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This Problem Section is open to everyone; everybody is encouraged to send in solutions and

propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token worth

D 20. At times there will be a Star Problem, to which the proposer does not know any solution.

For the first correct solution sent in within one year there is a prize of D 100.

When proposing a problem, please either include a complete solution or indicate that it is

intended as a Star Problem.

Please send your submission by e-mail (LaTeX is preferred), including your name and address

to problems@nieuwarchief.nl.

The deadline for solutions to the problems in this edition is 1 December 2015.

Problem A (folklore)

Determine

∑

p

1
p

∏

q<p

(1−
1
q ),

where p ranges over all prime numbers, and q ranges over all prime numbers less than p.

Problem B (proposed by Wouter Zomervrucht)

Let N = {0,1, . . .} denote the set of natural numbers, and let N
2015 denote the set of 2015-tuples

(

a(1), a(2), . . . , a(2015)
)

of natural numbers. We equip N
2015 with the partial order� for which

a � b if and only if a(k) ≤ b(k) for all k ∈ {1,2, . . . ,2015}. We say that a sequence a1, a2, . . .

in N
2015 is good if for all i < j we have ai 6� aj .

− Show that all good sequences are finite.

We say that a sequence a1, a2, . . . in N
2015 is perfect if it is good and for all i and for all

k ∈ {1,2, . . . ,2015} we have ai(k) ≤ 2015i.

− Does there exists a positive integer N such that all perfect sequences have length at most

N?

Problem C (proposed by Marcel Roggeband)

The (first) Bernoulli numbers Bn for integers n ≥ 0 are defined by the following recursive

formula.

B0 = 1,

Bn = −

n−1
∑

i=0

(

n

i

)

Bi

n− i + 1
for n > 0.

Show that the Bernoulli numbers satisfy the following identity for all n > 1:

Bn = n!

n−1
∑

i=1

∑

σ

(−1)i−1

σ1! · · ·σi!
(

1
2 −

1
σi+1 ).

In this sum, σ runs through all i-tuples (σ1, . . . , σi) of integers such thatσ1 + · · ·+σi = n+ i−1

and σj ≥ 2 for all j.

Edition 2015-1 We received solutions from Rik Bos, Josse van Dobben de Bruyn, José Marı́a

Giral, Alex Heinis, José Hernández Santiago, Thijmen Krebs, Robert van der Waall and Jeroen

Winkel.
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Problem 2015-1/A (proposed by Raymond van Bommel and Julian Lyczak)

A commutative ring R is charming if every ideal of R is an intersection of maximal ideals. Prove

that a Noetherian charming ring is a finite product of fields. Does there exist a charming ring

that is not a product of fields?

Solution We received solutions from Rik Bos, Josse van Dobben de Bruyn, José Marı́a Giral and

Jeroen Winkel. The following solution is based on that of José Marı́a Giral, who also receives

the book token. The example used in the following solution was given by Rik Bos, Josse van

Dobben de Bruyn and José Marı́a Giral.

We first show that a Noetherian charming ring is a finite product of rings. The following lemma

on general charming rings will be useful for this.

Lemma. Let R be a charming ring. Then every prime ideal of R is maximal.

Proof. First note that every ideal of R is an intersection of maximal — in particular radical —

ideals, so every ideal of R is radical. In particular, for all r ∈ R we have (r2) = (r ), so for all

r ∈ R there exists some s ∈ R such that r = sr2.

Now let p be a prime ideal of R, and let r ∈ R be an element such that r 6∈ p. Then for s ∈ R

such that r = sr2, we have r (1− sr ) = 0 ∈ p. Therefore 1− sr ∈ p, from which we deduce that

p + rR = R, since (1− sr ) + sr = 1. Hence p is maximal. �

Let R be a Noetherian charming ring. We show that every ideal of R is a finite intersection of

maximal ideals. Suppose for a contradiction that not every ideal of R is a finite intersection of

maximal ideals. Consider the (non-empty) collection I of ideals I that are not finite intersections

of maximal ideals. AsR is Noetherian, any ascending chain of ideals in I stabilises, so the union

of any chain of ideals in I is again an ideal in I. Therefore by Zorn’s Lemma, the collection I

contains a maximal element. Denote such an element by I.

Note that by Lemma, the ideal I is not prime. Therefore there exist x,y ∈ R such that x,y 6∈ I

and xy ∈ I. Let J1 = I + xR and J2 = I + yR. As all ideals of R are radical, we have

J1 ∩ J2 = J1J2 = xyR + xR · I + yR · I + I2 = I. By maximality of I, both J1 and J2 are finite

intersections of maximal ideals. Therefore so is I, but this is a contradiction. So all ideals of R

are finite intersections of maximal ideals.

In particular, 0 is a finite intersection of maximal ideals m1 ∩ · · · ∩mn, and maximal ideals are

pairwise coprime, so by the Chinese Remainder Theorem, we have R ∼=
∏n
i=1 R/mi, which is a

finite product of fields.

For the second part, we show that the answer to the question is yes. We first show that all

Boolean rings — rings in which every element is an idempotent — are charming. Let R be a

Boolean ring. First note that every prime ideal of R is maximal; if p ⊆ R is a prime ideal and

r ∈ R−p, then r2 = r , so r (1−r ) = 0 ∈ p, hence 1−r ∈ p and therefore 1 = (1−r )+r ∈ p+rR.

Now we note that every ideal inR is radical; if r ∈ R such that rn ∈ I for some positive integern,

then r = rn ∈ I. Therefore I is the intersection of the prime (hence maximal) ideals containing

I, showing that R is charming.

Let R be the subring of
∏∞
i=1 F2 consisting of the elements (ai)

∞
i=1 such that either all but finitely

manyai are zero or all but finitely manyai are one. Note that all elements ofR are idempotents,

soR is Boolean, hence charming. Also, the only fields of which all elements are idempotents are

isomorphic to F2, so all quotients of R by maximal ideals and all subfields of R are isomorphic

to F2. So ifR is a product of fields, then it must be isomorphic to a product of F2. Since products

of F2 are either finite or uncountable, and since R is countable, it follows that R is not a product

of fields. Therefore R is a charming ring that is not a product of fields, as desired.

Problem 2015-1/B (folklore)

Let S be a set of prime numbers with the following property: for all n ≥ 0 and distinct

p1, . . . , pn ∈ S the prime divisors of p1 · · ·pn + 1 are also in S. Show that S contains all

primes.

Solution We received solutions from Thijmen Krebs and Jeroen Winkel. The following solution

is based on that of Thijmen Krebs, who also receives the book token.
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Fix any prime q. We say that a prime p in S is q-recurring if S contains infinitely many primes

that are congruent to p modulo q. Note that there are only finitely many primes p in S that are

not q-recurring. Let x denote the product of all primes p in S that are not q-recurring. Let y be

any finite product of distinct q-recurring primes in S. Then note that all prime divisors of xy + 1

lie in S. As gcd(xy + 1, x) = 1, it follows by definition of x that moreover all prime divisors of

xy + 1 are q-recurring.

We can now define a sequence (yi)
∞
i=0 of products of q-recurring primes recursively by setting

y0 = 1, and by setting for n ≥ 1 the number yn to be the number obtained from xyn−1 + 1

in the following way. Let p1p2 · · ·ps be the prime factorisation of xyn−1 + 1 (in which primes

can occur multiple times). Pick for each pi a prime p′i in S that is congruent to pi modulo q, in

such a way that all p′i are distinct; this is possible as there are infinitely many such p′i. Then

set yn = p′1p
′
2 · · ·p

′
s . An inductive argument quickly shows that for all non-negative integers

n, we have
yn ≡ x

n + · · · + x + 1 mod q.

We now show that q ∈ S. If x ≡ 0 modulo q, then q ∈ S by definition of x. If x ≡ 1 modulo

q, then by the above we conclude that q | yq−1 so q ∈ S by definition of yq−1. Finally, in the

other cases, we can apply Fermat’s Little Theorem to see that since (x − 1)yq−2 ≡ x
q−1 − 1

modulo q, we have q | yq−2, so q ∈ S by definition of yq−2. Therefore q ∈ S, as desired.

Problem 2015-1/C (proposed by Roberto Stockli)

Determine all pairs (p,q) of odd primes with q ≡ 3 mod 8 such that 1
p (qp−1 − 1) is a perfect

square.

Solution We received solutions from Alex Heinis, José Hernández Santiago, Thijmen Krebs,

Robert van der Waall and Jeroen Winkel. The following solution is based on that of Alex Heinis,

who also receives the book token. In addition, we thank Robert van der Waall for bringing our

attention to the article [1], in which one of the results is that the equation 1
p (mp−1 − 1) = a2

has a unique integral solution (m,p,a) = (3,5,4) withm odd.

Note that (p,q) = (5,3) is a solution. We show that it is the only one.

Suppose that (p,q) is a solution. Then (q(p−1)/2 + 1)(q(p−1)/2 − 1)/p is a square. Both factors

on the left hand side are even as q is odd, so their greatest common divisor is 2. Therefore the

two factors are of the forms 2a and 2pb for certain positive integers a,b, in no particular order,

such that gcd(a,pb) = 1. As ab is a square, it follows that both a and b are squares. Note that

2 is not a square modulo q as q ≡ 3 modulo 8. Therefore q(p−1)/2 + 1 cannot be twice a square.

It follows that q(p−1)/2 − 1 is twice a square.

Hence q(p−1)/2 − 1 = 2a and q(p−1)/2 + 1 = 2pb. Writing a = k2 and b = l2 for integers k, l, we

can rewrite the above system of equations as q(p−1)/2 = k2 + pl2 and 1 = pl2 − k2. Note that

precisely one of k and l is even as precisely one of q(p−1)/2 − 1 and q(p−1)/2 + 1 is divisible by

4. If l were even, then 1 ≡ −k2 modulo 4, which is a contradiction. So l is odd, k is even, and

therefore p ≡ 1 modulo 4. Hence we have a factorisation (q(p−1)/4 + 1)(q(p−1)/4 −1) of 2k2 with

integer factors.

In the same way as above, we see that the two factors on the left hand side are of the forms 2c2

and 4d2 for certain positive integers c,d, in no particular order, and that q(p−1)/4 + 1 cannot

be twice a square. Therefore we write q(p−1)/4 − 1 = 2c2 and q(p−1)/4 + 1 = 4d2. Hence

q(p−1)/4 = (2d − 1)(2d + 1). Note that gcd(2d − 1,2d + 1) = 1. As q is prime, it follows that

since d is positive, we must have 2d− 1 = 1, so d = 1. Hence q = 3 and p = 5. This shows that

(p,q) = (5,3) is the only solution.

Reference
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