
200 NAW 5/17 nr. 3 september 2016 Computational Conley theory William Kalies, Robert Vandervorst

tion — gradient-like dynamics, cf. Figure 1. 
In the absence of friction the system re-
turns to its initial state, and its motion is 
periodic. In this case the system is said 
to exhibit recurrence. Understanding this 
dichotomy between (chain-)recurrent and 
nonrecurrent or gradient-like behavior is 
central to the study of dynamical systems 
and an important aspect of Conley theo-
ry. The theory was initially developed as a 
generalization of Morse theory for flows on 
smooth manifolds, see [4]. Conley theory 
also addresses the dependence of a sys-
tem on parameters which is a very natural 
question to ask from the point of view of 
applications. Over the past thirty years this 
theory has been extended to cover most 
types of (deterministic) dynamical systems 
such as flows, discrete time systems and 
infinite dimensional dynamical systems, 
cf. [20–24].

The chain-recurrent and gradient-like 
dynamics of a given system is computable 
within a given resolution. We will explain 

complex high dimensional systems. The 
development of the concepts of Conley 
theory into computable tools is of great 
benefit to the study of global dynamics. 
One of the key theorems in Conley the-
ory is Conley’s decomposition theorem 
which states that global dynamics can 
be categorized in (chain-)recurrent and 
gradient-like dynamics. For example con-
sider the motion of a natural pendulum. 
As the pendulum swings, it cannot return 
to its original position with the same ve-
locity because it loses energy due to fric-

Many evolutionary processes in physics, 
engineering, biology, et cetera are mod-
eled by dynamical systems. Examples of 
dynamical systems range from very simple 
models such as the motion of a pendulum 
to extremely complex systems such as for 
instance meteorological models. Dynamical 
systems are mostly defined via systems of 
differential equations, but also as itera-
tions of continuous maps. In practice these 
systems are too complex to study without 
any computational tools. A first insight 
into the workings of a dynamical system 
is often provided by numerical simulation 
in order to understand for example long 
term behavior of a system, which has been 
extremely successful in the application of 
dynamical systems as a prediction tool. 
Such analysis does not give much insight 
into global behavior in general, nor does it 
provide rigorous results about the dynam-
ical structure of a system. Computational 
Conley theory makes various aspects of 
global dynamics computable using alge-
bra, combinatorics and algebraic topology.

Going beyond local analysis such as 
linearized behavior of equilibrium points, 
or periodic orbits, is often very hard for 
even low dimensional systems let alone 
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Figure 1 The phase portrait of a natural pendulum.
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more precise a subset S X1  is invariant 
for the dynamical system ( , )X f  if ( )f S S= . 
In the above example many invariant 
sets can be found. For instance, the cor-
ner points, the boundary, et cetera. An 
invariant set A X1  is called an attractor 
if there exist a compact neighborhood 
N X1  containing A such that ( )f N N1 , 
( ) int( )f N Nk 1  for some k 0>  and 
( ) Inv( , )A N N f~= = , where Inv( , )N f  in-

dicates the maximal invariant set inside N. 
The set N A2  is called a trapping region for 
A. The choices N Q=  and N X=  are trivi-
al trapping regions. Examples of attractors 
for are ( , )A 0 01 = , {( , ) | [ , ]}A 0 0 12 !p p= , 
and {( , ) | [ , ]}A 0 0 13 !h h= . Also the emp-
ty set and the state space X are attractors 
in Example 1. Dual to an attractor A is its 
dual repeller defined by 

{ | ( ) } .A x X x A* + Q! ~= =

For example {( , ) | [ , ]}A 1 0 1*
2 !p p= , X* Q=

and X*Q = . A dual repeller may also be 
defined as ( )A N* ca=  where Nc is called 
a repelling region. A pair ( , )A A*  is called 
an attractor-repeller pair for ( , )X f  and is 
a robust structure. Attractor-repeller pairs 
give a very rough insight into the dynam-
ics and they are not unique in general. 
Example 1 shows six different attractor- 
repeller pairs. Given an attractor-repeller 
pair ( , )A A*  then for any \{ }x X A A*,!  
it holds that ( ) Ao

*
x !a c-  and ( )x A!~  

for any complete orbit xc  through x. The 
idea of decomposing the dynamics into 
invariant sets and points which converge 
to theses sets can be further generalized 
and leads to the notion of Morse repre-
sentation.

the rotation angles and is an example of 
a one-dimensional phase space. In more 
complicated systems such as biological 
or meteorological models the state space 
may be high dimensional. The time param-
eter t is either discrete, t Z! +, or contin-
uous, t R! +. Dynamical systems describe 
deterministic processes; for an initial state 
x the state ( )xt{  at time t is determined en-
tirely by the initial state x. This is captured 
by the (semi-)group property for t{ : 

( ) ,
( ) ( ( )) , ,

x x
x x s t 0for alls t s t

0

$

{

{ { {

=
=+

)

and for all x X! . For many aspects of Con-
ley theory it is not important whether the 
time variable is discrete or continuous. In 
order to keep exposition transparent we 
restrict to discrete time dynamical systems. 
If t Z! +, then 

, ,f f f f

times

t
t

t

1% %g{ {= = =
1 2 34444 4444

where f is called the generator, or gener-
ating map and the discrete time dynamical 
system is denoted by ( , )X f . We emphasize 
that the generator f 1{=  is not necessarily 
invertible! (For continuous time this allows 
for semi-flows.)

Robust structures
Consider the two-dimensional state space 
[ , ] [ , ]X 0 1 0 1#=  with ( , )x X!p h=  and 

the mapping :f X X"  given by 

( , ) , ,f
2 2p h
p
p

h
h

=
- -c m (1)

Figure 2 depicts the dynamics of f. We will 
refer to as Example 1.

We first introduce terminology to de-
scribe asymptotic behavior of orbits. A com-
plete orbit through x is denoted by xc  and 
the forward and backward portions are de-
noted by xc

+ and xc
- respectively. The ome-

ga-limit set of a set N X1  is defined as 

( ) ( ) ,clN f N
k

n

n k0
~ =

$ $

f p( '

and the alpha-limit set is defined as 

( ) ( ) .clN f Nn

n kk 0
a =

##

f p( '

The orbital alpha-limit and orbital ome-
ga-limit set are defined as ( )o xa c =-  

(( , ])tclt x0 3c -
#

(  and ( ) ({ })x x~ ~=  re-
spectively.

The square [ , ] [ , ]X 0 1 0 1#=  in Example 1 
is invariant, i.e. f maps X onto X. To be 

that these concepts can be alternatively 
defined so that they are more tangible for 
the purpose of rigorously computing them. 
This becomes a matter of understanding 
the key algebraic and combinatorial struc-
tures that play a role and their connection 
to the topology of the system. The new 
direction and novelty of this approach 
lies in the fact that the study of dynam-
ical systems is reduced to the study of 
(finite) combinatorial dynamical systems 
in combination with (computable) alge-
braic structures and invariants. Algebra-
ic topology takes continuum objects and 
reduces them to algebraic objects which 
are typically finitely generated and hence 
can be manipulated by the computer. The 
algebra carries well understood informa-
tion about the continuum structure. The 
methods described here build on ideas 
that have emerged over last decade due 
to many authors in which combinatorial-
ization and algebraic topology are the key 
ingredients. The first steps in this direction 
have proved very promising. We mention 
the early work of Eidenschink and Boczko, 
Kalies and Mischaikow [3, 10, 18], see also 
[7–9, 11, 12, 19, 24] and [14–17].

On a more philosophical note mod-
ern science is all about collecting and 
processing data. Most of the data comes 
from dynamical processes that are tradi-
tionally modeled in terms of continua, i.e. 
differential equations, manifolds, differ-
entiable maps, et cetera. The process of 
collecting data is inherently a discretiza-
tion. The ideas presented here may have 
major impact as science moves more and 
more towards data based representations 
of science and away from analytical mod-
el based representations of science. These 
developments make a computational Con-
ley theory a valuable asset as a tool in 
applied dynamical systems. A successful 
computational theory will allow us to go 
beyond studying dynamical systems in 
low dimensions and will open the door to 
better understanding complex systems via 
rigorous statements.

Dynamical systems and algebraic structures
In mathematical terms a dynamical sys-
tem consists of the following ingredients; 
a state space, or phase space X (metric 
space) and a family of maps t{ , parame-
trized by a time parameter t, mapping X 
(on)to itself. For instance for the physi-
cal pendulum the state space consists of 

Figure 2 Complete orbits of f (left) and the iterates of 
f (right).

Figure 3  Three  Morse  representations.  The  finest  re-
presentation consisting of equilibrium points (left), an 
attractor-repeller pair (middle), and a 3-set Morse repre-
sentation (right).
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to 0 ,=  and / += . Beside the down-sets 
one can also define up-sets J which con-
sists of those elements p P!  such that 
q p$  implies that q J! . The up-sets form 
the distributive lattice ( )U P  dual to ( )O P  
via set-complement. The join-irreducible 
elements in a finite distributive lattice L 
are the elements that are preceded by a 
unique predecessor, cf. Figure 5. A classi-
cal result by G. Birkhoff [2] provides a rep-
resentation theorem for finite distributive 
lattices which is formulated as follows. Let 
L be a finite distributive lattice and let P 
be a finite poset. By ( )J L  we denote the 
poset of join-irreducible elements where 
the order is defined by set-inclusion. Then, 

( ( )), ( ( )) .L O J L P J O P, , (3)

Figure 5 gives a schematic account of Birk-
hoff’s theorem in the case of Example 1. 
The operations O and J are contravari-
ant functors and lattice monomorphisms 
:f L KK  are equivalent to order-surjections 
( ) : ( ) ( )fJ J K J LI , and similarly lattice epi-

morphisms are equivalent to order-embed-
dings. The same correspondence can also 
be formulated via the O functor using Birk-
hoff’s representation theorem, cf. [6].

Morse representations and finite sublat-
tices of attractors in ( , )X fAtt  are equivalent 
as a consequence of Birkhoff’s representa-
tion theorem. This relation can be seen as 
follows, cf. Figure 5. Let ( , )X fA Att1  be a 
finite sublattice. For every join-irreducible 
attractor ( )A J A!  let AA '  be the unique 
predecessor and define M A A *+= . It can 
be shown that the set ( ) { }A AM A *+= , 
with ( )A J A!  and the order-relation in-
duced by ( )J A , is a Morse representation 
and the sets M A A *+=  are Morse sets. In 
general M A A*I J+= , where the represen-
tation only depends on the set-difference 

{ }I J M= = , with , ( )I J O M! . For the lattice 
of attractors ( , )X fA Att=  in Example 1 we 
have ( ) { , , , }a b c XJ A =  and the associat-
ed poset ( ) { , , }M MM A 1 4f=  is the finest 
Morse representation in Example 1 consist-
ing of the rest points. The above procedure 

two binary operation 0 and /. The opera-
tions 0 and / play the role of union and 
intersection and they satisfy the same axi-
oms as union and intersection for subsets. 
A distributive lattice has a poset structure 
and a b#  if and only if b a b0=  (or equiva-
lently a a b/= ). Let ( , )X fAtt  be the set of 
all attractors of a dynamical system ( , )X f  
and define the binary operations 

’ ’ ’ ’, Inv( , ) .A A A A A A A A f0 , / += =

With respect to these binary operations 
( , )X fAtt  is a bounded distributive lattice, 

see [15]. In general Q and ( )X~  play the 
role of 0 and 1, respectively. (The term 
bounded means that ( )inf Att  and ( )sup Att  
exist. As a matter of fact ( )inf Att Q=  and 
( ) ( )sup XAtt ~= .) The associate repellers 

form an (anti-)isomorphic lattice called 
( , )X fRep  with binary relations 0 ,=  and 

/ += . The trapping regions and repelling 
regions are also bounded distributive lat-
tices with binary relations intersection and 
union and are denoted by ( , )X fTrapR  and 

( , )x fRepR , respectively. Duality between 
the lattices is expressed in the following 
fundamental commuting diagram:

TrapR(X, f) RepR(X, f)

Att(X, f) Rep(X, f)

�� ��
c

����

ω

����

α

�� ��
∗

(2)

where both c and * are involutions, and are 
the respective duality mappings. Figure 4 
shows the attractors in Example 1 together 
with the lattice structure of ( , )X fAtt . The 
lattice structure of ( , )X fAtt  is intimately 
related to the poset structure of Morse 
representations. To explain this relation 
we introduce some elementary notions of 
poset theory.

Given a finite poset P then a down-set 
I consists of those elements p P!  such 
that q p#  implies that q I! . Denote the 
set of all down-sets of P by ( )O P  which 
is a finite distributive lattice with respect 

Definition 1. A finite poset ( , )M #  consist-
ing of non-empty, pairwise disjoint, com-
pact invariant subsets of X is called a 
Morse representation for ( , )X f  if for every 

\( )x X MM M!
!

' , there exist ’ ’’M M< , 
with ’ ’’,M M M! , such that 

’ and ’’( ) ( ) ,x M Mo x1 1~ a c-

for any complete orbit xc  through x.

(We use the terminology poset to indicate 
a partially ordered set.)

The sets M M!  are called Morse sets. 
In general Morse sets occur as intersec-
tions of attractors and repellers, i.e. 

’M A A *,+=

for some attractor A and repeller ’A * dual 
to some attractor ’A . In the next subsection 
we will explain more of the systematics be-
hind Morse representations.

Via a Morse representation ( , )M #  we ob-
tain a combinatorial description — a poset 
— of the global structure of a dynamical 
system within a given resolution.

Morse representations can be further re-
fined by finding attractor-repeller pair de-
compositions (or Morse representations) of 
Morse sets, see Figure 3 middle and right.

For some systems this process termi-
nates after finitely many steps and a fin-
est Morse representation exists as in the 
above example. If not, the intersection 
( )A A*,( , ranging over all attractors in the 

system, leads the so-called chain-recurrent 
set XR 1 . This set is a countable union 
of chain-connected components Ri which 
are defined as follows. Two points ’,x x R!  
lie in the same connected component Ri if 
for any attractor-repeller pair ( , )A A*  either 
both ’,x x A!  or both ’,x x A*! . Conley’s 
decomposition theorem states that the dy-
namics outside R is gradient-like. The term 
chain-recurrence is inherited from its orig-
inal definition via f-chain recurrence. The 
latter states that the components Ri have 
the property that each point x Ri!  comes 
back to itself under the dynamics arbitrary 
close allowing small errors — f-chains. The 
chain-recurrent set R is obtained as a limit. 
From the point of view of computation this 
definition is not very practical, cf. [14].

Lattices and Morse representations 
The set of attractors (and repellers) in a 
dynamical system has the algebraic struc-
ture of a distributive lattice, cf.  [15, 21]. A 
distributive lattice is a set L equipped with 

Figure 4 The four non-trivial attractors in Example 1 (left), and its lattice structure (right).
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Combinatorial dynamics
The existence of a finite sublattice 

( , )X fN TrapR1  yields a tesselated Morse 
decomposition, cf. the previous subsec-
tion. If we start with a finite sublattice 

( , )X fA Att1  it is much harder to find a sub-
lattice ( , )X fN TrapR1  such that ( )N A~ = . 
The latter is called the lifting problem. In 
[15, Theorem 1.2] a lifting theorem of finite 
sublattices in ( , )X fAtt  is proved: For every 
finite sublattice ( , )X fA Att1  there exists 
a finite sublattice ( ) ( , )k X fN A TrapR1= , 
called a lift, such that ( )N A~ = . The lift 

( ) ( , )k X fN A TrapR| 1=  provides the 
Morse tiling ( ) ( )T N J A,  as described in 
the previous section. Since finding Morse 
representations is one of the objectives we 
cannot a priori use them in order to com-
binatorialize dynamics. In the next subsec-
tion we describe an explicit procedure to 
combinatorialize a dynamical system.

Discretization of space
Let X be a finite ‘labeling set’ with labels 
X!p  and | | X1p  are subsets of X satis-

fying the following axioms:

1. | |X X p=
!p

' ;

2. intclp p= ^ ^ hh for all X!p ;

3. | | int(| |)+ Qp h =  for all X! !p h .

The set {| |} Xp !p  is called a grid on X 
and the elements | |p  are called grid-ele-
ments. The labeling set is also referred to 
as a grid in X. If we consider the Bool-
ean algebra of regular closed sets on X, 
denoted ( )XRG , then choosing a grid on 
X is equivalent to selecting a finite sub-
algebra in ( )XRG . The latter is similar to 
the relation between attractor lattices and 
Morse representations. The subalgebra is 
the equivalent of the sublattice and the 
join-irreducible elements in the subalgebra 
are called the atoms. As with Morse tiles, 
the grid elements are constructed in the 
same way. The only difference is that X is 
a trivial poset by construction, i.e. no order 
relation, cf. [16].

In order to mimic the dynamics of 
( , )X f  we define a multivalued mapping 
:F X XC  on X. The multivalued mapping 
:F X XC  is linked to the dynamics of f 

via the condition

(| |) int | ( ) | ,f F1p p (6)

for all X!p , cf.  [24]. Such multivalued 
mappings are called outer approximations 
for ( , )X f . The grid X together with a mul-

The poset ( , )P #  may be regarded as a 
combinatorial model for the dynamics of 
( , )X f  if we interpret P as directed graph, or 
digraph. The order-injection ( )M A PK  sig-
nifies the dynamically relevant sets (Morse 
sets).

Consider an embedding ( )O P K 
( , )X fTrapR  and denote the associated 

sublattices (images) by N. If we define 
( ) ( , )X fN A Att1~ = , then Diagram (2) 

yields

N Nc

A A∗

�� ��
c

����

ω

����

α

�� ��
∗

M(A) � T(N), (5)

where ( )T T N=  is a representation of 
( )J N P,  via the identification: Tp =

N N N NI J
c

I J+ ==  which depends only on 
{ }I J p= =  — compare the construction of a 

Morse representation. The poset ( )T N  is 
called a Morse tiling and the order-embed-
ding ( ) ( )M A T NK  is called a tesselated 
Morse decomposition.

By construction ( )P T N,  and the ele-
ments of ( )T N , called Morse tiles, tesse-
late the space X. If the poset set struc-
ture of ( )T N  is regarded as a digraph, 
then a tesselated Morse decomposition is 
a first example of a combinatorialization 
of a dynamical system, i.e. the order rela-
tion indicates where points in X may map 
under the dynamics of f. The embedding 
( ) ( )M A T NK  marks the dynamically rele-

vant tiles, i.e. the tiles that contain a Morse 
set.

The theory of Morse representations 
and decompositions as a combinatorial de-
scription of dynamics is a first motivation 
for the algebraic treatment of attractors via 
the theory of distributive lattices.

yields an isomorphism between ( ( ), )M A #  
and ( ( ), )J A 3 . Conversely, by Birkhoff’s the-
orem the lattice of down-sets in ( ( ), )M A #  is 
isomorphic to A. The isomorphism is quan-
tified as follows. If ( )I O M! , then the sets 

( )A W MI M I
u=

!
'  are attractors which 

build the lattice A. (The set ( )W Mu  de-
notes the unstable set of M and is defined 
as: ( ) { | ( ) }W M x X Mo

u
x x7! " 1c a c= - - .)

Morse decompositions
Let ( , )X fA Att1  be a finite sublattice (in-
cluding Q and ( )X~ ) and let ( , )X fA Rep* 1  
be the associated dual and let P be a finite 
poset such that ( )O P  maps onto A (as a 
lattice homomorphism). Consider the com-
muting diagram 

O(P) U(P)

A A∗

�� ��
c

���� ����
�� ��

∗

(4)

Since Birkhoff’s representation theorem is 
functorial the vertical lattice-surjections are 
dual to the order-injection ( )J A PK . Us-
ing the Morse representation for ( )J A  as 
described in the previous section we ob-
tain the order-injection ( )M A PK , which 
is referred to as a Morse decomposition. 

Figure 5 The join-irreducible elements form a poset ( )J A  and the down-sets of J form a lattice ( ( ))O J A  which is iso-
morphic to A.The solid dots in the diagrams denote the join-irreducible elements.

A A

Figure 6 A lattice of attractors and the anti-isomorphic 
lattice of dual repellers.
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one grid element p and for such elements 
Inv(| | , )f Qp = . For the components in 
( , )X FRC  this is not necessarily true and 

the maximal invariant inside such a compo-
nent may not be empty. Tarjan’s algorithm 
provides an efficient linear time algorithms 
in the number of vertices that computes 
the strongly connected components of a 
digraph and thus a finest Morse represen-
tation, see cf. [5]. The idea of discretizing 
space and combinatorializing dynamics is 
best explained by an example.

The following model is used in popula-
tion dynamics to describe the interaction 
of two species x and y. The dynamics is 
given by the mapping

( , ; , , )
( )

,f x y
e
x

( )x y

1 4
1 2

4

3

fn n
n n

n
=

+ n- +

f p (8)

where , ,1 4fn n  are positive parameters 
in the model, see [25, 26]. Choose the pa-
rameters to be .22 51n = , 252n = , .0 13n =  
and .0 74n = . Observe that the square 
{( , ) | , }X x y x a y b0 0# # # #= , with a $ 

1 2n n+  and ( )b 4 1 2$ n n n+ , is forward 
invariant with respect to f and therefore 
consider :f X X" .

We choose a rectangular grid on X with 
elements of size diam(| |) d#p  and con-
struct a multivalued mapping F  that maps 
grid elements to sets of grid elements, 
cf Figure 7. In Example 9 we choose 

( ) { | (| |) },B fF X + Q!!p h p h= f ^ h (9)

factoring in a numerical error f, cf.  Figures 
7 and 8, cf.  [1].

( , )X FInvset+ . Similarly, backward invari-
ant sets form the lattice ( , )X FInvset- . 
This yields the analogue of Diagram (2): 

Invset+(X ,F) Invset−(X ,F)

Att(X ,F) Rep(X ,F)

�� ��
c

����

ω

����

α

�� ��
∗

(7)

Applying Birkhoff’s representation theorem 
yields representations for ( ( , ))X FJ Invset+  
and ( ( , ))X FJ Att  given by the posets 
( , )X FSC  and ( , )X FRC  respectively. The 

elements in ( , )X FSC  are obtained by in-
tersecting forward and backward invariant 
sets as described before, and the elements 
in ( , )X FRC  are Morse sets in F  which 
are obtained by intersecting attractors and 
repellers. In the language of digraph theory 
the poset ( , )X FSC  is the (acyclic) digraph 
of strongly connected components and the 
poset ( , )X FRC  is the subgraph of cyclic 
strongly connected components. (A digraph 
is strongly connected if there exists a path 
between each ordered pair of vertices. A 
strongly connected component of a di-
graph is maximal strongly connected sub-
graph. The cyclic strongly connected com-
ponents, or recurrent components are the 
strongly connected components that either 
consist of a single vertex with a self-con-
nection, or consist of multiple points.) 
From the functoriality we have the canoni-
cal order inclusion ( , ) ( , )X F X FRC SCK . 
The acyclic strongly connected compo-
nents in ( , ) ( , )X F X FSC RC=  consists of 

tivalued mapping F  is called a combina-
torial dynamical system; notation ( , )X F . 
If we regard the elements in X as vertices 
and the action of F  by edges, then ( , )X F  
may be regarded as a digraph; Xi !p  are 
vertices and eij is an edge from ip  to jp  if 

( )Fj i!p p .

Combinatorial dynamical systems
Multivalued mappings regarded as com-
binatorial dynamical systems share many 
similarities with dynamical systems ( , )X f . 
Except for multivaluedness most of the 
dynamical concepts carry over to com-
binatorial systems. A subset of vertices 
S X1  is called invariant if ( )S F S1  and 

( )S F S11 - . A subset A X1  is called 
an attractor if ( )F A A= , and similar-
ly a subset R X1  is called a repeller if 

( )F R R1 =- . A dual repeller to an attrac-
tor A is defined as ( \ )A X A* a= . (Recall 
the definition of alpha and omega limit set 
form ( , )X F : ( ) ( )U F Un

n kk 0~ =
$$

( '  
and ( ) ( )U F Un

n kk 0a =
##

( ' , cf. [18].) 
As before attractors and repeller form 
(finite) distributive lattices denoted as 
( , )X FAtt  and ( , )X FRep , respectively. 

A subset M X1  is called a Morse set 
if M A R+=  for some attractor A and 
some repeller R. Even though attractors 
and repellers are not necessarily invariant, 
Morse sets are. A poset ( , )M #  consisting of 
non-empty, pairwise disjoint, invariant sub-
sets M X1  is called a Morse representa-
tion for ( , )X F  if for every complete orbit 
{ }np  such that ’M’n !p  and ’’M’’n !p  for 
some ’ ’’n n< , then ’ ’’<M M . The theory 
of Morse representations and distributive 
lattices of attractors remains unchanged 
for combinatorial systems. The combinato-
rial theory can best be summarized as a 
generalized version of Birkhoff’s theorem 
for finite digraphs, cf. [13, 14].

As before attractors and repellers may 
be defined via larger sets in the digraph. 
Forward invariant sets U satisfy the 
property ( )F U U1  and form the lattice 

Figure 7 An example of a grid and a multivalued map F ; for 
any X!p , (| |) { | ( (| |)) | | }B fF X + Q!!p h p h= f , 
cf. [1].

Blue

Red

Green

Black

Purple Brown

Figure 8 The strongly connected components ( , )X FSC  for F  realized in the plane (left), the reduced graph ( , )X FRC  
with cyclic strongly connected components for F  (middle) and the Conley index computations (right), cf. [1].
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( )U J U! , tile the space X. This task is 
much harder and is related to the ques-
tion of realizability and convergence: can 
every structure be realized provided the 
grid is sufficiently fine? This question is 
addressed in the next subsection.

Convergence
By refining a grid — subdividing, or choos-
ing a smaller grid-size — more detailed 
information about the dynamics of ( , )X f  
may be obtained. Keeping in mind the 
example in let ( , )X Fn n  be a sequence 
of refinements by subdividing the grid 
elements and by choosing the sequence 
of multivalued mappings according-
ly, cf. (9). In [16] it was proved that for 
a refining sequence of outer approxima-
tions :F X Xn n nC  and any finite sublat-
tice ( , )X fA Att1 , there exists an n 0>A  
such that A lifts into ( , )X FInvset n n

+  
for all n nA$ , i.e. there exist embed-
dings ( , )X FA Invset n nK +  such that 
(| |)U A~ = , where ( , )X FU Invset n n1 +  

is the isomorphic image of A. This con-
vergence result has consequences for 
the existence of Morse tilings for given a 
Morse representation. Let F F0=  and con-
sider AF  and the associated Morse repre-
sentation ( )M AF . Let Un be the image of 

( , )X FA Invset n nF K , n nAF$ . Then, the 
isomorphism 

: | | ,N U An n F*~ =

yields a tesselated Morse decomposition 
( ) ( )M A T NnF * . From the point of view 

of computation this result does not pro-
vide practical ways to find Morse tilings 
and tesselated Morse decompositions. A 
more practical method may be derived as 
follows.

The Morse decomposition : ( )M AF Kr  
( , )X FRCK  is the starting point, which 

yields the tesselated Morse decomposition 
( ) ( ) ( , )X FM A T N SCF FK , . The objec-

tive is to coarsen the poset ( , )X FSC  such 
we obtain a Morse tiling T which is isomor-
phic to ( , )X FRC . From Birkhoff duality it 
follows that the existence of a lift k in Di-
agram (13),

O(SC(X ,F)) Invset+(X ,F)

O(RC(X ,F)) Att(X ,F)

����

�� ��

����

ω

��

��

k

�� ��

(13)

is equivalent to the existence of an order- 

We conclude that ( , )X FRC  yields a tesse-
lated Morse decomposition 

: ( ) ( , )

( , ) ( ) .

X F

X F

M A RC
SC T N

F

F

K

K *

r

The mapping Inv( , )U U f7  acts as a left in-
verse. In particular, ( ) {Inv(| | , )fMM AF =  
| ( , )}M X FRCQ! !  and ( ) {| |UT NF =  
( , )}U X FSC! . From the theory of Morse 

decompositions as described before we have 
that the composition : ( ) ( )M A T NF F"r  
is a Morse decomposition.

What does this approach tell us about 
the example given by (8)? The middle graph 
( , )X FRC  in Figure 8 gives a candidate for 

a Morse representation. However, it is not 
straightforward to determine whether the 
evaluated Morse sets | |M  contain actual 
Morse sets for f. A sophisticated topolog-
ical tool called the Conley index provides 
sufficient conditions which imply that 
Inv(| | , )fM Q! , cf. Figure 8 (right). By 
construction a Morse set M is given by 
M U U== , where ( ( , ))U X FJ Att!  and 
U is the unique predecessor. The version 
of the Conley index used in Figure 8 is the 
set of all non-zero eigenvalues of 

: ( / , [ ]) ( / , [ ]),f H N N N H N N N") ) )
U

restricted to the torsion free part of 
( / , [ ])H N N N) , where | |N U= , | |N U= , 

and 

if
([ ])

[ ( )]

[ ]

, ( ) ,

,
f x

f x

N

x f x N N

otherwise
=!

= *V
is continuous by construction. The above 
arguments provide a second reason why 
the algebra of distributive lattices plays 
a crucial role in determining non-trivial 
Morse sets.

If we employ the Conley index we con-
clude for the model given in that there 
exist at least two attractors, two non-triv-
ial (saddle-like) Morse sets and one re-
peller. The green and yellow vertices in 
Figure 8 (middle) may contain no invari-
ant dynamics. The poset ( , )X FRC  com-
binatorializes the dynamics between the 
Morse sets. The draw back is that the el-
ements | |M , ( , )M X FRC! , do not tile 
the space X in general. The elements in 
( , )X FSC  do, but the number of elements

{ } ( , ) ( , )X F X FSC RC=!p  is many or-
ders of magnitude larger than ( , )X FRC . 
If we can construct a sublattice U 1 

( , )X FInvset+  which is isomorphic to 
( , )X FAtt  then the sets | |U U= , with 

Computability and interpretation
The dynamics captured by an outer ap-
proximation F  has a direct interpretation 
to the actual dynamics of ( , )X f . As we in-
dicated before the multivalued mapping F  
may be interpreted as a digraph. Figure 8 
gives a realization of the strongly connect-
ed components of the digraph, color cod-
ed (left). By identifying the cyclic strongly 
connected components with vertices, a 
schematic picture of the dynamics emerg-
es via ( , )X FRC  in terms of the digraph 
Figure 8 (middle).

Realization
Define the evaluation mapping | | : ( )XSet "$  
( )XRG  via | |U U7 p

!p
' . A trapping re-

gion N is called an attracting block if 
( ) int( )f N N1 . Attracting blocks that are 

also regular and closed form the lattice 
denoted by ( , ) ( )X f XABlock RGRG 1 . If 

( , )U X FInvset! +  is a lattice homomor-
phism. As a matter of fact the following 
commuting diagram exists, cf. [16]: 

Invset+(X ,F) ABlockRG(X, f)

Att(X ,F) Att(X, f)

�� ��
|·|

����

ω

����

ω

��
ω(|·|)

(10)

The dual diagram for backward invariant 
sets, repelling blocks and repellers is ob-
tained via the duality mapping 

: ( , ) ( , ),X f X fABlock RBlock# RG RG*

where cl( )N N# c= , the ‘complement’ in 
( )XRG . Let NF  and AF  be the images 

of ( , )X FInvset+  and ( , )X FAtt  under the 
mappings | |$  and (| |)$~ , respectively. This 
yields the commuting diagram 

Invset+(X ,F) NF

Att(X ,F) AF

�� ��
|·|

����

ω

����

ω

�� ��
ω(|·|)

(11)

By Birkhoff duality and functoriality we 
obtain a commuting diagram linking the 
strongly connected components in F  to 
tesselated Morse decompositions: 

SC(X ,F) T(NF )

RC(X ,F) M(AF )

�� ��
|·|

��

��

��

��

���� π

(12)
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combinatorial system is insensitive under 
small perturbations the question arises 
how the algebraic structures behave un-
der large parameter variations — continua-
tions. A good understanding of the algebra 
involved may give algebraic criteria for de-
tecting certain types of global bifurcations. 
The ideas in [1] about studying dynami-
cal systems with a number of parameters 
could be comprised in a database with 
information on for instance Morse decom-
positions for a finite number of parame-
ter values. With the appropriate algebra 
at hand various properties of the system 
can be found in combination with variation 
in parameters. We believe that the answer 
should come from the algebra of finite dis-
tributive lattices and their morphisms. This 
requires a formulation of local continuation 
of Morse representations in terms sheafs 
of Morse representations and attractor 
lattices. s

We do not expatiate on methods of com-
puting jn. Given jn, for n sufficiently large, 
provides a complete combinatorial picture 
of the dynamics of ( , )X f  within a given res-
olution: every point x X!  is contained in 
a tile ( )T T Nn!  and the order relation on 
( )T Nn  provides the possible Morse sets to 

which the dynamics converges as t "!3. 
The graph ( , )X FRC  in Figure 8 (left) now 
provides a complete description of the dy-
namics within the chosen resolution since 
in the tesselated Morse decomposition 
( ) ( )M A T NnF K , the poset ( )T Nn  is a 

Morse tiling. The above arguments provide 
a third reason why the algebraic approach 
provides the appropriate framework for 
computational combinatorializations of the 
dynamics.

The relation between parameter de-
pendence in systems and combinatorial 
systems is still unclear. Since the way of 
encoding dynamical information into a 

surjection 

: ( , ) ( , ),j X F X FSC RCI (14)

with idj i =%  on ( , )X FRC . If the grid 
size is not small enough then such an or-
der-surjection j need not exist! However, 
convergence helps out in this case. Let 
Xn be a sequence of refining grids with 
diam( ) 0Xn "  and let :F X Xn n nC  be a se-
quence of outer approximations as given in 
with F F0= . Then, there exists an n 0>AF  
such that ( , )X FRC  allows order-surjec-
tions : ( , ) ( , )j X F X FSC RCn n n I  for all 
n nAF$ , cf. [13]. The mappings jn provide 
the rules for coarsening ( , )X FSC n n  and 
we obtain tesselated Morse decomposi-
tions 

: ( ) ( , ) ( ),X FM A RC T NnF K *r (15)

where | ( ( , )) |k X FN RCn n=  and

: ( ( , )) ( , ) .k X F X FO RC Invsetn n nK
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