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electrical systems with switches and/or di-
odes.

The problem of model checking hybrid 
systems is a very rich domain, encom-
passing many of the important parts of 
continuous mathematics: real numbers, 
continuous functions, open and compact 
sets, algebraic and differential equations, 
and constraint feasibility problems. There 
are important theoretic questions of which 
properties of the evolution are even com-
putable [48], and practical problems in 
the development of tools for efficient and 
rigorous numerical computation [25]. As I 
had already developed an interest in these 
issues in the context of chaos theory, I 
saw collaboration on Ariadne as a perfect 
opportunity to actually develop software, 
both as an industrially-viable tool for the 
model checking problem itself, and a flex-
ible, general-purpose package for rigorous 
numerical computation.

My work on Ariadne led to a rich vein 
of both theoretical research and practical 
software development, and to a success-
ful Vidi grant proposal on ‘Computation-
al Topology for Systems and Control’. An 
initial version of Ariadne focused solely 
on reachability analysis of hybrid systems 
using affine sets as a fundamental internal 
representation, and rigorous linear algebra 
and linear programming to perform compu-
tations. While this provided fast computa-
tions with reasonable accuracy, the under-

working with physical prototypes, and may 
be more powerful, since exhaustive testing 
may not be feasible, or scenarios may oc-
cur which had not been considered during 
testing.

I first started work in model checking 
as a postdoctoral researcher in the group 
of Jan H. van Schuppen at the Centrum 
Wiskunde & Informatica in Amsterdam, 
on an EU-funded project ‘Control and 
Computation’. A part of this project was 
the development of a model checking 
tool Ariadne for hybrid systems, led by 
the group of Tiziano Villa in Udine, and a 
small Rome-based company Parades with 
links to the automotive industry. Hybrid 
systems [45] first appeared in [18, 41], and 
are characterised by continuous evolution 
interspersed by discrete events causing an 
instantaneous jump in the system state, or 
a switch in the mode of behaviour. They 
typically arise in the control of a physical 
system via discrete sensors and actuators, 
but are also encountered in systems with 
impacts, such as robot locomotion, or as 

Engineers design and build things: me-
chanical engineers build machines, genetic 
engineers design lifeforms, and software 
engineers make computer programs. And 
of course, these things should serve some 
purpose and properly perform the tasks 
they were designed to do. Trains on a rail-
way track should not crash into each other, 
radiotherapy machines should not deliver 
a lethal dose, and your computer’s oper-
ating systems should never display a ‘blue 
screen of death’. To this end, designs are 
analysed, prototypes tested, and the final 
product trialled. This process is known as 
verification, and is one of the most import-
ant and challenging parts of engineering.

Model checking [5, 11] is a computa-
tional approach to verification, in which a 
(mathematical) model of the system is an-
alysed to determine whether it satisfies its 
specification as expressed by some tempo-
ral logical formula. The analysis must be 
performed entirely rigorously to avoid the 
possibility of dangerous or costly errors. 
Working with models is often cheaper than 
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checking linear temporal logic is undecid-
able. A a yes/no question is decidable, or 
a function computing a string or numeri-
cal value computable, if it can be imple-
mented on a Turing machine, which can 
be thought of as a program running on a 
digital computer with unlimited memory. It 
is easy to see that there must be unde-
cidable problems and uncomputable func-
tions, since there are uncountably many 
functions { , }0 1N " , but only countably 
many programs. The halting problem, of 
determining whether a computer program 
will terminate or run forever, is the most 
famous undecidable problem, and can 
actually be formulated as a model check-
ing problem. Note that undecidability of a 
problem class does not mean that particu-
lar instances of a problem are unsolvable; 
for example, termination of a program 
can always be proved by running it long 
enough (so halting is verifiable), and the 
infinite loop while(true) {...} clearly 
never terminates.

Hybrid automata were seen by com-
puter scientists as a natural extension of 
discrete automata to include continuous 
dynamics. They consist of finitely many 
discrete states , ,q qn1 f , in each of which 
the continuous state x Xi i!  satisfies a 
differential equation ( ) ( ( ))x t f x ti i i=o . When 
the continuous state satisfies a guard con-
dition ( ( ))g x t 0,i k i $ , a discrete event ek

occurs, with the discrete state changing 
to qj, and the continuous state being re-
set to ( ) ( ( ))x t r x t,j i k i= . Hybrid automata 
are often described by a graph with state 
dynamics in the vertices, and guards/re-

ical operations, and temporal operators: 
next (denoted &), always (x), eventually 
(Z), until and release. For example, the 
property a b0&xZ  (eventually a or next al-
ways b) means that either property a holds 
at some time in the future, or that after 
one time step, property b always holds. Of 
particularly importance are safety proper-
ties ax  (always a). These can be checked 
by computing the reachable set of states 
which it is possible to attain from a start-
ing state.

There are many tools for model checking 
of linear temporal logic for finite automata, 
such as [23]. They either prove that the 
specification is satisfied for all executions 
of the system, or output an execution not 
satisfying the specification. This counter-
example may indicate a flaw in the system 
design, or that the specification has not 
been properly thought-out.

The main practical difficulty in model 
checking is state-space explosion caused 
by the so-called curse of dimensionality — 
for a moderately-sized system with 100 on–
off switches, there are 2 10100 30+  states, 
which would take approximately the age of 
the universe (13.8 billion years) to analyse 
even when looking at a trillion states per 
second! Discrete model checkers therefore 
use a variety of data representations and 
algorithmic tricks to speed up the calcula-
tion. Since the result must be rigorously 
correct, randomised algorithms cannot be 
used. 

As soon as the number of states be-
comes infinite, such as by introducing inte-
ger variables, then it turns out that model 

lying technology was only appropriate for 
fairly coarse safety properties. Subsequent 
versions of Ariadne featured a full rigorous 
numerical calculus for numbers, vectors, 
functions and sets.

Of course, there were already tools 
for rigorous numerical computation, in-
cluding the interval arithmetic package 
INTLAB [43], differential equation solvers 
AWA [31],  VNODE [39] and COSY Infini-
ty [33], and dynamical systems analysers 
CAPD-Lib [38] and GAIO [14]. Hybrid system 
solvers included d/dt [2] and HyTech [20] 
for linear continuous dynamics, and Hyper-
Tech [21] and Checkmate [10] for nonlin-
ear dynamics. With Ariadne we aimed to 
extend the scope and flexibility of these 
tools, in particular to provide an extensible 
framework where sets and functions could 
be manipulated as first-class objects, and 
to study highly nonlinear and/or nonde-
terministic systems. Later hybrid systems 
tools include HSolver [42], Phaver [16], 
SpaceEx [17], Flow* [9] and AERN [15], with 
the latter three featuring a similar rigorous 
numerical calculus to Ariadne.

Model checking hybrid systems
Model checking was originally developed 
for verifying the flow-of-control of software 
systems. System models are given by dis-
crete automata with a finite state set X 
specifying the set of possible executions 
( , , , )x x x0 1 2 f . Specifications are given by a 
temporal logic formula describing the al-
lowable executions. A linear temporal logic 
formula is built up from atomic proposi-
tions a, which are sets of states, basic log-
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Figure 1 (a) Circuit diagram for a boost power converter. (b) A hybrid automaton representing the boost power converter. (c) Time-evolution of the capacitor voltage.
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There are other representations of the 
real numbers which are equivalent to 
the signed-digit representation. The Cau-
chy representation describes a real num-
ber x by a sequence of rationals qn with 
| |x q 2n

n#- - , and the Dedekind repre-
sentation by a sequence of rational in-
tervals [ , ]a bn n  with a a b bn n n n1 1# # #+ +  
and lim lima b xn n n n= =" "3 3 . Note that 
the Cauchy representation focusses on 
the metric structure of the real numbers, 
whereas the Dedekind representation fo-
cusses on the order structure.

A real number x is computable, as per 
Turing’s definition [47], if there is a comput-
er program which outputs its signed-digit 
(or an equivalent) representation. All alge-
braic numbers are computable, as are im-
portant constants such as e and r, but only 
countably many real numbers are comput-
able.

The usual arithmetical operators +, -, 
#, ' are computable, as are elementary 
functions such as exp, log, sin and arctan. 
Further, it is possible to take the limit of a 
sequence xn with a known a rate of conver-
gence ne  i.e. | |x x { , }minn n n n1 2 1 2

# e- .
Comparison of real numbers is undecid-

able, since we can never tell that a num-
ber x actually equals 0 from finite piece 
of its signed-digit expansion .0 0000g. 
For this reason, we need Kleenean logic 
for comparison x yK , with three values 

{ , , }K -< ==  representing true, false and 
indeterminate (“don’t know”), the latter 
for the case x and y are equal. Note that 
while a symbolic approach may allow one 
to decide whether x 0=  in some cases 
e.g. ( )sin 3 0r = , it is an open problem as 
to whether a number defined in terms of 
rationals and elementary functions can al-
ways be tested for being zero.

To define more complicated types, we 
can fall back on some very general con-
structions. For types , ,X Xn1 f , there is 
a product type X Xn1 # #g  of tuples 
( , , )x xn1 f  with x Xi i! . For types ,X Y, there 
is an exponent type YX which consists of 
sequentially continuous functions X Y" . 
The operations of evaluation ( , ) ( )f x f x7  

useful information about a value from a 
finite piece of its describing stream. Com-
putation is still performed using Turing ma-
chines, but a program runs forever, reading 
data from its input streams and writing to 
its output stream.

It turns out that there is a deep link 
between topology and computation; a rep-
resentation of a set of objects by streams 
induces a natural topology on the set [46], 
and only continuous functions can be com-
putable. Indeed, the set of all functions 
with uncountable domain has higher than 
continuum cardinality, so cannot be de-
scribed by streams. Two representations of 
the same set are equivalent if each can 
be computably converted into the other. A 
type is defined to be a set with an equiva-
lence class of representations.

We start developing computable anal-
ysis by constructing the type of real num-
bers. We are used to describing real num-
bers either by algebraic formulae, such as 
1/7, r or /7)sin(r , or as a decimal expan-
sion, such as .0 142857o o , or .3 14159g. Since 
the real numbers are uncountable, only 
infinite representations such as decimal 
expansions can represent them all.

Unfortunately, there is also a problem 
with decimal expansions: They do not 
support arithmetic! What is the value of 

.3 0 33333# g? Clearly, if the second num-
ber is exactly 3

1 , then the result is .1 00000g, 
or equivalently, .0 99999g. But we can nev-
er output .1 0g, because maybe we have 

.3 0 333332# g, which is definitely less 
than 1. And we can never output .0 9g, 
because maybe we have .3 0 333334# g. 
Hence we can never give the first digit of 
the answer!

Thankfully, there are ways around this 
conundrum. The most straightforward way 
is to use a signed-digit representation, 
which allows negative digits such as 2r (rep-
resenting ‘ 2- ’) as well as positive digits. 
The signed-digit representation is equiva-
lent to allowing an error of 1!  in the last 
given digit, since .3 1416g could represent

. . ,3 14169 3 1415=ro

. . ,3 14169 3 1417=o

or any number in the interval

[ . : . ] . [ : ] . [ ] .3 1415 3 1417 3 141 5 7 3 141 6 1!= =

Use of signed digits resolves our arithmeti-
cal dilemma, since 

sets on the edges. An example of a hybrid 
automaton and its dynamics is shown in 
Figure 1.

For a simple class of hybrid systems, the 
timed automata, in which the only contin-
uous dynamics are clocks satisfying t 1i =o , 
model checking was shown to be decid-
able [1]. This result led to the development 
of tools such as UPPAAL [29] for the anal-
ysis of timed automata. For slightly more 
complicated classes of hybrid system, in-
cluding saturated linear systems [7], mod-
el checking becomes undecidable [3, 22]. 
Clearly model checking more general non-
linear hybrid systems is also undecidable; 
the real question is whether we can veri-
fy any such systems at all. Since proper-
ties of continuous systems may be highly 
sensitive to small changes; for example, a 
small change in a parameter may cause a 
bifurcation or catastrophe, we should not 
expect to be able to say very much unless 
the property we are considering is robust 
with respect to parameter uncertainty and 
noise.

Computable analysis
To answer the question of what is possi-
ble to verify for nonlinear hybrid systems, 
we need a theory of (rigorous) computa-
tion for continuous mathematics, a subject 
known as computable analysis [26, 48]. 
The roots of such a theory lie in construc-
tive mathematics, and computable math-
ematics can be derived from a suitable 
constructive mathematics using realization 
theory [6]. However, while in Brouwer’s 
intuitionistic mathematics [12] and other 
constructive logics, axioms are admitted 
depending on whether one believes them 
to be self-evident, in computational math-
ematics, we have a much clearer criterion: 
can we implement it? Hence the principle 
of the excluded middle is not accepted (as 
there are statements that can be neither 
proved nor disproved), but the axiom of 
dependent choice (that we can make an 
unending sequence of choices, each de-
pending on the one before) is accepted. 
Computable mathematics is uniform in the 
way that constructive/intuitionistic mathe-
matics is not.

The main difficulty in continuous math-
ematics is that objects lie in uncountable 
sets, which means we can only describe 
them exactly using an infinite stream of 
data. The key idea of computable analy-
sis is that it should be possible to extract 
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tion, namely to work with sets of values 
which are guaranteed to contain the cor-
rect result. The sets used are called ba-
sic sets, and ideally are kept small. This 
means, for example, that if xt is a basic 
set containing x and y y"t , then a validat-
ed version *t of a binary operator * satis-
fies x y x y* *"tt t . In a metric space, basic 
sets of the form { ( , ) }x d x x e; #s  are most 
useful, where xs lies in a countable dense 
subset Xs of X.

Continuous functions R Rn "  can be 
approximated uniformly accurately by 
polynomials on bounded domains. In Ari-
adne, we provide basic sets of continuous 
functions on domains which are coordi-
nate-aligned boxes

[ : ] [ : ] [ : ] [ : ] .ai bi a b a b an bn
i

n

1 1 2 2
1

# # #g=
=
%

A simple class of representation are Taylor 
models [34], in which basic sets of func-
tions over a box domain D Rn1  are given 
as

| ( ) ( ( )) | ,max f x p s x e
x D

1 #-
!

-

where p c x xn1
n1g=

a a
a a/  is a polynomial 

on [ : ]1 1 n- +  with floating-point coeffi-
cients ca, and : [ : ]s D1 1 n "- +  is a coor-
dinate scaling function, as shown in Fig-
ure 2. The scaling to the unit box domain 
improves the accuracy of operations on the 
polynomial p, and allows for easy simpli-
fication of the representation by sweeping 
small terms into the error bound e. Other 
polynomial model representations are pos-
sible by using a different basis. The Taylor 
basis of monomials is easiest to perform 
arithmetic on, but the Chebyshev basis or 
Bernstein bases may yield more accurate 
evaluation. For problems in partial differen-

possible, we give an algorithm, but this 
algorithm is usually given to be theoret-
ically clean and need not be particularly 
efficient. In order to implement a practical 
model checker, we also need fast rigorous 
numerical algorithms.

In almost any computational environ-
ment, if you type in x=0.6+0.3+0.1 you will 
get the answer x=0.9999999999999999 
(and if you get something different, it will 
probably be 1.00000, but then x-1 yields 
-1.1102e-16). The reason for this is that 
most numerical computational tools use 
(double-precision) floating-point arithme-
tic, in which numbers are represented by 
a binary expansion with 53 significant (bi-
nary) digits, and results of any arithmetical 
operation are rounded to the nearest rep-
resentable value. For many applications, 
the roundoff-errors are so small as to have 
negligable effect on the answer. But we 
don’t know this for sure.

In interval arithmetic [25, 35, 36], finite- 
accuracy approximation to a real number 
is represented by an interval, either with 
lower and upper bounds [ :x x! , ]x or a 
midpoint and error, x x e!= s . Ariadne pro-
vides intervals with endpoints which can 
be either builtin double-precision float-
ing-point numbers, or multiple-precision 
floating-point numbers (as provided by the 
MPFR library [37]). Operations on intervals 
are implemented by rounding the results 
of finite-precision calculations outward. For 
example, working to three decimal places

[ . : . ] [ . : . ]

[ . : . ]

[ . : . ] .
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Interval arithmetic illustrates the core 
idea of rigorous numerical computa-

and composition ( , )g f g f7 %  are both 
computable. A foundation of functional 
programming languages is that the types 
X Y Z"#  and ( )X Y Z" "  are equiva-
lent. Hence if for every x, the function fx is 
computable, then the function f defined by 

( , ) ( )f x y f yx|=  is also computable.
For real-valued functions X R" , it 

follows from computability of composi-
tion that pointwise arithmetic operations 

,f f f f1 2 1 27 *  are computable. For more 
complicated operators, we may need to re-
turn to first principles to prove computabil-
ity. In particular, solutions of the algebraic 
equation ( )f x 0=  for :f R Rn n"  are com-
putable if, and only if, they are isolated 
and have non-zero index. The solution of a 
differential equation ( , )x f t x=o  starting at 
x0 is computable if it is unique [44].

We define the type of open subsets 
( )U XO!  in terms of the membership 

function :X SU "| , where { , }S -<=  is the 
Sierpinskian type. Computable open sets 
therefore have a logical characterisation 
as sets for which membership is verifi-
able. The type of compact sets is defined 
as the subtype of ( )X SO "  satisfying 

( ) ( ) ( ) .C V V C V C V1 2 1 2++ /1 1 1  Com-
putable compact sets as those for which 
being a subset of an open set is verifiable. 
It is easy to show computablility of unions 
and intersections of open and compact 
sets, of the preimage ( )f V1-  of an open 
set V under a continuous function f, and 
the image ( )F C  of a compact set C under 
a compact-valued function F.

Rigorous numerics
Computability theory addresses the prob-
lem of what it is possible to compute with 
a digital computer. To show something is 

ba
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Figure 2 A Taylor model.
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Implementation
At the beginning of the project, a decision 
was made to use C++ as the implementa-
tion language, as this is a powerful and 
efficient language widely used in industry. 
Later, I added an interface in the scripting 
language Python to facilitate interactive 
use of the tool. Considerable attention has 
been devoted to designing a clean and un-
derstandable interface; indeed, most of my 
time working on Ariadne has been spent 
on issues of interface design and software 
engineering rather than algorithm develop-
ment.

To organise the data types, each class 
of objects has an underlying mathemati-
cal type, such as Number, VectorFunc-
tion or CompactSet, and a tag specifying 
to kind of information provided about the 
quantity. The information may be Exact, 
Effective, meaning arbitrarily-accurate 
approximations can be computed, Val-
idated, which means finitely-accurate 
bounds can be computed, or Approxi-
mate, which means no information about 
accuracy is given. These abstractions are 
implemented by concrete classes, such 
as FloatMPBounds (an interval with mul-
tiple-precision floating-point bounds) im-
plementing a ValidatedNumber. Although 
this separation is conceptually clean, how 
to implement it causes problems, espe-
cially regarding automatic conversions 
which are prevalent in C++. For although 
any Effective description contains more 
information than a ‘Validated’ description, 
so should be convertible to validated, any 
conversion requires a precision or accuracy 
parameter, which must either be given ex-

start by considering computation of the 
evolution ( , )x t}  from at a point x. The con-
tinuous dynamics can be computed by solv-
ing the differential equation in each mode 

( , ) ( ( , ))x t f x ti} }=o , the times ( )xx  of the 
discrete events can be computed by solv-
ing the equation ( ( , ( )))g x x 0j } x = , and 
the discrete transitions can be computed by 
composition ’( , ( )) ( ( , ( )))x x r x xk} x } x= . 
The only difficulty which may occur is in 
computing the crossing time, for if a tra-
jectory ( , )x t}  grazes a guard set ( )g y 0j = , 
then the further evolution is discontinu-
ous in the initial condition. In this case, 
we need to consider both the case that 
a transition occurs, and that a transition 
does not occur, leading to multivalued dy-
namics.

By computing the evolution ( , )x t}  as a 
function of both the initial point and time, 
we can compute the reach sets ( , [ , ])B t0}  
starting from a set of initial states B over 
a time interval [ , ]t0 , and the evolved sets 

( , )B t}  attained at time t, both as con-
strained image sets, as shown in Figure 
3(a). To verify a safety property, we par-
tition the state space X into boxes, and 
construct an over-approximation of the in-
finite-time reachable set by discretising the 
reach- and evolve-sets on this partition, as 
shown in Figure 3(b), continuing until no 
more reachable boxes are found. If safe-
ty has not been verified, we check for an 
unsafe evolution, or refine the partition. It 
can be shown that safety is verifiable if, 
and only if, the chain-reachable set, which 
is an over-approximation to the set of 
points which the state of the system may 
attain, is a subset of the safe set.

tial equations, a Fourier basis of ( )cos n xr , 
( )sin n xr  may be used [13].
Parameterised algebraic equations of 

the form ( , ( ))f x h x 0=  with x D!  and 
( )h x E! , are solved in Ariadne using a 

version of the efficient interval Newton 
method [36]. Differential equations of the 
form ( , ) ( ( , ))x t f x tz z=o  can be solved in 
Ariadne either using an interval version 
of the Picard operator for the correspond-
ing integral equation or by computing 
the Taylor series of the flow with error 
bounds [49].

In Ariadne, we provide two different 
kinds of sets. Accurate representations are 
given in terms of functions, with constraint 
sets

( ) { ( ) }S g C x g x CRn1 ! ; != =-

being regular/open, and constrained image 
sets

( ( ))

{ ( ) ( ) }

S h D g C

h w w D g w C

1+

; ! ; !

=

=

-

being located/compact. The intersection of 
a constraint set with a constrained image 
set, or the image of a constrained image 
set, can both be realised using function 
composition. Coarser representations are 
given by pavings, which are unions of box-
es with disjoint interiors, and support effi-
cient intersection, union, and subset test-
ing. An over-approximation of a constrained 
image set by a paving is computed be test-
ing emptiness of sets ( ( ))h D g C B1+ +- , 
which reduces to the constraint satisfac-
tion problem : ( ) ( )z D g z C h z B/7 ! ! ! .

We now have all the operators we need 
to verify hybrid systems in Ariadne. We 

Figure 3  (a) Behaviour of a hybrid system. (b) Discretising a flow tube.

(a) (b)
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focus on the considerably simpler case of 
continuous-time systems. This would have 
allowed testing and showcasing the tool 
on industrially-relevant problems with con-
siderably less technical demands, leading 
to more robust software and more oppor-
tunity to attract broader scientific interest. 
The idea that moving straight from discrete 
automata to hybrid systems may have 
been a challenge too far, and an incremen-
tal approach would have perhaps been 
better, is also seen in recent workshops 
explicitly focussing on continuous as well 
as hybrid systems.

My other main vision with Ariadne was 
to have general-purpose rigorous numer-
ics package, and the current version does 
provide a broad interoperative functional-
ity for numbers, functions and sets. Fur-
ther, the combination of a solid theoretical 
foundation based on computable analysis, 
clean generic abstractions and extensible 
concrete data types is unique amongst rig-
orous numerical tools. My immediate goals 
for future development and to stabilise 
the interface, and sollicit user feedback on 
naming conventions, data abstractions and 
documentation.

I still find it odd that in the digital 
computer, we have a device of astonish-
ing speed, accuracy and reliability, yet in 
mathematics, a subject justly proud of its 
application of rigour, most computations 
are approximative with no guarantees on 
correctness of the answer! Of course, there 
are reasons why this situation arose: for 
many problems, the approximations are 
usually good enough, speed is a bigger 
issue than accuracy, and fixed-size float-
ing-point representations can be handled 
most efficiently with current hardware, and 
rigorous numerical algorithms are much 
harder to develop. Even so, existing work 
in rigorous numerics, still a rather niche 
field of research, shows that we can have 
the benefits of mathematical rigour with a 
reasonable efficiency. I believe that in the 
long-term, rigorous computations will even-
tually take over from approximate methods, 
just as formal rigorous mathematics even-
tually dominated. To facilitate this process, 
we need to provide tools that are power-
ful enough for industrial use, and simple 
enough to train undergraduate students in 
mathematics, science and engineering. Ari-
adne is one important step in this direction, 
and I plan to continue development work in 
the future to further realise these aims. s

built-in. Even fundamental physical con-
stants, such as the fine structure constant 

. [ ]137 0359991 39 311 !a =- , is only known 
to finite precision. Systems arising in engi-
neering have larger uncertainties (such as 
the exact resistence of an electrical com-
ponent), and our knowledge of biological 
systems is even less precise. This means 
that in order to validate properties of real- 
life systems, we also need to take this un-
certainty into account.

Probability is the most widely-used 
mathematical theory of uncertaintly, but in 
many cases, we cannot assign exact proba-
bilities to the events, and independence re-
quirements needed for stochastic systems 
models are not met. We therefore need 
uncertainty models based on what is pos-
sible, leading to differential inclusions [4]. 
Ellipsoidal methods for their solution are 
described in [28] and higher-order methods 
in [19]. Although non-stochastic modelling 
is sometimes seen as being ‘overly pessi-
mistic’, in the absence of more informa-
tion about the system, it is the only way 
of guaranteeing correctness. Other frame-
works, such as imprecise probability give 
more modelling flexibility, but will be even 
harder to reason about.

Perhaps the main challenge lies in de-
tecting and exploiting system structure. In 
particular, since model checking has expo-
nential time complexity in the state-space 
dimension, any methods to reduce the ef-
fective dimensionality, or split the problem 
into sub-problems of lower dimensionality, 
will be invaluable. Differences in time- and 
length-scales provide further opportunities 
for reduction by splitting into fast and slow 
behaviour, or averaging out spacial fluctu-
ations. Modularity provides the greatest 
opportunities for dimension reduction, by 
splitting a system into parts which com-
municate via external inputs and outputs. 
Next-generation model checking tools will 
need to automatically exploit possible re-
ductions in order to make fundamental 
breakthroughs in engineering practise.

Concluding remarks
The main goal of the Ariadne project was 
to develop a tool for model checking non-
linear hybrid automata, and the current 
version is capable of verifying well-con-
ditioned, low-dimensional nonlinear sys-
tems. However, I feel that rather than 
immediately develop software for hybrid 
systems, it would have been better to first 

plicitly, or implicitly from the environment, 
neither solution being entirely satisfactory.

A major challenge in software engineer-
ing is due to the C++ language itself: there 
are many ways of supporting the data ab-
stractions used in Ariadne, and different 
approaches require changes to the underly-
ing code. Indeed, a ‘good’ language would 
be one in which the underlying numerical, 
functional and geometric kernels could be 
implemented in a clean way! Together with 
Michal Konečný, the developer of [27], 
another package for rigorous numerics, I 
have been experimenting with the use of 
the functional language Haskell in order to 
find a good semantics.

Since a model checking tool is sup-
posed to prove correct functioning of a 
dynamic system, we also need to know 
that the tool itself works correctly, without 
mistakes in the mathematical algorithms 
or their implementation. Proven-correct 
code for real arithmetic exists in Coq [40]
and Haskell [30], and for differential equa-
tions in Coq [32] and Isbell/HOL [24]. A 
C implementation of the solution of the 
wave equation was proved correct in [8], 
using several different tools including the 
Frama-C code analyser platform and the 
Coq theorem-prover. However, this is al-
ready a huge effort for a fairly simple C 
programme, and verified correct implemen-
tations of a tool such a Ariadne are a long 
way off! More promising from the point of 
view of provably-correct code, is to demon-
strate correctness of the algorithms using 
a theorem-prover such as Coq or Isabelle, 
and automatically generate code in an ef-
ficient and user-friendly language such as 
the functional language ML.

The future of model checking
Practical use of model checking for large-
scale hybrid systems arising in industry 
will require many advances in algorithm 
design. A particularly important technical 
challenge, and currently one of the major 
bottlenecks in Ariadne, is to improve the 
core algorithms for working with functions 
and sets, notably in simplifying the repre-
sentation of sets while preserving accuracy 
of an over-approximation.

It will also be important to develop 
algorithms to handle uncertain systems 
efficiently. Ultimately, any mathematical 
analysis of a model of reality is only as 
good as the model itself, and whenever 
we make models, there are approximations 
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