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ability that a set ( )U V G3  with | | | |U F= , 
chosen uniformly at random, is such that 

[ ]G U  is isomorphic to F. We say that 
( ; )p F G  is the density of F in G. In other 

words, if ( ; )c F G  is the number of times F 
occurs as an induced subgraph of G, then

( ; ) ( ; )
| |
| |

.p F G c F G
F
G 1

=
-

d n

Let H be a collection of graphs. A graph 
G is H-free if no induced subgraph of G is 
isomorphic to a graph in H. A fundamental 
problem in extremal graph theory is to de-
termine, for a given graph C, the maximum 
asymptotic density of C in H-free graphs

( , ) ( ; ),sup lim supex C p C GH k
( )G kk k 0

=
"3$

(1)

where the supremum is taken over all se-
quences ( )Gk k 0$  of H-free graphs that are 
increasing, i.e., with (| |)Gk k 0$  strictly in-
creasing.

Mantel’s theorem shows that ex( , 
{ }) 2

1# . Together with the extremal ex-
ample described above, we actually have 
ex( , { }) 2

1= .
Let G be the set of all finite H-free 

graphs taken up to isomorphism. An in-
creasing sequence ( )Gk k 0$  is convergent 
if ( ; )lim p F Gk k"3  exists for every F G! . 
Every increasing sequence of H-free graphs 
has a convergent subsequence. Indeed, 
densities are numbers in [ , ]0 1 , so for k 0$  
the function ( ; )F p F Gk7  can be identified 
with a point in [ , ]0 1 G, which is a compact 
space by Tychonoff’s theorem.

vertices each and add all edges between 
the parts. The resulting graph is bipartite, 
and hence in particular triangle-free, and 
has /n 427 A edges. Mantel’s theorem states 
that this is an extremal example, the best 
one can do: every triangle-free graph on n 
vertices has at most /n 427 A edges.

This answer to Mantel’s problem ap-
peared in the same issue of Wiskundige 
Opgaven. There it is mentioned that solu-
tions were provided by Mantel and sever-
al others; a proof by W. A. Wythoff (1865–
1939), a former student of D. J. Korteweg 
(1848–1941), is included.

The theory of flag algebras allows us 
to computationally tackle extremal graph 
theory problems such as Mantel’s problem 
and to obtain results such as Mantel’s the-
orem. To understand how this is done, we 
first need to define exactly which extremal 
problems we consider.

The size of a graph G is its number 
of vertices V G^ h  and is denoted by | |G . 
For ( )U V G3 , we denote by [ ]G U  the 
subgraph of G induced by U, that is, the 
subgraph of G with vertex set U and all 
the edges of G between vertices of U. For 
graphs F and G, let ( ; )p F G  be the prob-

Mantel’s theorem, perhaps the first result 
in extremal graph theory, was motivated by 
a problem proposed by W. Mantel in an 
issue of the journal Wiskundige Opgaven, 
published by the KWG [10]:

Vraagstuk XXVIII. K 13 a. Er zijn eenige punt-
en gegeven waarvan geen vier in een zelf-
de vlak liggen. Hoeveel rechten kan men 
hoogstens tusschen die punten trekken 
zonder driehoeken te vormen? [W. Mantel]

(Problem XXVIII. K 13 a. Given are some points, 

no four of which lie on the same plane. How 

many lines at most can one draw between the 

points without forming triangles?)

In the language of graph theory, Man-
tel’s problem asks for the maximum num-
ber of edges that a graph without trian-
gles can have: the restriction that no four 
points lie on the same plane is there ex-
actly to ensure that only triangles between 
the given points can be formed when lines 
are drawn. 

A triangle-free graph on n vertices can 
be constructed as follows: divide the ver-
tex set into two parts of /n 26 @ and /n 2^ h
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Now comes a key observation. As the 
size of G goes to infinity, (p  ; )Gv  goes 
to (p  ; )Gv 2. This is not hard to prove 
(do it!), but the intuition should be clear: if 
G is very large, then choosing a subset of 

( )\{ }V G v  of size 2 uniformly at random is 
basically the same as choosing two vertices 
in ( )\{ }V G v  independently — the probabil-
ity of choosing the same vertex twice be-
comes negligible as | |G  grows larger.

So let z be the limit functional of a con-
vergent sequence ( )Gk k 0$  of triangle-free 
graphs. Then

(z ) (lim p
k

=
"3

 ; )Gk  

| |
(lim

G
p3

( )k v V G
k

k

=
!

"3
/  ; )Gk

v

(4)| |
(lim

G
p3

( )k k v V Gk

=
"3 !

/  ; ) .Gk
v 2

Now, for any triangle-free graph G the 
Cauchy-Schwarz inequality gives

(p
( )v V G!

/   ; )
| |

(G
G

p1

( )

v

v V G

2$
!

f /  ; ) .Gv

2

p

Together with (4) and

(p
( )v V G!

/  ; ) (G G p1 2v - =^ h  ; )
| |

G
G
2

b l

we get

(z ) (lim p3
k
$

"3
 ; ) (G 3k

2 z= ) .2

So every limit functional z satisfies the 
constraints

(z ) (2z+ ) (3z= ),

(z ) (3$ z ) .2

What do we get in (2) if we optimize over 
the set Ul of all : [ , ]0 1G "z  satisfying the 
constraints above? Well, suppose !z Ul. 
Multiply the second constraint by 2 and 
subtract it from the first to get

(z ) (3# z ) (6z- ) .2

Since z( ) 0$ , we then have z( ) 2
1# . 

So the optimal value of (2) with Ul instead 
of U is at most 2

1 , hence ex( , { }) 

2
1# .
In the following sections the main points 

of Razborov’s theory of flag algebras are 
developed. Unless otherwise noted, every 
definition and result presented here can be 
found in Razborov’s original paper [12].

Types and flags
In the introduction, we derived valid in-
equalities for U by combining densities of 
partially-labeled graphs as in (3). In the 

length at most /n r^ h.) Here is a proof that 
ex( , { }) 2

1#  that is a rewording of 
the proof by Bondy in terms of densities 
and limit functionals. This proof is a first 
glance into the theory of flag algebras; in 
it we will derive by hand some constraints 
on limit functionals of sequences of trian-
gle-free graphs and then give an explicit 
simple relaxation of U from which Mantel’s 
theorem will follow.

A triangle-free graph may have three dif-
ferent graphs on three vertices as induced 
subgraphs: the empty graph , the graph 
with one edge , and the graph with two 
edges . (Nonedges are represented 
by dashed lines.) Let G be a triangle-free 
graph. Every edge of G belongs to | |G 2-  
induced subgraphs with three vertices, 
whence

(p  ; ) (G p2+  ; ) (G p3=  ; ) .G

This is valid for every triangle-free graph G, 
hence also for a limit functional z:

(z ) (2z+ ) (3z= ).

We have our first constraint satisfied for 
all !z U.

A second constraint comes from the 
identity

(p  ; )
| | ( )

,G
G d v
3 2

( )v V G

1

=
!

-

b bl l/

where ( )d v  is the degree of vertex v. To 
rewrite the right-hand side above, we need 
to extend the definition of the density 
function p to partially-labeled graphs. Say 
F and G are graphs each having a special 
vertex labeled 1, and let x1 be the vertex of 
G labeled 1. Let ( ; )p F G  be the probability 
that a set ( )\{ }U V G x13  with | | | |U F 1= - , 
chosen uniformly at random, is such that 

[ { }]G U x1,  is isomorphic to F via a la-
bel-preserving isomorphism, that is, an 
isomorphism that takes the labeled vertex 
of F to the labeled vertex of G.

For ( )v V G! , denote by Gv the labeled 
graph obtained from G by labeling vertex 
v with label 1. Let  denote the labeled 
graph obtained from  by labeling the 
vertex of degree two with label 1; similarly 
for other graphs the solid vertex will be 
the labeled vertex. Then for a triangle-free 
graph G we have

(p  ; )
| | ( )

G
G d v
3 2

( )v V G

1

=
!

-

b bl l/
| |

(
G

p3
( )v V G

1

=
!

-

b l /  ; )
| |

G
G

2
1v -b l

(3)| |
(

G
p3

( )v V G
=

!

/  ; ) .Gv

In (1) we may therefore restrict ourselves 
to convergent sequences and this allows 
us to work with their limits. Call : RG "z  
a limit functional if there is a convergent 
sequence ( )Gk k 0$  of H-free graphs such 
that

( ) ( ; )limF p F Gk
k

z =
"3

for all F G!  and let U denote the set 
of all limit functionals. Then computing 

( , )ex C H  is the same as solving an opti-
mization problem over U:

( , ) { ( ): } .supex C CH !z z U= (2)

This is just a rewording of the original 
problem, but it emphasizes that the diffi-
culty here lies in understanding U. This set 
may be very complex and computationally 
intractable, but to get an upper bound for 

( , )ex C H  we do not need to work with U. 
Instead, we may look for a nice relaxation 
of U, that is, a set 4U Ul  for which we 
can solve the optimization problem. A first 
and obvious relaxation would be to take 

[ , ]0 1 GU =l . Solving the optimization prob-
lem is then trivial, but we always get the 
bound ( , )ex C 1H # . The difficulty lies in 
managing the trade-off between the quality 
of the relaxation and its tractability.

The theory of flag algebras [12], devel-
oped by the Russian mathematician Alex-
ander Razborov, winner of the Nevanlin-
na Prize in 1990 and the Gödel Prize in 
2007, gives us computationally-tractable 
relaxations of U that have displayed good 
quality in practice. We may then use the 
computer to solve the corresponding op-
timization problems, thus obtaining upper 
bounds for ( , )ex C H  that are often tight. 
Perhaps the most attractive feature in the 
theory is that the whole process is more-
or-less automatic: obtaining the relaxation 
and solving the corresponding problems is 
basically a computational matter. So the 
theory of flag algebras allows us to har-
ness computational power and apply it to 
problems in extremal combinatorics; it can 
be understood as part of the growing trend 
for the use of computers in mathematics.

Razborov credits Bondy [3] with a pre-
decessor of the theory of flag algebras. 
Bondy applies counting techniques to the 
Caccetta–Häggkvist conjecture and illus-
trates his idea on Mantel’s theorem. (The 
Cacceta–Häggkvist conjecture states that 
every simple directed graph on n vertices  
with outdegree at least r has a cycle with 
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together with , ,F Fs t1 f+  fit in G, the iden-
tity

( , , ; )

( , , ; ) ( , , , ; )

p F F G

p F F F p F F F G
t

s s t
F

1

1 1
Fn

f

f f=
!

+
v

/

holds.

Recall from the introduction that (p  ; 
) (G pv "  ; )Gv 2 as | |G " 3. The argu-

ment to see this can be rephrased in two 
steps as follows. First, since G is triangle- 
free, then (p  ; ) (G pv = ,  ; )Gv . This 
can be seen directly, but is also a conse-
quence of the chain rule. Indeed, let H = 
{ } and let • denote the only type of size 
1. Then •-flags ,  fit in a •-flag of 
size 3. Since F3 =: { , , , , }, 
the chain rule gives

(p ,  ; ) (G p
F F3

=
! :l

/ ,  ; ) ( ; )F p F Gl l

(6)(p=  ; ) .G

Second, (p ,  ; ) (G pv "  ; )Gv 2 as 
| |G " 3, that is, density exhibits multipli-
cative behavior in the limit:

Theorem 2. If F1, F2 are fixed v-flags, then 
there exists a function ( ) ( / )f n O n1=  such 
that if F1, F2 fit in a v-flag G, then

| ( , ; ) ( ; ) ( ; ) | (| |) .p F F G p F G p F G f G1 2 1 2 #-

Identity (6), that comes from an applica-
tion of the chain rule, suggests that there 
is a relation between the pair ( , ) 
and . In the next section, we will use 
the chain rule to define a product opera-
tion on v-flags, and under this product it 
will hold that  ·  = . This product 
will also commute with the density func-
tion in the limit: for v-flags F1 and F2 we 
will have ( ; ) ( ; ) ( ; )p F F G p F G p F G1 2 1 2"$  as 
| |G " 3.

hence is a type, but there are no -flags 
of size 1000$ .

From now on, we assume that all types 
are nondegenerate. In particular, every 
time a result about v-flags is stated, it is 
implicitly assumed that v is nondegener-
ate.

Density
The definition of density given in the in-
troduction can be extended to v-flags as 
follows. We say that v-flags , ,F Ft1 f  fit in 
a v-flag G if

| | | | (| | | |) (| | | |) .G F Ft1 g$v v v- - + + -

Let , ,F Ft1 f  and ( , )G i  be v-flags such that 
, ,F Ft1 f  fit in G. Consider the following 

experiment: choose pairwise-disjoint sets 
, , ( )\ ImU U V Gt1 f 3 i of unlabeled ver-

tices of G with | | | | | |U Fi i v= -  uniformly 
at random. Let ( , , ; )p F F Gt1 f  be the prob-
ability that the v-flag ( [ ], )ImG Ui , i i  is 
isomorphic to Fi for , ,i t1 f= . This is the 
density of , ,F Ft1 f  in G. For Q-flags and 
t 1= , this definition coincides with the 
usual notion of density for graphs. In the 
introduction we also extended the defini-
tion of density to graphs with one labeled 
vertex; this corresponds to taking t 1=  and 
the only type of size 1 as v.

Say | | | |F n G# # . To embed F into G, 
we may first try to embed F into a v-flag 
Fl of size n and then embed Fl into G. This 
gives us another way to compute ( ; )p F G :

( ; ) ( ; ) ( ; ) .p F G p F F p F G
F Fn

=
! v

l l
l

/ (5)

This identity can be generalized, giving us 
the chain rule:

Theorem 1. If , ,F Ft1 f , and G are v-flags 
such that , ,F Ft1 f  fit in G, then for every 

s t1 # #  and every n such that , ,F Fs1 f  fit 
in a v-flag of size n and a v-flag of size n 

next few sections we will develop Razbor-
ov’s theory of flag algebras, which auto-
mates this process. The discussion will be 
focused on families of graphs for concrete-
ness, though one of the most attractive 
features of the theory is that it applies to a 
whole range of structures, including direct-
ed graphs, hypergraphs, and permutations.

For an integer k 0$ , write [ ] { , , }k k1 f= . 
Fix a family H of forbidden subgraphs. A 
type of size k is an H-free graph v with

( ) [ ]V kv = . We can think of it as a graph 
with vertices labeled with , ,k1 f , whereas 
we regard graphs as unlabeled. The empty 
type is denoted by Q.

Let v be a type of size k and F be a 
graph on at least k vertices. An embed-
ding of v into F is an injective function 

: [ ] ( )k V F"i  that defines an isomorphism 
between v and the subgraph of F induced 
by Imi.

A v-flag is a pair ( , )F i  where F is an 
H-free graph and i is an embedding of 
v into F. So a v-flag is a partially-labeled 
graph that avoids H and whose labeled 
part is a copy of v. When the embedding 
itself is not important, we will drop it, 
speaking simply of the v-flag F.

The labeled vertices of ( , )F i  are the 
vertices in the image of i. Note that an Q
-flag is just an H-free graph. Any type v of 
size k can also be seen as the v-flag ( , )v i  
where i is the identity on [ ]k .

Isomorphism between v-flags is de-
fined just as for graphs, but now the labels 
should also be preserved by the bijection. 
More precisely, v-flags ( , )F i  and ( , )G h  
are isomorphic if there is a graph isomor-
phism : ( ) ( )V F V G"t  between F and G 
such that ( ( )) ( )i it i h=  for , , | |i 1 f v= . 
Write ( , ) ( , )F G-i h  when ( , )F i  and ( , )G h  
are isomorphic, or simply F G-  when the 
embeddings are not important. In the in-
troduction, this notion was used only for 
v-flags where v is the type of size 1. Figure 1 
shows some flags of different types.

For | |n $ v , denote by Fn
v the set of 

all v-flags of size n, taken up to isomor-
phism; denote by Fv the set of all v-flags 
taken up to isomorphism. Note that the 
set G of all H-free graphs is simply FQ. 
 A type v is degenerate if Fv is finite. If 
v is nondegenerate, then Fn 4!v  for all

| |n $ v . It is easy to construct a family H 
for which there are degenerate types: take 
for instance H as the set of all graphs with 
1000 vertices containing at least one trian-
gle. Then the triangle itself is H-free, and 

Figure 1 Let H = { }. On the top row we have all Q-flags of sizes 2 and 3, up to isomorphism (nonedges are shown as 
dashed lines); notice that the triangle itself is not a flag. On the bottom row we have all flags of type v = 1  2; notice 
that the last two of these flags are not isomorphic, since the isomorphism has to preserve the labels.

1 2 1 2 1 2
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We denote the set of all algebra homomor-
phisms between Av and R by ( , )Hom RAv .

As an example, recall the discussion at 
the end of the previous section. When H =
{ }, if we expand the product  ·  
as a linear combination of •-flags of size 
3, then  ·  = . Hence every limit 
functional z satisfies (z ) (z=  · ) 

(z= )2.
Every limit functional z lies in 

( , )Hom RAv . Another obvious constraint 
that every limit functional z must satisfy 
is ( )F 0$z  for every v-flag F, which is not 
necessarily true of all homomorphisms. 
Call ( , )Hom RA!z v  positive if ( )F 0$z  
for every v-flag F, and let ( , )Hom RAv+

denote the set of all positive homomor-
phisms.

It turns out that these are all the es-
sential properties of a limit functional. 
It is clear that every limit functional is a 
positive homomorphism. The following 
theorem of Razborov [12] establishes the 
converse, and so positive homomorphisms 
are precisely the limit objects of conver-
gent sequences of flags. In particular, the 
linear extension of the set U is precisely 

( , )Hom RAQ+ .

Theorem 3. Every limit functional is a pos-
itive homomorphism and every positive 
homomorphism is a limit functional.

Finally, notice that types and flags are 
defined in terms of the family H of forbid-
den subgraphs, so this family is encoded 
in the construction of the flag algebra Av.

Downward operator
We are really interested in working with Q- 
flags, that is, unlabeled graphs, so why 
consider other types altogether? Most 
times, in order to obtain results for Q-flags, 
it is necessary to use other types. In the 
introduction, to obtain Mantel’s theorem, 
it was not enough to work with unlabeled 
graphs: at some point, we had to introduce 
labeled graphs, namely to get (3).

The downward operator maps v-flags 
into Q-flags, in such a way that we can 
derive valid inequalities for densities of Q- 
flags from valid inequalities for densi-
ties of v-flags. If types can be seen as a 
form of lifting, then the downward oper-
ator is a projection back to our space of 
interest.

If F is a v-flag, then F.  is the Q-flag ob-
tained from F simply by forgetting the em-

and define /RA F K=v v v. This is a non-
trivial vector space, since for every v-flag F 
we have ( ; )p F 1v = , and hence v is itself 
not in Kv. Since Kv is contained in the 
kernel of every limit functional, every limit 
functional is also a linear functional of Av.

The main advantage of working with 
Av instead of RFv is that it is possible to 
define a product on Av, turning it into an 
algebra. This product will conveniently en-
code the asymptotic multiplicative behav-
ior of densities described in Theorem 2: for 
every limit functional z and ,f g A! vwe 
will have ( ) ( ) ( )f g f g$z z z= .

For v-flags F and G, let n be any inte-
ger such that F, G fit in a v-flag of size n 
and set

( , ; ) .F G p F G H H K
H Fn

$ = +
!

v

v
f p/ (8)

This defines a function from F F#v v

to Av and one may show that the defi-
nition is independent of the choice of n 
for each pair ( , )F G  of v-flags. Now, extend 
this function bilinearly to R RF F#v v. 
It is possible to prove that if f K! v and 
g RF! v, then f g K$ = v, whence the bi-
linear extension is constant on cosets, and 
therefore defines a symmetric bilinear form 
on Av, that is, a commutative product.

This turns Av into an algebra, the flag 
algebra of type v. The product on Av is 
now defined, and we will use henceforth 
the natural correspondence f f K7 + v be-
tween RFv and Av without further notice, 
i.e., we will omit Kv and write f instead of 
f K+ v for an element of Av. Sometimes, 
namely in the last section, it is important 
to work with explicit representatives of 
each coset; in such cases we will clearly 
distinguish between cosets and their rep-
resentatives.

Under the product just defined for Av, 
the type v, taken as a v-flag, is the iden-
tity element. The identity v can be decom-
posed in many different ways using rela-
tions (7). Indeed, for any | |n $ v , we have

( ; ) .p F F F
F FF Fn n

v v= =
! !v v

/ /

It now follows from Theorem 2 that limit 
functionals are multiplicative, i.e.,

( ) ( ) ( )f g f g$ $z z z=

for ,f g A! v. Since by construction 
( ) 1z v = , every limit functional z is an al-

gebra homomorphism between Av and R. 

Flag algebras
In the introduction, we derived the con-
straint

(z ) (2z+ ) (3z= ),

valid for every !z U. If we see [ , ]0 1 G!z

as a vector, then this is a linear constraint 
on the components of z.

To enable the use of tools from optimi-
zation, mainly duality, we need to embed 
our domain into a vector space. We do so 
by extending z linearly to the space RG of 
formal real linear combinations of graphs 
in G. We could then rewrite the latter con-
straint as

(z 2+  ) (3z=   ),

or even

(z 2+  3-   ) .0=

One of our main goals is to character-
ize the linear functionals on RG that are 
limit functionals. Instead of describing all 
the constraints that characterize limit func-
tionals, it is convenient to encode some 
of them algebraically, that is, by modifying 
the algebraic structure of RG. The resulting 
algebraic object will be the flag algebra, 
which we construct now for the more gen-
eral case of v-flags.

Let RFv be the free vector space over 
the reals generated by all v-flags, i.e., 
RFv is the space of all formal real linear 
combinations of v-flags. Let ( )Ak k 0$  be a 
convergent sequence in Fv and let

( ) ( ; )limF p F Ak
k

z =
"3

be the pointwise limit of the functions 
( ; )p Ak$ . Extend z linearly to RFv, obtain-

ing a linear functional. We say that z is the 
limit functional of the convergent sequence 
( )Ak k 0$  or, when the sequence itself is not 
relevant, that it is a limit functional.

For any limit functional z, the chain rule 
in its form (5) implies that for every v-flag 
F and | |n F$  we have

( ) ( ; ) ,F p F F F
F Fn

z z=
! v

l l
l

f p/

that is,

( ; )F p F F F
F Fn

-
! v

l l
l

/ (7)

is in the kernel of z. Instead of enforcing 
these infinitely many relations, we might 
as well just quotient them out. So let Kv 
be the linear span of vectors of form (7) 
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achieved, albeit via the dual:

for all and
( , ) ( ) :( , )

( , ) .

Hom f

f

0

1

RA A

C

*

Q

3 ! $

!

z z

z =

Q Q+ #
,

What are some f A! v that belong 
to the semantic cone Sv? Since a pos-
itive homomorphism z is by definition 
nonnegative on every v-flag F, then any 
conic combination of v-flags is in the se-
mantic cone. Another class of vectors in 
the semantic cone is the class of vectors 
that are sums of squares. We say that 
f A! v is a sum of squares if there are 

, ,g g At1 f ! v such that f g gt1
2 2g= + + . 

Then for any positive homomorphism z 
(actually, for any homomorphism) we have 

( ) ( ) ( )f g g 0t1
2 2g $z z z= + + . The class 

of sum-of-squares vectors is particularly 
interesting because it is computational-
ly tractable, as we will soon see. Finally, 
the downward operator maps the semantic 
cone Svof type v into the semantic cone 
SQ of type Q:

Theorem 5. The image of Sv under $ v! +  is 
a subset of SQ.

This gives yet another way to obtain 
vectors in SQ, by first considering a type 
v, then obtaining a vector in Av (a sum-
of-squares vector, for instance), and then 
using the downward operator.

The semidefinite programming method
Semidefinite programming is conic pro-
gramming over the cone of positive 
semidefinite matrices. Using sum-of-
squares vectors in Av and the downward 
operator, we may define a family of trac-
table cones contained in SQ. Then using 
semidefinite programming it is possible 
to write down optimization problems that 
provide upper bounds to (10). This ap-
proach is known as the semidefinite pro-
gramming method. Its main advantages 
are that writing down the semidefinite pro-
gramming problems is mostly a mechani-
cal affair, that can even be automated (and 
has been; see for instance flagmatic [5]), 
and solving the resulting problems can be 
done with a computer.

There is a well-known relation between 
sums-of-squares polynomials and positive 
semidefinite matrices (see e.g. the expo-
sition by Laurent [9]). We now establish 
the analogous relation between sums-
of-squares vectors in Av and positive 
semidefinite matrices. The degree of a vec-

because ( , )Hom RAQ+  is compact. Actual-
ly, equality holds by the bipolar theorem.)

The optimization problem on the right-
hand side above is a conic programming 
problem. It asks us to maximize a linear 
function ( , )C7z z  over the intersection of 
a cone, namely ( )S *Q , and an affine sub-
space, in our case determined by the linear 
equation ( , ) 1Qz = .

This conic programming problem has a 
dual problem, namely

and: ,min C RSQ ! !m m m- Q" , (10)

where the optimization variable is m. (We 
may write ‘min’ instead of ‘inf’ because the 
feasible region is a closed half-line in R.)

Weak duality holds: any feasible solu-
tion of the dual has larger or equal ob-
jective value than any feasible solution of 
the primal. Indeed, if ( )S *!z Q  is such 
that ( , ) 1Qz =  and R!m  is such that 

C SQ !m - Q, then

( , ) ( , ) .C C0 Q# z m m z- = -

Actually, it is easy to show that there is no 
duality gap, that is, that primal and dual 
have the same optimal value. Even more: 
the problem on the left-hand side of (9) 
has the same optimal value of the dual 
problem (10), and so all three optimization 
problems in (9) and (10) have the same 
optimal value. Indeed, notice that the max-
imum on the left-hand side of (9) is equal 
to

for all:( , ) ( , ) .min HomC RA# !m z m z Q+# -
Now, ( , )C$m z  for all ( , )Hom RA!z Q+  if 
and only if ( , )C 0Q $z m -  for all !z  

( , )Hom RAQ+  if and only if C SQ !m - Q, 
as we wanted.

To find an upper bound for ( , )ex C H  we 
work with the dual problem (10). One ad-
vantage is that we do not need to solve 
this problem to optimality to find an upper 
bound, since any feasible solution pro-
vides an upper bound. Solving (10) to op-
timality is the same as solving the primal 
problem to optimality, which is the same 
as computing ( , )ex C H . 

One way to simplify the dual problem 
(10) is to replace SQ with a cone C S3 Q 
for which it is easier to solve the resulting 
problem. Obviously, we still get a valid up-
per bound. We seem to have taken a tor-
tuous path since the introduction, where 
we stated our goal of finding a relaxation 
of U, of which ( , )Hom RAQ+  is the linear 
extension, but that is exactly what we 

bedding, that is, by forgetting the vertex 
labels. For a v-flag F, let ( )q Fv  be the prob- 
ability that an injective map : [ ] ( )k V F"i  
taken uniformly at random is such that 
( , )F. i  is a v-flag isomorphic to F and set

( ) ,F q F F.=v v" ,
then extend $ v! +  linearly to RFv to obtain 
a linear map from RFv to RF Q. One key 
property of this map is that K K3 Qv

v" , , 
and hence $ v! +  gives a linear map from Av 
to AQ, which we call downward operator. 
The main tool used in the proof of this 
result is the following lemma, which relates 
densities in the labeled and in the unla-
beled cases by taking an average.

Lemma 4. Let F be a v-flag and G be an Q- 
flag with | | | |G F$  and ( ; )p G 0>.v . If i is 
an embedding of v into G chosen uniform-
ly at random, then ( ; ( , ))p F G i  is a random 
variable and

[ ( ; ( , ))]
( ) ( ; )
( ) ( ; )

.p F G
q p G
q F p F G

E
.

.
i

v v
=

v

v

Note that equation (3) in the intro-
duction follows trivially from this lemma. 
Indeed, take :v =  as the type of size 1 
and let F = . Then F. = , ( )q F 3

1=v , 
( )q 1v =v , and ( ; )p G 1.v =  for any graph G. 

Thus, by Lemma 4,

| |
(

G
p1

( )v V G!

/  ; ) [ ( ; ( , ))]G p F GEv i=

( ) ( ; )
( ) ( ; )

q p G
q F p F G

.

.

v v
=

v

v

(p3
1=  ; ) .G

Conic programming
For f A! v and a linear functional z in the 
dual space ( )A *v  of Av, write ( , ) ( )f fz z= . 
The semantic cone of type v is the set

for all

:( , )

( , ) .Hom

f f 0

R

S A

A

! $

!

z

z

=v v

v+

#
-

This is a convex cone and its dual cone

for all

( ) ( ) :( , )f

f

0S A

S

* *! $

!

z z=v v

v

#
-

contains every nonnegative multiple of 
functionals in ( , )Hom RAv+ . So, given a 
graph C,

and

( , ) : ( , )

( , ) : ( ) ( , ) .

max

max

HomC

C 1

RA

S * Q

!

# !

z z

z z z =

Q

Q

+#
#

-
- (9)

(Here we may write ‘max’ instead of ‘sup’ 
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and then apply the downward operator to 
get

 vv =:<

J

L

KKKKKKKK
" ,  

+3
1  3

1 ( + )
 .

N

P

OOOOOOOO
  3

1 ( + ) 3
1

We will deal with r below in a different 
way (actually, we will get rid of it). Notice 
we could have chosen different represen-
tatives. For instance, we could have ex-
panded the products in vv< using •-flags 
of size 6, say. All that matters, however, is 
to choose representatives, and it is usually 
a good idea to choose representatives of 
smallest possible degree.

Now we are working exclusively with 
representatives in RFQ. For a given N 0>
and fixed G FN! Q, extend ( ; )F p F G7  lin-
early to FN

Q. If for every G FN! Q we have

(p Qm -   ; )G

( ; ) ( , ; ),p r G p vv Q GG H= + :
<" ,  (13)

then (12) holds. Conversely, if (12) holds, 
then for some N 0>  (13) holds for every 
G FN! Q (this requires a short argument 
though).

Now, ( ; )p r G  is the coefficient of G in 
r; then, since r is a conic combination, 

( ; )p r G 0$  for every G FN! Q. Together 
with linearity this implies that we may re-
write (13) equivalently as

(pm -  ; ) ( ; ), ,G p vv G Q$G H:
<" ,  (14)

where ( ; )p G$  is applied entrywise to vv<. 
Notice that p(  ; )G  is a number and 

( ; )p vv G:<" ,  is a matrix of numbers, so for 
each G FN! Q the above inequality is a lin-
ear constraint on m and the entries of Q.

In our case, we may take N 3= . Then 
(14) gives rise to one linear constraint for 
each of the Q-flags of size 3:

 Q-flag constraint

  , ,Q
1
0

0
0

$m e o

  , ,Q03
1 3

1

3
1

3
1

$m - f p

  , .Q
0

3
2

3
1

3
1

3
1$m - f p

In this way we may rewrite problem 
(11), obtaining a semidefinite programming 
problem that gives an upper bound to the 
optimal value of (11), and hence also to ex(

, { }). This problem is not necessarily 
equivalent to (11), since for a given N equal-

belongs to the semantic cone SQ, we have 
that

r v Qv S!+ :
< Q# -

for every conic combination r of Q-flags 
and every positive semidefinite matrix Q.

So, recalling (10), any feasible solu-
tion of the following optimization problem 
gives an upper bound to ex( , { }):

min m

Qm -   r v Qv= + :
<# - ,

(11)
r is a conic combination of Q-flags,

:Q RF F2 2"#: :  is positive semidefinite.

This problem is not quite a semidefinite 
programming problem: the first identity 
above is an identity between vectors in AQ, 
not a linear constraint on m and the en-
tries of Q. This identity can be translated, 
however, into several linear constraints, as 
follows.

If A and B are n n#  matrices, write 
, trA B A B A B, iji j

n
ij1G H= =<

=
/ . Then

, , .v Qv vv Q vv QG H G H= =: : :
< < <# # "- - ,

Here, notice that vv< is a matrix. The down-
ward operator, when applied to the matrix 
vv<, is applied entrywise and yields a ma-
trix of the same dimensions as the result.

So the first constraint in (11) can be re-
written as

 Qm -   , ,r vv QG H= + :
<" ,  (12)

which is still an identity between elements 
of AQ. To test the above identity, we may 
choose a large enough N and use the 
chain rule to expand both left and right-
hand sides as linear combinations of Q- 
flags of size N. If the coefficients coincide, 
then equality holds. This is only a sufficient 
condition however: for a fixed N, equality 
may hold in AQ even though the coeffi-
cients differ, but it is not hard to show that 
there is always some N for which equality 
holds if and only if the coefficients coin-
cide.

To make things precise, we have to 
choose for , r, and every element of 
AQ in vv< a representative in RFQ. As a 
representative of   A! Q we may choose 

  RF! Q. For vv< proceed as follows: 
use the definition of product in A : to get

 vv =<

J

L

KKKKKKKK

 +  2
1 (  + )

 

N

P

OOOOOOOO
 

  2
1 ( + ) 

tor f RF! v is the largest size of a flag 
appearing with a nonzero coefficient in the 
expansion of f; by convention, the degree 
of 0 is 1- . The notion of degree can be 
extended to Av, by setting the degree of 
f K A!+ v v to be the smallest degree of 
any g f K! + v. For a type v and | |n $ v , 
let :v F A,n n "v

v v be the canonical em-
bedding, i.e., ( )v F F,n =v  for all F Fn! v.

Theorem 6. If f A! v and | |n $ v , then 
there are vectors , ,g g At1 f ! v for some 
t 1$ , each of degree at most n, such that 
f g gt1

2 2g= + +  if and only if there is a pos-
itive semidefinite matrix :Q RF Fn n "#v v

such that f v Qv, ,n n= <
v v .

Proof. Suppose that there are vectors 
, ,g gt1 f  as described. Modulo Kv, every 

v-flag of size m can be written as a linear 
combination of v-flags of any fixed size 
greater than m. So by hypothesis we can 
take from each coset g Ki + v a representa-
tive g RFi !

vt  which is a linear combina-
tion of v-flags of size n.

Let ci be the vector of coefficients of git , 
in such a way that g c v ,i i n= <

vt . Then

,

g g c v

v c c v

,

, ,

t i n
i

t

n
i

t

i i n

1
2 2 2

1

1

g+ + =

=

<

< <

v

v v

=

=

t t ` j/

/

and we may take Q c c c ct t1 1 g= + +< <.
For the converse, say there is a positive 

semidefinite matrix Q as described. Then for 
some t there are vectors , ,c ct1 f  such that 
Q c c c ct t1 1 g= + +< <. But then g c v ,i i n= <

v  
has degree at most n in Av. Moreover, 
f g gt1

2 2g= + + , as we wanted. □

Let us describe the semidefinite pro-
gramming method by applying it to Man-
tel’s theorem. Fix H ={ }. We have the 
following Q-flags of sizes 2 and 3: , , 

,  and . There is also only one 
type of size 1, namely the graph on one 
vertex, which we denote by •. These are 
the •-flags of sizes 2 and 3: , , , 

, , , and .
Write v v ,2= : , so that in vector notation 

we have (v = , ) . From Theorem 6, 
if :Q RF F2 2 "#: :  is a positive semidef-
inite matrix, then v Qv<  belongs to the 
semantic cone S : of type •, and hence 
from Theorem 5 we have that v Qv :

<# -  be-
longs to the semantic cone SQof type Q. 
Since any conic combination r of Q-flags 
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to show properties of all increasing se-
quences ( )Gk k 0$  that attain ( , )ex C H , an 
important issue in extremal combinator-
ics. Razborov [12] further developed other 
methods involving flag algebras, such as 
the differential method and the inductive 
method.

Techniques involving flag algebras have 
been used to obtain many significant new 
results such as: computing the minimal 
number of triangles in graphs with given 
edge density [11, 13], computing the maxi-
mum number of pentagons in triangle-free 
graphs [6, 8], and obtaining new advances 
towards the Cacceta-Häggkvist conjecture 
[14]. Besides being applied in the context 
of graphs and digraphs, flag algebras have 
also been successfully used in the setting 
of colored graphs [1, 4] and of permuta-
tions [2]. For many more references, see 
the thesis of Grzesik [7]. s

Summary
The theory of flag algebras provides a 
powerful, unifying approach for extremal 
problems involving a host of combinatorial 
structures. Its novelty is that it allows the 
formulation of relaxations for such prob-
lems using conic programming, which can 
be further relaxed to semidefinite program-
ming problems, thus enabling the use of a 
computer to obtain bounds. Most impor-
tantly, the computed bounds are often tight. 
Hence, the theory yields relaxations that 
achieve the desired trade-off of computa-
tional tractability and high-quality bounds.

We have only scratched the surface of 
the theory of flag algebras. Many optimi-
zation aspects of the semidefinite method, 
such as the use of complementary slack-
ness to obtain further constraints on the 
optimal solutions for (9), were left out. 
Complementary slackness can be useful 

ity in the algebra may hold even though the 
linear constraints are not satisfied.

Now, it is easy to check that 2
1m =  and 

Q 2
1 1

1
1

1
=

-
-c m form a feasible solution of this 

semidefinite programming problem (and 
hence also of (11)), and so we have Man-
tel’s theorem.

All the steps of the semidefinite pro-
gramming method are contained in the 
example we worked out above. In general, 
however, one may choose a finite set T of 
types instead of only one type and consid-
er the vectors in SQ given by

,r v Q v, ,n n
T

+ <

!
v v v v

v
v v

$ ./

where r is a conic combination of Q- 
flags, | |n $ vv , and each Qv is a positive 
semidefinite matrix. Choosing more types 
makes the problem larger, but also poten-
tially stronger.
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