generic abstractions and extensible
concrete data types is unique amongst rig-
orous numerical tools. My immediate goals
for future development and to stabilise
the interface, and sollicit user feedback on
naming conventions, data abstractions and
documentation.

I still find it odd that in the digital
computer, we have a device of astonish-
ing speed, accuracy and reliability, yet in
mathematics, a subject justly proud of its
application of rigour, most computations
are approximative with no guarantees on
correctness of the answer! Of course, there
are reasons why this situation arose: for
many problems, the approximations are
usually good enough, speed is a bigger
issue than accuracy, and fixed-size float-
ing-point representations can be handled
most efficiently with current hardware, and
rigorous numerical algorithms are much
harder to develop. Even so, existing work
in rigorous numerics, still a rather niche
field of research, shows that we can have
the benefits of mathematical rigour with a
reasonable efficiency. I believe that in the
long-term, rigorous computations will even-
tually take over from approximate methods,
just as formal rigorous mathematics even-
tually dominated. To facilitate this process,
we need to provide tools that are power-
ful enough for industrial use, and simple
enough to train undergraduate students in
mathematics, science and engineering. Ari-
adne is one important step in this direction,
and I plan to continue development work in
the future to further realise these aims. s

built-in. Even fundamental physical con-
stants, such as the fine structure constant

. []137 0359991 39 311 !a =- , is only known
to finite precision. Systems arising in engi-
neering have larger uncertainties (such as
the exact resistence of an electrical com-
ponent), and our knowledge of biological
systems is even less precise. This means
that in order to validate properties of real-
life systems, we also need to take this un-
certainty into account.

Probability is the most widely-used
mathematical theory of uncertaintly, but in
many cases, we cannot assign exact proba-
bilities to the events, and independence re-
quirements needed for stochastic systems
models are not met. We therefore need
uncertainty models based on what is pos-
sible, leading to differential inclusions [4].
Ellipsoidal methods for their solution are
described in [28] and higher-order methods
in [19]. Although non-stochastic modelling
is sometimes seen as being ‘overly pessi-
mistic’, in the absence of more informa-
tion about the system, it is the only way
of guaranteeing correctness. Other frame-
works, such as imprecise probability give
more modelling flexibility, but will be even
harder to reason about.

Perhaps the main challenge lies in de-
tecting and exploiting system structure. In
particular, since model checking has expo-
nential time complexity in the state-space
dimension, any methods to reduce the ef-
fective dimensionality, or split the problem
into sub-problems of lower dimensionality,
will be invaluable. Differences in time- and
length-scales provide further opportunities
for reduction by splitting into fast and slow
behaviour, or averaging out spacial fluctu-
ations. Modularity provides the greatest
opportunities for dimension reduction, by
splitting a system into parts which com-
municate via external inputs and outputs.
Next-generation model checking tools will
need to automatically exploit possible re-
ductions in order to make fundamental
breakthroughs in engineering practise.

Concluding remarks
The main goal of the Ariadne project was
to develop a tool for model checking non-
linear hybrid automata, and the current
version is capable of verifying well-con-
ditioned, low-dimensional nonlinear sys-
tems. However, I feel that rather than
immediately develop software for hybrid
systems, it would have been better to first

plicitly, or implicitly from the environment,
neither solution being entirely satisfactory.

A major challenge in software engineer-
ing is due to the C++ language itself: there
are many ways of supporting the data ab-
stractions used in Ariadne, and different
approaches require changes to the underly-
ing code. Indeed, a ‘good’ language would
be one in which the underlying numerical,
functional and geometric kernels could be
implemented in a clean way! Together with
Michal Konečný, the developer of [27],
another package for rigorous numerics, I
have been experimenting with the use of
the functional language Haskell in order to
find a good semantics.

Since a model checking tool is sup-
posed to prove correct functioning of a
dynamic system, we also need to know
that the tool itself works correctly, without
mistakes in the mathematical algorithms
or their implementation. Proven-correct
code for real arithmetic exists in Coq [40]
and Haskell [30], and for differential equa-
tions in Coq [32] and Isbell/HOL [24]. A
C implementation of the solution of the
wave equation was proved correct in [8],
using several different tools including the
Frama-C code analyser platform and the
Coq theorem-prover. However, this is al-
ready a huge effort for a fairly simple C
programme, and verified correct implemen-
tations of a tool such a Ariadne are a long
way off! More promising from the point of
view of provably-correct code, is to demon-
strate correctness of the algorithms using
a theorem-prover such as Coq or Isabelle,
and automatically generate code in an ef-
ficient and user-friendly language such as
the functional language ML.

The future of model checking
Practical use of model checking for large-
scale hybrid systems arising in industry
will require many advances in algorithm
design. A particularly important technical
challenge, and currently one of the major
bottlenecks in Ariadne, is to improve the
core algorithms for working with functions
and sets, notably in simplifying the repre-
sentation of sets while preserving accuracy
of an over-approximation.

It will also be important to develop
algorithms to handle uncertain systems
efficiently. Ultimately, any mathematical
analysis of a model of reality is only as
good as the model itself, and whenever
we make models, there are approximations

220 NAW 5/17 nr. 3 september 2016 Model checking dynamic systems Pieter Collins

1 Rajeev Alur and David L. Dill, A theory of
timed automata, Theoretical Computer Sci-
ence 126 (1994), 183–235.

2 E. Asarin, T. Dang and O. Maler, The d/dt tool
for verification of hybrid systems, in Proc.
14th International Conference on Computer
Aided Verification, LNCS, Vol. 2404, Spring-
er, 2002, pp. 365–370.

3 Eugene Asarin, Oded Maler and Amir Pnueli,
Reachability analysis of dynamical systems
having piecewise-constant derivatives, The-
oretical Computer Science 138(1) (1995),
35– 65, Hybrid Systems.

4 Jean-Pierre Aubin and Arrigo Cellina, Dif-
ferential inclusions: Set-valued maps and
viability theory, Grundlehren der Mathema-
tischen Wissenschaften, No. 364, Springer,
1984.

5 Christel Baier and Joost-Pieter Katoen, Prin-
ciples of Model Checking, MIT Press, 2008.

6 Andrej Bauer, The Realizability Approach to
Computable Analysis and Topology, PhD
thesis, Carnegie Mellon University, 2000.

7 Vincent D. Blondel, Olivier Bournez, Pascal
Koiran, Christos H. Papadimitriou and John
N. Tsitsiklis, Deciding stability and mortal-
ity of piecewise affine dynamical systems,
Theoretical Computer Science 255(1) (2001),
687–696.

8 Sylvie Boldo, François Clément, Christophe
Jean-Filliâtre, Micaela Mayero, Guillaume
Melquiond and Pierre Weis, Wave equa-
tion numerical resolution: a comprehensive
mechanized proof of a C program, Journal
of Automated Reasoning 50(4) (2013), 423–
456.

9 Xin Chen, Erika Ábrahám and Sriram Sanka-
ranarayanan, Flow*: An analyzer for non-lin-
ear hybrid systems, in Computer Aided Ver-
sification, Springer, 2013, pp. 258–263.

10 E. Clarke, A. Fehnker, Z. Han, B. Krogh, J.
Ouaknine, O. Stursberg and M. Theobald,
Abstraction and counterexample-guided re-
finement in model checking of hybrid sys-
tems, Internat. J. Found. Comput. Sci. 14(4)
(2003), 583–604.

11 Edmund M. Clarke, Orna Grumberg and
Doron Peled, Model Checking, MIT Press,
1999.

12 Dirk van Dalen, Poincaré and Brouwer on
intuition and logic, Nieuw Archief voor
Wiskunde 5/13(3) (2012), 191–195.

13 S. Day, O. Junge and K. Mischaikow, A rig-
orous numerical method for the global
analysis of infinite-dimensional discrete dy-
namical systems, SIAM Journal on Applied
Dynamical Systems 3(2) (2004), 117–160.

14 M. Dellnitz, G. Froyland and O. Junge, The
algorithms behind GAIO-set oriented nu-
merical methods for dynamical systems,
in Ergodic Theory, Analysis, and Efficient
Simulation of Dynamical Systems, pages
145–174. Springer, 2001.

15 Jan Duracz, Amin Farjudian, Michal Konečný,
and Walid Taha, Function interval arithme-
tic, in Mathematical Software – ICMS 2014,
Springer, 2014, pp. 677–684.

16 G. Frehse, PHAVer: algorithmic verification
of hybrid systems past HyTech, Int. J. Softw.
Tools Technol. Trans. 10 (2008), 263–279.

17 G. Frehse, C. Le Guernic, A. Donzé, S. Cot-
ton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang and O. Maler, SpaceEx: Scalable
verification of hybrid systems, in Proc. 23rd
International Conference on Computer Aid-
ed Verification, LNCS, Vol. 6806, 2011, pp.
379–395.

18 Aleks Göllü and Pravin Varaiya, Hybrid dy-
namical systems, in Proceedings of the 28th
IEEE Conference on Decision and Control,
IEEE, 1989, pp. 2708–2712.

19 Sanja Gonzalez Živanovič and Pieter Collins,
Higher order methods for differential inclu-
sions, Technical Report MAC-1007, Centrum
Wiskunde & Informatica, 2010.

20 Thomas A. Henzinger, Pei-Hsin Ho and How-
ard Wong-Toi, HyTech: A model checker for
hybrid systems, Software Tools for Technol-
ogy Transfer 1 (1997), 110–122.

21 Thomas A. Henzinger, Benjamin Horowitz,
Rupak Majumdar and Howard Wong-Toi, Be-
yond HyTech: Hybrid systems analysis using
interval numerical methods, in N. Lynch and
B. Krogh, eds., Hybrid Systems: Computa-
tion and Control, LNCS, Vol. 1790, Springer,
2000, pp. 130–144.

22 Thomas A Henzinger, Peter W Kopke, Anuj
Puri and Pravin Varaiya, What’s decidable
about hybrid automata? Journal of Computer
and System Sciences 57 (1998), 94–124.

23 Gerard J. Holzmann, The Spin Model Check-
er: Primer and Reference Manual, Addison-
Wesley, 2003.

24 Fabian Immler, A verified enclosure for
the Lorenz attractor (rough diamond), in
Christian Urban and Xingyuan Zhang, eds.,
Proceedings of the 6th International Con-
ference on Interactive Theorem Proving,
Springer, 2015, pp. 221–226.

25 Luc Jaulin, Michel Kieffer, Olivier Didrit
and Éric Walter, Applied Interval Analysis,
Springer, 2001.

26 Ker-I Ko, Complexity theory of real functions,
Progress in Theoretical Computer Science,
Birkhäuser, 1991.

27 Michal Konečný, Aern-rntorm: Arbitrary-pre-
cision arithmetic of multivariate piecewise
polynomial enclosures, 2008.

28 Alexander B. Kurzhanski and Istváan Vályi,
Ellipsoidal calculus for estimation and con-
trol, Systems & Control: Foundations & Ap-
plications, Birkhäuser, 1997.

29 Kim G. Larsen, Paul Pettersson and Wang
Yi, UPPAAL in a nutshell, Intern. J. Software
Tools for Technology Transfer 1(1–2) (1997),
134–152.

30 David R. Lester, The world’s shortest correct
exact real arithmetic program? Information
and Computation 216, (2012), 39–46. Spe-
cial Issue: 8th Conference on Real Numbers
and Computers.

31 R. J. Lohner, AWA – software for the compu-
tation of guaranteed bounds for solutions

of ordinary initial value problems, Technical
report, Institut für Angewandte Mathematik,
2006.

32 Evgeny Makarov and Bas Spitters, The
=Picard algorithm for ordinary differential
equations in Coq, in Interactive Theorem
Proving, Springer, 2013, pp. 463–468.

33 K. Makino and M. Berz, COSY INFINITY Ver-
sion 9, Nuclear Instruments and Methods
A558 (2006), 346–350.

34 Kyoko Makino and Martin Berz, Taylor mod-
els and other validated functional inclusion
methods, Int. J. Pure Appl. Math 4(4) (2003),
379–456.

35 R. Moore, Interval Analysis, Prentice-Hall,
1966.

36 Ramon E. Moore, R. Baker Kearfott and Mi-
chael J. Cloud, Introduction to Interval Anal-
ysis, SIAM, 2009.

37 MPFR Library, 2000, www.mpfr.org.

38 M. Mrozek et al., CAPD Library, 2007.

39 Ned Nedialkov, VNODE-LP, Technical report,
McMaster University, 2006. Technical Report
CAS-06-06-NN.

40 Russell O’Connor, Certified exact transcen-
dental real number computation in Coq, in
Otmane Ait Mohamed, César Muñoz, and
Sofiéne Tahar, eds., Proceedings of the 21st
International Conference on Theorem Prov-
ing in Higher Order Logics, Springer, 2008,
pp. 246–261.

41 Philippos Peleties and Raymond DeCarlo, A
modeling strategy with event structures for
hybrid systems, in Proceedings of the 28th
IEEE Conference on Decision and Control,
IEEE, 1989, pp. 1308–1313.

42 S. Ratschan and Z. She, Safety verification
of hybrid systems by constraint propagation
based abstraction refinement, ACM Trans.
Embedded Comput. Sys. 6(1), 2007.

43 S. M. Rump, INTLAB – INTerval LABoratory, in
Tibor Csendes, ed., Developments in Reliable
Computing, Kluwer Academic Publishers,
1999. www.ti3.tuhh.de/rump, pp. 77–104.

44 Keijo Ruohonen, An effective Cauchy-Peano
existence theorem for unique solutions, Int.
J. Found. Comput. Sci. 7(2) (1996), 151–160.

45 Arjan van der Schaft and Hans Schumacher,
An introduction to hybrid dynamical sys-
tems, LNCIS, Vol. 251, Springer, 2000.

46 Matthias Schröder, Admissible Represen-
tations for Continuous Computations, PhD
thesis, Fachbereich Informatik, FernUniversi-
tät Hagen, 2002.

47 A. M. Turing, On computable numbers, with
an application to the Entscheidungsprob-
lem, Proc. London Math. Soc. (2) 43(1),
1937, 230–265.

48 Klaus Weihrauch, Computable analysis – An
introduction, Texts in Theoretical Computer
Science, Springer, 2000.

49 Daniel Wilczak and Piotr Zgliczyński, Cr-
Lohner algorithm, Schedae Informaticae 20
(2011), 9–42.

References

