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In this column holders of a tenure track position introduce themselves.

The tenure track positions in mathematics became available in 2013.

Excellent researchers could apply in several expertise areas of mathe-

matics. François Genoud has a tenure track position at Delft University

of Technology.

I am a Swiss mathematician from Lausanne, where I did my undergrad-

uate studies in physics and my PhD in mathematics with Charles A.

Stuart. Since January 2015 I am an Assistant Professor Tenure Track in

the Analysis Group of Delft University of Technology. I arrived here after

a six-year postdoctoral journey through Oxford, Edinburgh and Vienna,

which allowed me to diversify my research interests in important areas

of mathematical physics.

My research lies in the rigorous mathematical analysis of differential

equations. An important part of my work revolves around bifurcation

theory, which is a powerful tool to understand qualitative properties of

nonlinear partial differential equations. Partial differential equations

(PDEs) are a natural language to describe many physical phenomena.

The solutions of the equations represent physical quantities character-

ising the state of a given system. Bifurcation theory explains how the

possible states of the system change when some physical parameters

are varied.

The core of my work is in the analysis of nonlinear PDEs. I develop

and apply abstract functional analytic methods (e.g. topological de-

gree theory, min-max methods from the calculus of variations, implicit

function theorems) to study PDEs in a rigorous mathematical frame-

work. Thanks to my early education in physics, I am always keen on

understanding the underlying physical models as well. Many important

phenomena in nature involve some sort of oscillatory motion, modelled

by ‘wave equations’ that are typically nonlinear. Even though it is in

general not possible to solve the equations explicitly, the mathematical

analyst can prove theorems about existence and properties (regularity,

stability, blow-up, et cetera) of the solutions. This is essential for a

deep understanding of the physical theories formulated through the

equations.

I have applied nonlinear analysis to various important PDEs coming

from mathematical physics, for instance in models of large-scale ocean-

ic waves based on the Euler equation [7], or the study of phase transi-

tions in nematic liquid crystals [1]. A large part of my research has been

concerned with nonlinear Schrödinger (NLS) equations, which arise in

the modelling of a variety of wave motions, including the propagation

of light in optical fibres, Langmuir waves in plasma, Bose–Einstein con-

densates, or water waves on the sea. For NLS equations, I have proved

the existence of stable nonlinear waves, known as ‘solitons’. These
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are idealisation of waves encountered in real-world systems, charac-

terised by strong localisation in space (and/or time) and strong stability

properties. Such waves can for instance represent narrow laser/light

beams in nonlinear optical media, solitary waves on a water surface,

rogue waves, et cetera.

Nonlinear wave guides

Bifurcation theory has proved especially useful to study equations hav-

ing a nontrivial spatial dependence, sometimes referred to as inhomo-

geneous NLS. In the context of a planar nonlinear waveguide, they take

the general form

i∂zψ + ∂2
xxψ + f (x, |ψ|2)ψ = 0,

ψ = ψ(x, z) : R× R → C,
(1)

where z is the direction of propagation of the wave and ∂2
xxψ is the

Laplacian of the (complex envelope of the) electric fieldψ in the trans-

verse directionx. In this model, the nonlinear response f (x, |ψ|2) rep-

resents the electric permittivity of the material. In self-focusing media,

this is a positive function, increasing in the field intensity |ψ|2. A laser

beam travelling in the material locally modifies its permittivity, thereby

focusing itself along the propagation axis x = 0. The dependence on

x accounts for inhomogeneities in the medium. The most commonly

used materials are the Kerr media, for which f (x, |ψ|2) = V (x)|ψ|2,

for some V : R → R+.

We call soliton a standing wave solution of the form ψ(x, z) =

u(x)eikz, wherek ∈ R andu : R → R is localized — typicallyu ∈ H1(R)

and u(x) → 0 exponentially as |x| → ∞. Such a solution of (1) exists

if and only if u satisfies the nonlinear ordinary differential equation

u′′(x) + f (x,u2(x))u(x) = ku(x), u ∈ H1(R). (2)

Soliton curves k 7→ ψk(x, z) = uk(x)eikz can be obtained by bifurca-

tion techniques applied to (2). Heuristically, the existence of solitons

is allowed by a balance in (1) between the diffraction modelled by

the Laplacian and the self-focusing effects due to the nonlinear term

f (x, |ψ|2)ψ. Their stability then depends on the monotonicity of the

function k 7→ ‖uk‖L2 and on the spectral properties of linearised op-

erators associated with (1)–(2).

The combination of space-dependent coefficients and nonlineari-

ties more general than the pure-power law f (x, |ψ|2) = |ψ|p−1 (p > 1)

is of major interest for applications, but has only been scarcely in-

vestigated in the mathematical literature. I have obtained curves

k 7→ uk ∈ H
1(R) of stable solitons for a nonlinear response of the

form

f (x, |ψ|2) = V (x)|ψ|p−1 or

f (x, |ψ|2) = V (x)
|ψ|p−1

1 + |ψ|p−1
(1 < p < 5)

under appropriate regularity and decay assumptions on the coefficient

V : R → R, see [2–4]. Another model of interest in nonlinear optics is

given by

f (x, |ψ|2) = ǫδ(x) + 2|ψ|2 − |ψ|4,

where ǫ > 0 is a coupling constant and the Dirac mass δ(x) models a

narrow attractive potential centred at x = 0. A remarkable feature of

this model is that explicit solutions are available, that can be expressed

in terms of elementary functions. Their stability can be proved by

bifurcation and spectral analysis [5].

Wave collapse

What is meant here by stability is that, given an ‘initial condition’ at

z = 0,ψ(·,0) ∈ H1(R), close to the initial condition uk of the standing

wave ψk(x, z) = uk(x)eikz, the corresponding solution ψ(x, z) of (1)

remains close (in an appropriate sense) to ψk(x, z), for all z > 0. In

particularψ(x, z) exists for all z > 0. However, in some situations, the

focusing effects will beat the diffraction in the dynamics of (1), giving

rise to solutions which blow up at a finite propagation distance Z > 0

in the waveguide, in the sense that

lim
z↑Z

‖∂xψ(x, z)‖L2 = ∞.

This phenomenon of ‘wave collapse’ — where, typically, all the beam

power concentrates on the axis of propagation at the blow-up point

— has been well-known since the early days of nonlinear optics. Of

course, the collapse indicates that the physical relevance of the model

breaks down at the blow-up point. However, the dynamics leading to

the blow-up give valuable information on the behaviour of the beam

undergoing intense self-focusing. The formation of singularities in

NLS equations has attracted substantial interest in the past twenty

years, but mostly in the pure-power case, f (x, |ψ|2) = |ψ|p−1. I have

contributed to extend the theory to inhomogeneous NLS equations [6],

and further work in this direction is in progress with Elek Csobo, my

PhD student. k
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