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Onderzoek

Diffusion tensor imaging:
brain pathway reconstruction

Diffusion tensor imaging (DTI) is a recently developed modality of magnetic resonance imaging

(MRI), which allows producing in-vivo images of biological fibrous tissues such as the neural

axons of white matter in the brain. The techniques for reconstructing connections between

different brain areas using DTI are collectively known as fibre tracking or tractography. The brain

connectivity map, derived from the tractography visualization and analysis, is an important

tool to diagnose and analyse various brain diseases, and is of essential value in providing

exquisite details on tissue microstructure and neural networks. In this article Neda Sepasian,

Jan ten Thije Boonkkamp and Anna Vilanova describe a technique for the reconstruction of fibre

pathways.

Assuming that fibre pathways follow the most

efficient diffusion propagation trajectories,

we specifically develop a geodesic-based

tractography technique for the reconstruction

of fibre pathways. Results we obtain us-

ing our technique, based on finding multi-

ple geodesics connecting two given points or

regions are encouraging and give confidence

that this method can be used for practical pur-

poses in the near future.

Brain structure

The nervous system functions as the body’s

communication and decision centre. The

brain and spinal cord are collectively known

as central nervous system. Brain and spinal

cord are made of grey matter and white mat-

ter. White matter consist mostly of myelinat-

ed axons and non-neural cells. Grey matter

is a type of neural tissue mainly consisting of

dendrites and both unmyelinated and myeli-

nated axons. The grey matter takes care of

the processing functions whereas the white

matter provides the communication between

different grey matter areas and the rest of the

body. Sensory nerves gather the information

from the environment and send them to the

spinal cord. The spinal cord sends this infor-

mation to the brain.

The white matter axons are surrounded

by myelin; see Figure 1. The myelin gives

the whitish appearance to the white matter.

Myelin increases the speed of transmission

of all nerve signals and is distributed diffusely

or is concentrated in bundles. These bundles

are often referred to as tracts or fibre path-

ways. Our goal is to develop accurate math-

ematical models for in-vivo reconstruction of

brain fibre bundles to study a host of various

disorders and neurodegenerative diseases in-

cluding, among others, Parkinson, Alzheimer

and Huntington.

Diffusion process

It is known that a significant amount of the

human body consists of water. At a micro-

scopic scale water molecules move freely and

collide with each other. This movement of

water molecules is known as Brownian mo-

tion, which implies that molecules in a uni-

form volume of water will diffuse randomly in

all directions. At a macroscopic scale, this

phenomenon is known as diffusion. Diffu-

sion is the thermal motion of all (liquid and
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Figure 1 (a) Structure of a typical core component (neu-
ron) of the central nervous system. (b) Axial view of a brain
illustrating white and grey matter.

gas) molecules at temperatures above abso-

lute zero. Depending on the medium, dif-

fusion can be either isotropic or anisotropic.

Figure 2 illustrates the difference between dif-

fusion processes in different media. For free

or isotropic diffusion, the probability distribu-

tion of a single molecule located at position

x0 to reach another position x1 after a given

time t is spherically symmetric, i.e., every di-

rection is equally probable. This is illustrated

in Figure 2(a).
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Figure 2 (a) Isotropic diffusion. (b) Anisotropic diffusion.
The arrows indicate possible trajectories which molecules
may follow. In the presence of barriers, e.g. axons, diffu-
sion is restricted in certain directions.

Einstein [9] describes diffusion by relating

the diffusion coefficient D, which character-

izes the mobility of the molecules, to the root

mean square of the diffusion displacement,

i.e.,

D =
1

6t
〈RTR〉. (1)

In this expression R is the net displacement

vector R = x1 − x0. The bracket 〈〉 denotes

the ensemble average. In the isotropic case,

the scalar D depends on the molecule type

and the medium properties but not on the

direction.

Using Fick’s law of diffusion, the diffusion

process can be approximated as follows [8]:

∂P (R, t)

∂t
= D∇2P (R, t). (2)

Here,∇2 is the Laplacian in R and P (R, t) rep-

resents the probability of a water molecule

displacement R in time t, and is known as

the diffusion displacement probability densi-

ty function (PDF). Under the condition

∫

R3
P (R, t)dR = 1, (3)

the solution to equation (2) is a Gaussian dis-

tribution and can be written as

P (R, t) =
1√

(4πDt)3
exp

(
−1

4Dt
RTR

)
. (4)

In anisotropic biological tissues, the mobility

of water molecules is restricted by obstacles

formed by surrounding structures, such as the

axons in the brain; see Figure 2(b). It is known

that myelin sheaths have a property to mod-

ulate the anisotropy of diffusion [6].

Several models have been proposed for

the PDF of anisotropic diffusion. Amongst

these models, the most popular one is known

as the diffusion tensor (DT) model [2]. In this

model of water diffusion, Einstein’s law of dif-

fusion is generalized to anisotropic diffusion

by replacing the scalar diffusion coefficientD

in (1) by a symmetric positive definite matrix

D, as follows

D =



d11 d12 d13

d12 d22 d23

d13 d23 d33


 =

1

6t
〈RRT 〉. (5)

Analogously, equation (2) generalizes to

∂P (R, t)

∂t
= ∇ ·

(
D∇P (R, t)

)
. (6)

The solution of (6) is a Gaussian distribu-

tion and gives the diffusion PDF of water

molecules. Given condition (3), it can be writ-

ten as

P (R, t) =
1√

(4πt)3|D|
exp

(
−1

4t
RTD−1R

)
, (7)

where |D| > 0 is the determinant of D.

Acquisition and reconstruction of diffusion

Diffusion-weighted magnetic resonance imag-

ing (DWMRI) is an acquisition technique to

measure the random Brownian motion of wa-

ter molecules within a voxel of tissue. This

technique provides a unique non-invasive

tool for measuring the local characteristics of

tissues. The first diffusion weighted imag-

ing (DWI) acquisition was done by Taylor et al.

[19] using a hen’s egg as a phantom in a small

bore magnet. Later, Le Bihan et al. [12] ap-

plied the first DWI acquisition for the human

brain on a whole body scan.

To obtain diffusion weighted images, a

pair of strong gradient pulses of a magnet-

ic field, which defines the direction in which

the diffusion is measured, is applied. The

diffusion weighting sequence is commonly

known as the so-called Stesjkal–Tanner se-

quence. Since the diffusion probability distri-

bution function has assumed to be Gaussian,

the attenuated signal of the Stesjkal–Tanner

sequence in relation to D is specified as fol-

lows:

S(y) = S0e
−byTDy , (8)

where y is a unit vector in the diffusion gradi-

ent direction andS(y) is the associated signal.

Hereb represents the so-called b-value and is

the diffusion weighting factor depending on

scanner parameters and S0 is the reference

nuclear magnetic resonance signal.

Given multiple diffusion weighted images,

we can measure quantitative scalars such

as the apparent diffusion coefficient (ADC),

which describe the diffusion process. The

ADC is given by the relation

D(y) = −
1

b
ln

(
S(y)

S0

)
. (9)

The ADC in anisotropic tissues varies depend-

ing on the direction y in which it is measured;

see Figure 3. To model the intrinsic diffusion

properties of biological tissues, Basser et al.

proposed to fit the DWI data to a second or-

der symmetric and positive-definite tensor D

[4]. To this end, one can write the relation be-

tween the ADC and the diffusion tensor D as

follows:

D(yi) = yTi Dyi =

3∑

β=1

3∑

α=1

dαβy
α
i y

β
i , (10)

for i = 1,2, . . . , n with n the number of sam-

pled gradient directions. Using relation (10),

the six unknown coefficients of the diffusion

tensor D can be computed by choosing at

least six gradient directions, typically we take

20 ≤ n ≤ 60. Relation (10) gives rise to an

over-determined system and can be solved
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Figure 3 Diffusion-weighted images with three different acquisition directions. Note the differences in contrast as the gra-
dient direction is changing. Arrows indicate the gradient directions. Adapted from Campbell [8].

using least squares fitting [1]. This is in fact

the same diffusion tensor (DT) as introduced

earlier in Einstein’s equation (5) for anisotrop-

ic diffusion.

The DT is determined by its three eigenval-

ues λ1 ≥ λ2 ≥ λ3 > 0 and its three corre-

sponding orthogonal eigenvectors e1,e2,e3.

The largest eigenvalue λ1 gives the principal

direction e1 of the diffusion tensor. Note that

the other two eigenvectors span the plane

orthogonal to the main eigenvector. Using

the three eigenvalues and their correspond-

ing eigenvectors a DT can be visualized as

an ellipsoid which corresponds to the implicit

surface {R : RT D−2R = const} [3, 7]. Figure

4(a) and 4(b) are illustrations of these proce-

dures. Figure 4(c) shows the diffusion tensor

field for a slice of a brain image.

Diffusion tensor images are useful when

the tissue of interest is dominated by isotropic

water movement such as grey matter in the
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Figure 4 (a) Restricted diffusion process. (b) DT ellipsoids. (c) Saggital view of DT ellipsoids generated for a healthy Human Brain.

cerebral cortex, where the diffusion time ap-

pears to be the same along any axis. There-

fore, they are for example applicable to di-

agnose vascular strokes in the brain. How-

ever, in the cases where the direction and

shape of the diffusion propagation is impor-

tant, the resulting image using this technique

is difficult to interpret directly and does not

provide much information about the underly-

ing fibrous structure. This is particularly cru-

cial for analysing the white matter structure.

Therefore, further reconstruction techniques

have been developed in order to extract more

useful information from these images.

Reconstruction of brain fibre tracts

Due to the fibrous structure of white matter,

diffusion of water molecules is dominant in

the direction of the fibres. As we described

before, diffusion and its directional variation

can be measured by DWI. The process of re-

constructing fibres using DWI is commonly

known as tractography or fibre tracking.

In clinics, the most commonly used DTI

tractography algorithms are principal diffu-

sion direction (PDD) methods [8] where the

fibres are integrated along the main eigen-

vector field e1(x) of the diffusion tensor. This

is numerically equivalent to solving the initial

value problem





ẋ = e1(x(t)), t > 0,

x(0) = x0.
(11)

Here x0 denotes the initial position or seed

point and t is the time. The initial value prob-

lem (11) can be solved using a fourth-order

Runge–Kutta method. Figure 5 illustrates an

example of PDD tractography.

The PDD methods just employ local infor-

mation and are therefore sensitive to noise.

Small changes can produce completely dif-

ferent results or undesired fibre pathways;

see Figure 6. A relatively small amount of

noise in the diffusion tensor field causes ac-

cumulative errors in the trajectory of the fi-

bres. Tackling this problem in tractography

algorithms has been a main inspiration for

introducing many variations of PDD tractogra-

phy. Moreover, it has been recently shown

that the expected properties of actual fibres,

such as fanning, cannot be reconstructed us-

ing PDD based tractography [5]. To overcome

this problem, advanced models, such as glob-

al geometric tractography methods, were de-

veloped to deduce connectivity in the white

matter by globally optimizing a certain cost

function on the basis of the diffusion ten-

sor information. The goal of global geomet-

ric tractography is to find optimal paths that

connect two given regions/points. This can

potentially overcome accumulative errors in-
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(a) (b)
Figure 5 (a) Small group of fibres generated using PDD tractography. The main eigenvectors of the diffusion tensors determine the local orientation of the fibres. (b) fibres generated by PDD
tractography showing part of the cingulum and the corpus callosum.

troduced in tractography due to local noise.

Besides, these models use the whole diffu-

sion tensor profile instead of reducing this in-

formation into a single direction of the main

eigenvector.

Geodesics for tractography

In order to reconstruct the globally opti-

mal pathways we assume that fibre tracts

coincide with geodesics in the Riemanni-

an manifold defined using the inverse of

the diffusion tensor as metric. The ratio-

nale behind this assumption is that wa-

ter molecules move freely along fibre tracts,

and their movement is restricted in the per-

pendicular directions. Therefore, it is as-

sumed that the fibre connecting two points

follows the most efficient diffusion path for

water molecules. We are searching for a

path that maximizes diffusion. This can be

achieved by inverting the metric that con-

verts the largest eigenvalue into the small-

est one. Therefore, we choose G = (gαβ) =

D−1 with D defined in (5). Consequently,

the geodesics for this metric represent the

fibres [20].

Thus, consider a bounded curve C, with

parametrization x = χχ(τ), a 6 τ 6 b.

A geodesic between two points χχ(a) and

χχ(b) is the smooth curve whose length is

the minimum of all possible lengths. In

the following we use the Einstein notation,

i.e., we sum over repeated indices, one in

the upper (superscript) and one in the low-

er (subscript) position. For a general metric

ds2 = gαβdxαdxβ, the length of C is given

by

J[χχ] =

∫

C

ds

=

∫ b

a

(
gαβ(χχ(τ))

· χ̇α(τ)χ̇β(τ)

)1/2

dτ.

(12)

The metric tensor (gαβ) only depends on x,

and is symmetric positive definite. The solu-

tion to the so-called geodesic equations min-

imizes J[χχ]. These are given by

ẍα + Γαβγ ẋ
βẋγ = 0, (13)

where Γαβγ is the Christoffel symbol of the sec-

ond kind, defined by

Γαβγ = gαδ[βγ,δ], (14)

Figure 6 Illustration of the influence of noise in PDD tractography. Small changes in the direction of the tensor can cause
deviation of the fibre from the actual pathway.

where [βγ,α] is the Christoffel symbol of the

first kind, and given by

[βγ,α] =
1

2

(
∂gαβ

∂xγ
+
∂gαγ

∂xβ
−
∂gβγ

∂xα

)
. (15)

Alternatively, we consider the functional that

minimizes the length of all curves joining the

fixed point χχ(a) and the time variable end

point χχ(t), i.e.,

T (x, t) = min
χχ

∫ t

a

(
gαβ(χχ(τ))

· χ̇α(τ)χ̇β(τ)

)1/2

dτ,

(16)

with x = χχ(t). The geodesic connecting

χχ(a) with χχ(t) can be determined from the

Hamilton–Jacobi (HJ) equation, given by
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(a)

(b)

Figure 7 Illustration of a healthy human brain fibre bundle reconstructions. (a) The motor tracts in red and corpus callosum
tracts in blue modified from [11] (top-left), fibres reconstructed for corticospinal tracts using multi-valued geodesics (top-
right) and postcentral gyri areas of the corpus callosum using PDD (bottom-right) and multi-valued geodesics (bottom-left).
(b) Results for the complete area of corpus callosum multi-valued geodesics.

H

(
x,
∂T

∂x

)
= 1, (17)

where the HamiltonianH is given by [15]

H2(x,p) = gαβ(x)pαpβ,

pα := gαβ(x)ẋβ.
(18)

The HJ-equation may generate multi-valued

solutions when, for example, there are dis-

continuities in the gradient field. Therefore,

the viscosity solution is needed to ensure the

existence and uniqueness of the solution to

the HJ-equation [13]. This implies the viscosi-

ty solution is the minimum time; i.e. the first

arrival time, for any curve from a given ini-

tial point to reach any other points inside the

domain. Using the viscosity solution will not

ensure that the solution we obtain is the re-

al physically meaningful one; e.g., shortcuts

when they are not desired. In order to tackle

this issue, multi-valued solutions of the ar-

rival time can be approximated by comput-

ing the geodesics directly from the geodesic

equations [16–17].

The geodesic equation (13) can be rewrit-

ten as the system of ordinary differential

equations

ẋα = uα,

u̇α = −Γαβγu
βuγ .

(19)

Consider (x1(0), x2(0), x3(0)) as given initial

point and (u1(0), u2(0), u3(0)) as initial direc-

tion. We compute the solution of (19) for the

given initial position and multiple initial direc-

tions using the standard fourth order explicit

Runge–Kutta method. This gives us a set of

geodesics for the given initial point and inte-

grate till they hit the boundary of a given do-

main. Here, the domain is the outer surface

of the brain.

Human brain fibre reconstruction

We applied our proposed multi-valued geo-

desic tractography to reconstruct the fibrous

tissue structure of the underlying neural ax-

ons of the white matter of a healthy human

brain. Using available atlases of the human

brain map [14], we select the region of inter-

ests. Geodesics are then computed until they

meet one of the boundaries. To determine the

fibre connecting two given regions we apply

the line-plane intersection [17]. This allows us

to cut off the geodesics once they enter one

of the selected end regions.
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Figure 7(a) shows the geodesics recon-

structed for corticospinal tracts (top-right)

and postcentral gyri areas of the corpus cal-

losum using PDD (bottom-right) and multi-

valued geodesics (bottom-left). Figure 7(b)

illustrates the results for the complete area

of corpus callosum multi-valued geodes-

ics.

Since there is no available ground truth for

fibre bundles, simulated diffusion tensor da-

ta sets or white matter brain atlases are used

for validating the tractography methods. We

validate the results for our method with sim-

ulated phantoms and the report can be found

in [16–17]. Moreover, multi-valued geodesics

tractography has been applied for various hu-

man brain data sets. According to clinical

experts, multi-valued geodesics are more co-

herent with expected fibre tracts associated

with the underlying bundles. Our model re-

constructs the fanning tracts, particularly the

ones connecting the cortex area, while those

were completely missing using the PDD ap-

proach. Our proposed model has been inte-

grated as a part of Vist/e biomedical visual-

ization software and is publicly available, see

https://sourceforge.net/projects/viste.

Future work

Despite the simplicity of the DTI model, trac-

tography techniques using the DT are shown

to be very promising to reveal the structure

of brain white matter. However, DTI assumes

that each voxel contains fibres with only one

single main orientation and it is known that

brain white matter has multiple fibre orienta-

tions, which can be in many directions. High

angular resolution diffusion imaging (HAR-

DI) acquisition and its modelling techniques

have been developed to overcome this lim-

itation. The models applied to HARDI da-

ta result in a function on the sphere that

gives information about the diffusion profile

within the voxel [10]. An ongoing extension

of geodesic based tractography models is

to apply the previously discussed geodesic

based models for the HARDI data [18]. Nev-

ertheless, DTI is still widely used in clinical

research due to either unavailability of the

scanning protocols for HARDI or computation-

ally expensive data processing. Therefore,

improving existing methods and algorithms

for DTI processing is beneficial for clinical

purposes. k
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