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Performance analysis of
stochastic networks

Queues are everywhere, and have significant impact on how we experience everyday’s life. The

mathematical analysis of queueing, rooted in the interface of probability theory and operations

research, is a strongly developed branch of research. Onno Boxma, Stella Kapodistria, Michel

Mandjes give an overview.

In 1909 the Danish mathematician Agner

Krarup Erlang published the paper ‘The theory

of probabilities and telephone conversations’

[16]. In this paper, which is commonly viewed

as the birth of queueing theory, Erlang stud-

ied dimensioning issues for traditional circuit-

switched telephone systems. More specifi-

cally, a procedure was developed to deter-

mine the number of telephone lines which

are needed between two villages so that the

probability that, at some random time epoch,

all lines are simultaneously busy is less than

some specified small number.

The essential feature of Erlang’s model,

and of queueing theory in general, is that

there are customers who are competing for

access to a scarce resource. In his model

there was no waiting — if all lines are busy,

a newly incoming call is ‘lost’. One comes

across many situations in which models of

this type apply, for instance in the context

of wireless communication [6] and comput-

er science [26]. One can, however, also think

of variants in which customers who cannot be

accommodated directly are sent to a ‘waiting

room’, thus forming a genuine queue. Exam-

ples abound; one could think of the checkout

Figure 1 Queueing for on-the-day tickets at Wimbledon.

counter of a supermarket, an elevator, a traffic

light intersection, a machine that produces

parts, a computer processor processing jobs,

or a communication channel with a buffer for

packets which still need to be transmitted. In

some situations customers are initially willing

to wait, but might become impatient at some
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point — think for instance of the customers of

a call center.

It is far from an easy task to model such a

wide range of situations in which customers

compete for access to a scarce resource. One

has to model the service facility (the number

of servers, their service speeds, the assign-

ment of priorities, the size of waiting room,

et cetera) as well as the customer behavior

(the arrival process of customers at the ser-

vice facility, the service requirements of the

individual customers, the amount of patience

they have, the choice which server to join, et

cetera). Still, in the century following Erlang’s

pioneering work, queueing theory has been

remarkably successful in capturing the essen-

tial features of the congestion phenomena of

a staggeringly wide range of extremely compli-

cated real-life systems with relatively simple

models — models which have shown to lend

themselves to a detailed mathematical anal-

ysis. It has resulted in a set of techniques

with which accurate predictions can be made

of the global behavior of intricate stochastic

systems, and which facilitate their optimiza-

tion and control.

To a considerable extent, the success of

queueing theory is due to the fact that one

can distinguish a few basic building blocks,

which have been studied in much detail and

which time and again pop up in the analysis

of new congestion phenomena. For instance,

with the advent of wireless communications,

sensor networks, and peer-to-peer networks,

queueing models could be used to describe

their performance. The building blocks most

frequently used are the Erlang loss system

(the system studied by Erlang in 1909; a sys-

tem without queueing, calls being lost when

all lines are busy) and the single server queue.

We shall describe the latter system in some

detail, as it also plays a crucial role in the

product-form networks that we shall discuss

in the next section.

The single server queue

Customers arrive at a service facility, where

they would like to receive a certain amount

of service. There is a single server, who

serves customers in order of arrival (that is,

First-Come-First-Served, usually abbreviated

to FCFS). If a customer can not immediately

be served, then it joins a queue, and waits

patiently until its turn comes. The waiting

room is assumed to have infinite capacity.

The interarrival times of customers, and al-

so the required service times, are assumed to

be random variables. This captures the fact

that these times are usually a priori unknown

Figure 2 A schematic picture of a multi-server system G/G/c.

to us, and fluctuate over time. The conse-

quence is that our main performance mea-

sures, like waiting times and queue lengths,

are also random variables and that we have

to settle for probabilistic statements about

them. Examples of such statements are :

P(W > 5) = 0.3, i.e., the probability that an

arbitrary customer waits longer than 5 min-

utes is 0.3; or: E(W ) = 1.4, i.e., the expec-

tation (that is, the mean) of the waiting time

equals 1.4. Now we look a bit closer at the

two stochastic ingredients that we identified

above, the arrival process and the service re-

quirements.

It is often assumed that the arrival pro-

cess of customers is a Poisson process. This

means that the intervals between successive

arrivals are independent, identically distribut-

ed random variables, generically indicated

by A, with as probability distribution the so-

called exponential distribution:

P(A > x) = e−λx , x ≥ 0, (1)

with λ some positive number. The parameter

λ is called the arrival rate, since the mean

time between two arrivals equals 1/λ. The

exponential distribution is unique in having

the appealing memoryless property:

P(A > x +y|A > x)

=
e−λ(x+y)

e−λx
= e−λy

= P(A > y), ∀ x,y ≥ 0.

(2)

This means that, at any arbitrary time t0,

no matter how long ago the last arrival took

place, the remaining time (after this time t0)

until the next arrival is again exponentially

distributed with parameter λ. The memory-

less property is mathematically attractive and

also quite natural for arrival intervals. It is

mathematically attractive because there is no

need to keep track of the time since the last

arrival — it gives no information whatsoever

that can help us predict the remaining time

until the next arrival. In addition it is quite

natural, for the following reason. In many ar-

rival processes, like those of customers at a

supermarket, hits of a website or orders at a

factory, there is a huge number of potential

customers. If we receive the information that

a website has been visited five times in the

last ten minutes, and that the last visit took

place seventeen seconds ago, this gives us

hardly any information about the behavior of

all those other potential customers (and the

likelihood of them arriving some time soon):

the interarrival times are memoryless, and

hence have to be exponential.

Now that we have had a look at the arrival

process, we consider the customers’ service

requirements. The service requirements of

successive customers are typically also as-

sumed to be independent, identically dis-

tributed random variables. Unlike the inter-

arrival times, there is no particular reason

— apart from perhaps mathematical conve-

nience — to assume that the service require-

ments follow the exponential distribution. Let

that mathematical convenience prevail for the

moment; assume that the service require-

ments are exponentially distributed with pa-

rameter (rate) µ, so with mean 1/µ. The

above described single server queue is then

called the M/M/1 queue. The first and sec-

ond M respectively indicate that the interar-

rival times and the service times are Memory-

less (or Markovian); the 1 indicates that there

is one server (along the same lines, M/G/c
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indicates Memoryless interarrival times, Gen-

erally distributed service requirements, and

c ∈ N servers).

A very attractive feature of the M/M/1

queue is that the stochastic process of num-

bers of customers {X(t), t ≥ 0}, with X(t)

the number of customers present (waiting

plus in service) at time t, is a Markov pro-

cess. The powerful machinery of Markov pro-

cesses now can be used, and readily yields

elegant, explicit results. Suppose we as-

sume that λ < µ, implying that the amount

of work arriving per unit of time is smaller

than the amount that can be served, thus

guaranteeing that our queueing system is

stable. Then it turns out that the steady-

state distribution limt→∞P(X(t) = n |X(0) =

i) exists, and is given by the geometric

distribution:

P(X = n) = (1− ρ)ρn, n = 0,1, . . . , (3)

with ρ := λ/µ < 1 representing the offered

traffic load per time unit.

So far we have focused on single queue-

ing facilities in isolation. In many practical

contexts, however, the underlying stochastic

systems can be seen as networks of multi-

ple interrelated nodes. In the next section we

consider these.

Networks of queues

Open networks of queues

Around 1950, the mathematical theory of

stochastic processes had reached a certain

maturity. Several monographs were pub-

lished, including the landmark book of Feller

[19], which not only gave a systematic dis-

cussion of a number of important stochastic

processes, but also showed in a lucid way

how to model many biological and physical

phenomena by various stochastic process-

es like Markov chains and birth-and-death

processes. The year 1954 saw the publica-

tion of the first study on networks of queues.

R.R.P. Jackson [23] considered an M/M/1

queue Q1, with arrival rate λ and service

rate µ1, and assumed that each served cus-

tomer immediately enters a second single

server facility Q2, again with infinite wait-

ing room capacity and FCFS service, and

again with independent, exponentially dis-

tributed service requirements; µ2 denotes

the service rate in the downstream queue.

He observed that the two-dimensional pro-

cess of numbers of customers at Q1 and

Q2, {(X1(t), X2(t)), t ≥ 0}, again is a Markov

process — now a two-dimensional one. If

λ < µ1 and λ < µ2 then this Markov pro-

cess has a steady-state (limiting) distribu-

tion, and that distribution is unique. Jackson

guessed that the steady-state distribution is

given by

π (n1, n2) = P(X1 = n1, X2 = n2)

= (1− ρ1)ρ
n1
1 (1− ρ2)ρ

n2
2 ,

n1, n2 = 0,1, . . . ,

(4)

with ρi := λ/µi, i = 1,2. Then he set up the

balance equations for this two-dimensional

Markov chain: for n1, n2 = 1,2, . . .,

(λ + µ1 + µ2)π (n1, n2)

= λπ (n1 − 1, n2) + µ1π (n1 + 1, n2 − 1)

+ µ2π (n1, n2 + 1),

(λ + µ1)π (n1,0)

= λπ (n1 − 1,0) + µ2π (n1,1),

(λ + µ2)π (0, n2)

= µ1π (1, n2 − 1) + µ2π (0, n2 + 1),

λπ (0,0) = µ2π (0,1).

Probably much to his surprise, Jackson ob-

served that (4) indeed satisfies all the bal-

ance equations, and he had actually found

the unique steady-state distribution!

Jackson’s results had a wide set of impli-

cations, of which we now mention a few.

i. The steady-state numbers of customers in

Q1 andQ2 are independent, since the joint

distribution is the product of the marginal

distributions:

P(X1 = n1, X2 = n2)

= P(X1 = n1)P(X2 = n2),

n1, n2 = 0,1, . . . .

(5)

ii. Q2 actually behaves like anM/M/1 queue

with Poisson(λ) arrival process (as follows

by summing the expression in (4) over all

n1 = 0,1, . . .).

For obvious reasons, formula (4) has become

known as a product-form result. Triggered by

the above implications, Jackson’s results im-

mediately gave rise to a frantic research effort.

In 1956 Paul Burke [9], working at Bell Labs,

proved what has later become known as the

Output Theorem. This states that (i) the de-

parture process of anM/M/c queue is again

a Poisson process with (if the arrival rate λ

is less than c times the service rate µ) the

same rate as the arrival process, and (ii) the

number of customers in an M/M/c queue at

some arbitrary time t0 is independent of the

departure process before t0.

Statement (i) immediately shows that Q2

in Jackson’s two-queue model has a Pois-

son arrival process, and hence indeed be-

haves like an M/M/1 queue. Statement

(ii) readily implies that the steady-state

numbers of customers in Q1 and Q2 are

independent.

A year later Edgar Reich [32] gave a very

simple proof of the output theorem, exploiting

the observation that the queue length process

in an M/M/c queue is reversible. Intuitively

speaking, a reversible process is a stochas-

tic process with the following property: if one

would take a film of such a process and run

the film backwards, then the resulting pro-

cess is, statistically speaking, indistinguish-

able from the original process. Statement (i)

of the output theorem immediately follows

because, in the time-reversed process, the

departure process becomes the arrival pro-

cess — and hence is a Poisson process. State-

ment (ii) of the output theorem becomes af-

ter time reversal: the number of customers

at some arbitrary time t0 is independent of

the arrival process after t0. The memoryless

property of that (Poisson) arrival process im-

mediately implies that the latter statement is

true.

J.R. Jackson [24], inspired by the results

of R.R.P. Jackson, Burke and Reich, consid-

ered the following network of N single server

queuesQ1, . . . ,QN . New customers arrive at

the queues according to independent Pois-

son processes, with rate λi atQi. Service re-

quirements atQi are independent, exponen-

tially distributed with rate µi, i = 1, . . . ,N. All

servers operate under FCFS, and all waiting

rooms have infinite capacity. If a customer

has been served atQi, then it is routed toQj
with probability pij and leaves the network

with probability pi0, i, j = 1, . . . ,N; obvious-

ly, one assumes that
∑
j pij = 1. All exter-

nal interarrival times and service times are

assumed to be independent.

Because of all the exponential, memory-

less, assumptions, the process

{(X1(t), X2(t), . . . , XN (t)), t ≥ 0}

of numbers of customers at Q1, . . . ,QN is a

Markov process. Jackson [24] verified that the

balance equations for its steady-state distri-

bution are satisfied by

P(X1 = n1, . . . , XN = nN )

=

N∏

i=1

(1− ρi)ρ
ni
i , n1, . . . , nN = 0,1, . . . ,

(6)
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with, for i = 1, . . . ,N: ρi := Λi/µi, the offered

load at Qi, and where the so-called through-

putsΛi are the solution of the set of equations

Λi = λi +

N∑

j=1

Λjpji, i = 1, . . . ,N

(in vector-matrix notation: Λ = λ+ΛP ), which

turns out to be unique as a direct conse-

quence of the Perron-Frobenius theorem. The

interpretation of Λi is that it equals the exter-

nal arrival rate λi plus the sum of all the inter-

nal flows going into Qi. It can be shown that

the steady-state queue length distribution ex-

ists if and only if ρi < 1 for all i = 1, . . . ,N.

We observe that the steady-state distribu-

tion (6) exhibits a product form, which again

implies that in steady state the numbers of

customers at the various queues are inde-

pendent, and again each queue behaves like

anM/M/1 queue in isolation. Actually, Jack-

son [24] believed that theM/M/1 behavior of

eachQi is not surprising, and can be seen as a

immediate implication of the output theorem.

He argued that if one merges two independent

Poisson arrival processes, one obtains anoth-

er Poisson process; and if one splits a Poisson

process with fixed probabilities, a fractionpij
enteringQj , then the resulting processes are

independent Poisson processes. However,

he overlooked the fact that his routing prob-

abilities allow the possibility of feedback: a

customer may visit a queue where it has been

before. It is easily shown that the resulting

dependency destroys the Poisson property of

the flows. That makes the product-form re-

sult (6) all the more remarkable: the marginal

queue length distribution at Qi is geometric,

as if Qi were an M/M/1 queue (cf. (3)), but

its arrival process does not have to be Pois-

son! Thanks to the work of Kelly [29] and oth-

ers, much insight has been obtained into the

phenomenon that each queue in the above-

described Jackson network behaves as if it

is an M/M/1 queue. The concept of quasi-

reversibility plays a crucial role here: a ser-

vice facility is quasi-reversible if it has the

property that the departure process would be

a Poisson process if the arrival process were

a Poisson process.

Closed networks of queues

In 1963, J.R. Jackson [25] extended the results

of his paper [24] to closed networks of ·/M/1

(actually, ·/M/c) queues. The only changes

with respect to his above-described open net-

work were that all external arrival rates λi ≡ 0

and that all pi0 ≡ 0, and that the system

starts with K customers. Since no customers

can enter or leave, those K customers stay in

the network forever. At first sight this may

seem not only cruel but also artificial, but

actually it may well represent, e.g., having

a fixed number K of pallets in a factory, or

having window flow control with window size

K in a communication network (i.e., at most

K packets may be transmitted without yet

having received acknowledgment of receipt).

Jackson [25] proved that the steady-state dis-

tribution of the numbers of customers at the

various queues is once more given by a prod-

uct form: for n1, . . . , nN = 0,1, . . . such that

n1 + · · · +nN = K,

P(X1 = n1, . . . , XN = nN )

=
1

G(N,K)

N∏

i=1

ρ
ni
i ,

(7)

with ρi := Λi/µi and Λi =
∑N
j=1Λjpji.

The quantity G(N,K) is a normalizing con-

stant, obtained by summing the numera-

tor of (7) over all possible combinations of

(n1, . . . , nN ), and realizing that the sum over

all probabilities should equal 1. Notice that

theΛi are now determined up to a multiplica-

tive constant (i.e., if Λi is a solution, then

so is aΛi for any scalar a). The probabili-

ty P(X1 = n1, . . . , XN = nN ), however, still

is uniquely determined. Indeed, multiply-

ing all Λi by a amounts to multiplying both

the numerator and denominator of (7) by aK .

It should also be observed that the product

form now does not imply independence; in

fact, the numbers of customers have an obvi-

ous dependence due to X1 + · · · +XN = K.

Generalizations

Spurred by the elegance of the above product-

form results, but also by the rapidly increas-

ing need to study the performance of ad-

vanced computer and communication net-

works, a stream of papers was produced

in the seventies and eighties, in which the

product-form results of [23–25] were general-

ized. Some of the key publications are [5],

[12] and [29]; several Dutch researchers have

made important contributions to the field, in-

cluding Boucherie, Cohen, van Dijk (who also

published a monograph [15] on the topic) and

Hordijk.

Thanks to all these efforts we now know

that the steady-state joint queue length dis-

tribution in a small but significant class of

queueing networks (open, closed, and mixed)

has a product form. To mention some exten-

sions: (i) Service facilities may have multi-

ple servers; put differently, the service rate

at a service facility may depend on the num-

ber of customers present. (ii) The service

discipline at some nodes may be Last-Come-

First-Served Preemptive-Resume, or Proces-

sor Sharing, instead of FCFS; here Proces-

sor Sharing is particularly relevant in a broad

range of computer-communication applica-

tions. (iii) A network may have multiple class-

es of customers, with different routing proba-

bilities for different classes (but not different

service rates at FCFS nodes). For more details

and information on the topic of queueing net-

works the interested reader is referred to [11,

34].

While these product-form results are of

huge importance, as they allow a relatively

simple performance analysis and optimiza-

tion of a model that may reasonably accurate-

ly describe the behavior of a complex real-

life system, they are also quite limited in the

following sense. If one of the conditions

for having a product-form network is violat-

ed, then most likely an exact analysis is ex-

tremely complicated, or — more often than

not — completely out of reach. However,

there is a class of, mainly, two-dimensional

models — for example, two queues in series,

or two queues and one arrival stream, cus-

tomers joining the shorter queue — for which

an exact analysis is possible. This is the top-

ic we turn to in the next section. But before-

hand, we first describe two interesting special

systems.

Remark 1. A special case of a closed product-

form network is a two-queue model with K

customers, Q1 being an infinite server sys-

tem (or, equivalently, a K-server system, as

that would be sufficient to prevent any wait-

ing; mean service time is 1/µ1) andQ2 being

a FCFS single server with exponentially(µ2)

distributed service times. In addition we as-

sume that p12 = p21 = 1, meaning that the

customers hop between both queues.

This model has become known as the

computer-terminal model: K active terminal

users alternate between a ‘think mode’ in

which they generate a job for the central pro-

cessor, and a ‘wait mode’ in which they stay

until the processor has handled the job. It al-

so has become known as the machine-repair

model: K machines all alternate between an

operational mode and a mode in which they

are broken and stay in the repair shopQ2, to

be repaired by a single repairman.

As observed in, e.g., [5], one has a product

form even if the service times inQ1 are gener-

ally distributed. Since n1 +n2 = K, the prod-



5 5

Onno Boxma, Stella Kapodistria, Michel Mandjes Performance analysis of stochastic networks NAW 5/16 nr. 3 september 2015 197

uct form degenerates into a one-dimensional

result: with ν := µ2/µ1,

P(X1 = n1) =
νn1

n1!

/ K∑

j=0

νj

j!
,

n1 = 0,1, . . . , K.

(8)

Interestingly, the same distribution holds for

the so-called Erlang loss system, viz., calls ar-

rive according to a Poisson(µ2) process at a

system of K telephone lines, and the lengths

of calls are generally distributed with mean

1/µ1. In fact, it is not hard to see that the

machine-repair model indeed is probabilisti-

cally equivalent with the Erlang loss system —

a system that we introduced above as one of

the basic building blocks of queueing.

Remark 2. In this second special case we con-

sider the class of loss networks. In this model

there areN types of customers; customers of

class i arrive according to a Poisson process

of rate λi and remain in the system during a

random time with mean 1/µi. TheN customer

types use R resources: a type i customer us-

es an amount Air at resource r . There is a

total amount Cr of resources of type r , en-

tailing that a customer of type i is blocked

(and therefore lost) if upon arrival the remain-

ing amount of resources available is less than

the required Air . The resulting model is usu-

ally referred to as a loss network. Clearly, the

numbers of customers in this system only at-

tain values in the polyhedron

H =



(n1, . . . , nN ) :

N∑

i=1

Airni ≤ Cr



 .

The steady-state distribution of the numbers

of customers is again of product form: due

to the detailed analysis in e.g. Kelly [30], with

νi := λi/µi,

P(X1 = n1, . . . , XN = nN ) =
1

G

N∏

i=1

ν
ni
i

ni!
;

here the normalizing constant G = G(N,C1,

. . . , CR) is given by

∑

(n1,...,nN )∈H

N∏

i=1

ν
ni
i

ni!
,

which can be efficiently computed using

Buzen’s algorithm [10]. Because of the high

relevance of this type of models, a substan-

tial research effort was spent on develop-

ing computational techniques for loss net-

works, culminating in the elegant recursive

techniques published essentially simultane-

ously by Kaufman [27] and Roberts [33].

The loss network attracted substantial at-

tention in the 1990s, where it was used in

the context of multi-service communication

networks. Till then networks were service-

specific: there was a telephone network, a

separate network for data traffic, et cetera.

From about 1990 on, however, networks were

increasingly organized in such a way that they

could support multiple services over a com-

mon infrastructure — as we know it from the

current internet. For example, a voice call typ-

ically requires less of the network’s capacity

(perhaps a few tens of kilobits, or even less)

than a video connection (a few hundreds of

kilobits), which can be nicely incorporated in

the loss network model described above.

In a way the loss model can be considered

as a very advanced version of the Erlang loss

model that we introduced at the very begin-

ning of this paper.

Stability

It was mentioned earlier that the steady-state

distribution (6) exists if and only if the of-

fered load of each station in the network is

strictly less than one, i.e. ρi :=
λi
µi
< 1,

i = 1,2, . . . ,N. Such conditions are, in the

queueing context, referred to as stability con-

ditions and can be viewed, informally speak-

ing, as indications of whether a network has

enough resources to handle incoming work.

The stability analysis of queueing networks

was perhaps thought to be a moot subject,

in the sense that, based on the pioneering

work of Jackson [24] and Kelly [28], it initial-

ly seemed that stability depends only on the

offered load of each station in the network.

Essentially, this simplistic analysis would im-

ply that the stability of the network can be de-

rived by looking individually at each station

in the network.

However, a series of counterexamples

demonstrated that the station traffic intensi-

ties may not be sufficient to determine the sta-

bility of the network. In [7], Bramson gave an

example of a two-station network that is un-

stable, even though the offered load of each

station in the network is strictly less than one.

In particular, Bramson assumed a network

consisting of two stations in tandem, to which

customers arrive to station 1 according to a

Poisson arrival process at rate 1 and follow a

prescribed route 1 → 2 → 2 → ·· · → 2 → 1

at which point they exit the network. In total,

any arriving customer to the network will visit

station 1 twice and station 2J times according

to the prescribed route. Furthermore, Bram-

son assumed that the service rate at each sta-

tion depends on the number of times the cus-

tomer has already visited the station, sayµi,j ,

where idenotes the station (taking value 1 for

station 1 and value 2 for station 2) and j de-

notes the number of times this station has

been visited up to then (taking values 1 and

2, if i = 1, and values 1,2, . . . , J, if i = 2). For

instance, if one chooses

µ1,2 = µ2,1 =
400

399
, µ1,1 = µ2,j = 1011,

j = 2,3, . . . , J and J = 1600,

(9)

then,

ρ1 =
1

µ1,1
+

1

µ1,2
< 1 and ρ2 =

J∑

j=1

1

µ2,j
< 1.

Bramson showed, see [7, Theorem 1], that for

µi,j chosen according to (9), this system is

unstable with the number of customers in the

system growing unboundedly as t →∞.

This result, while looking counterintuitive

at first sight, can be explained as follows, see

[8, Section 3.2]. Assume that at time t = 0

there are M customers (with M a very large

number) in station (1,1) and a few more in

the rest of the system. Moreover, let S1 de-

note the time at which the last of the original

jobs i.e., the jobs present at time t = 0, at

station 1 is served. Let S2, S3, . . . denote the

successive times at which the last jobs at sta-

tion 2 are served. Since µ1,1 ≫ 1, one has

that S1 ≪ M except on a set of small proba-

bility. Also, µ2,1 = 1/c ≈ 1, and so at time S1

nearly all of the original jobs in the network

are still at (2,1). Next, over this time interval

(S1, S2], the (approximately) M jobs at (2,1)

all move to (2,2). Since µ2,1 = 1/c, the time

it takes to serve these jobs is (approximately)

cM. The time required to serve other jobs is

minimal, so S2 − S1 ≈ cM. During this time,

(approximately) cM new jobs enter the sys-

tem, which quickly move to (2,1). Thus, at

t = S2, there are (comparatively) few jobs in

the system except at (2,2) and (2,1), where

there are (approximately)M and cM jobs, re-

spectively. Continuing our reasoning along

the same lines, we observe that over (S2, S3],

the jobs at (2,1) and (2,2) advance to (2,2)

and (2,3), respectively. Since µ2,2 ≫ 1, the

time required to serve the jobs at (2,2) is neg-

ligible; the time required for the jobs at (2,1)

is c2M, so S3 − S2 ≈ c2M. Over this time,
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c2M new jobs enter the system, which quick-

ly move to (2,1). So, at time S3, there are

few jobs in the system except at (2,3), (2,2),

and (2,1), where there are M, cM and c2M

jobs, respectively. Proceeding inductively, we

obtain that at time SJ , there are M jobs at

(2, J), cM jobs at (2, J − 1), and so on down

to (2,1), where there are cJ−1M jobs. At sta-

tion 1, there are few jobs. The elapsed time is

SJ − SJ−1 ≈ cJ−1M. Note that cJ was chosen

to be very small, and so there are about

J−1∑

ℓ=0

cℓM ≈
M

1− c
(10)

jobs in the system. Likewise, SJ ≈ cM/(1−c).

Over the short period of time (SJ , SJ+1], the

evolution of the system changes. TheM jobs

from (2, J) arrive at (1,2). Since µ2,1 = 1/c,

these jobs require time cM to be served at

station 1, during which time new arrivals at

(1,1) will not be served. By time S2J , the

jobs that were at station 2 at time SJ have al-

ready arrived at (1,2); because of (10), there

are essentially M/(1 − c) such jobs. So, at

time S2J , there are essentiallyM/(1− c) jobs

at (1,2) and no jobs elsewhere. Of course,

here and elsewhere, we are taking liberties

in ignoring ‘negligible’ quantities of jobs and

probabilities. Let now T denote the time that

these last jobs will exit the system. The time

required to serve these jobs is cM/(1 − c).

So, T − S2J ≈ cM/(1 − c). During this time,

cM/(1− c) jobs enter the system. These new

jobs are obliged to remain at (1,1) until time

T = S2J + (T − S2J ) ≈ 2cM/(1 − c). At this

time, there are few jobs elsewhere in the sys-

tem. So at time T , the state of the system is a

‘multiple’, by the factor c/(1− c), of the state

at time 0.

Of course, since we are working with ran-

dom events here, the above behavior is some-

times violated. However, such exceptional

events occur with probabilities that are expo-

nentially small in M, and one can show they

can be ignored without affecting the basic na-

ture of the evolution of number of customers

in the system. Needless to say, a rigorous

proof requires accurate bookkeeping of such

exceptional probabilities, but we were only

interested in presenting here an intuitive ar-

gument with which the interested reader can

grasp why this system is unstable.

Such counter examples inspired further

investigations into the stability regions of

queueing models under various scheduling

policies and also spurred work on the devel-

opment of a theory for the determination of

Figure 3 A schematic picture of a JSQ-system.

the stability region for a wide range of queue-

ing networks, see e.g. [21].

Routing policies

In the contexts previously described, we as-

sume that customers are routed to the var-

ious stations of the network independent-

ly of the number of customers already wait-

ing in these stations. However, in practice

when a rational customer makes a decision

on which station to join, then typically this

decision is influenced by the number of cus-

tomers waiting in queue in each one of the

stations. Think for example of the structure

of a supermarket: there are multiple cashiers

each with their own waiting line, these con-

stitute the various stations in our ‘supermar-

ket’ network. In the context of supermarkets

customers typically join the station with the

smallest number of waiting customers. The

steady-state distribution of this type of net-

work has received the attention of various re-

searchers and some of the area’s important

contributions were achieved by several Dutch

researchers, including Adan and Cohen (who

also published two monographs [13–14] on

the related topic of two-dimensional random

walks). We will further elaborate on the top-

ic of the steady-state analysis of the join the

shortest queue (JSQ) policy in the case of two

stations in the next section.

Mathematical analysis of 2D models

We have seen that single server queues and

specific classes of multi-dimensional queue-

ing systems, such as Jackson networks, can

be analyzed in great detail. When slightly

changing the mechanics, however, the anal-

ysis may become substantially harder. For

example, in the case of two stations in paral-

lel where customers are routed according to

the JSQ policy, the steady-state distribution

does not obey a product-form solution. The

steady-state solution can still be found, as we

demonstrate in this section.

Model description, steady-state distribution

In the basic version of the model customers

arrive to the system according to a Poisson

process at rate λ. There are two queues; a

new arrival is routed to the shorter one (in

the case of a tie, the queue is selected at ran-

dom). The service times at each of the queues

are exponential with mean 1/µ. It was argued

that this system is stable if ρ := λ/2µ < 1.

This model was first introduced by Haight [22],

and was analyzed by Flatto and McKean [20]

and Kingman [31]. We now describe the ap-

proach followed by the latter, identifying the

probability generating function of the num-

bers of customers in steady-state.

First, with Xi denoting the number of cus-

tomers in station i in stationarity, we define

π (n1, n2) = P(X1 = n1, X2 = n2),

n1, n2 = 0,1,2, . . . .

By symmetry, π (n1, n2) = π (n2, n1). Then,

write the balance equations of the system:

for n1, n2 = 0,1, . . . such that n1 ≤ n2,

(2ρ + 1{n1>0} + 1{n2>0})π (n1, n2)

= (2ρ1{n2=n1} + ρ1{n2=n1+1})

·π (n1, n2 − 1) + 2ρπ (n1 − 1, n2)

+π (n1 + 1, n2) +π (n1, n2 + 1),

(11)

where 1{A} is the delta Kronecker taking value

1 when event A occurs and 0 otherwise. Let
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P (x,y) :=

∞∑

n1=0

∞∑

n2=n1

π (n1, n2)xn1yn2−n1 ,

|x|, |y| < 1,

be the bivariate probability generating func-

tion of the minimum queue length (represent-

ed by the variable n1) and of the difference

of the two queues (represented by the vari-

ablen2−n1). Then, multiplying equation (11)

withxn1yn2−n1 and summing for alln1 ≤ n2

yields a functional equation for the probabili-

ty generating function:

(
x(2ρx + 1)− 2(ρ + 1)xy +y2

)
P (x,y)

=
(
x(2ρx + 1)− (ρ + 1)xy

− ρxy2
)
P (x,0) + y(y − x)P (0, y),

|x|, |y| < 1.

(12)

This functional equation can be solved as fol-

lows. First define the zero tuples (x,y), i.e.,

the (x,y) satisfying

x(2ρx + 1)− 2(ρ + 1)xy +y2 = 0,

|x|, |y| < 1.
(13)

Then, along the curve (13), equation (12) be-

comes

y(y − x)P (0, y) +
(
x(2ρx + 1)

− (ρ + 1)xy − ρxy2
)
P (x,0) = 0.

(14)

Note that (13) defines a 2-sheeted Riemann

surface over the x- and y- planes, which, for

any value of x, gives rise to a smooth and

closed contour, say L. Thus, equation (14)

can be solved as a Riemann–Hilbert boundary

value problem: determine a function P (0, y)

that is regular for y in the interior of the con-

tour L, continuous on the closure of the con-

tour L and that satisfies equation (14) on the

boundary of the contour L.

Malyshev pioneered this approach of

transforming the functional equation to a

boundary value problem in the 1970s. The

idea to reduce the functional equation for the

generating function to a standard Riemann-

Hilbert boundary value problem stems from

the work of Fayolle and Iasnogorodski [17]

on two parallel M/M/1 queues with coupled

processors (the service speed of a server de-

pends on whether or not the other server is

busy). Extensive treatments of the boundary

value technique for functional equations can

be found in Cohen and Boxma [14] and Fay-

olle, Iasnogorodski and Malyshev [18].

In the setting of the JSQ model, Kingman

noticed that for a given x there are two zero

tuples, say (x,y) and (x,Y ), that satisfy (13).

After tedious calculations he showed that

YP (0, Y )

yP (0, y)
=

(2 + ρ)Y − ρy

(2 + ρ)y − ρY
.

With this equation he could calculate the un-

known probability generating functionP (0, y),

and he also concluded that P (0, y) can be

continued into a meromorphic function over

the whole y-plane. As a result, P (0, y) is

holomorphic on the entire y-plane except for

a set of isolated points (the poles of the func-

tion), at each of which the function must have

a Laurent series. Hence, the correspond-

ing probabilities, π (0, n2), can be written as

an infinite sum of product forms. Meromor-

phicity extends also to P (x,0) and eventually

P (x,y). As a consequence, for n1 ≤ n2 and

(xi, yj ) being roots of (13),

π (n1, n2) =

∞∑

i=0

∞∑

j=0

cij x
−n1

i y
n1−n2

j , (15)

for constants cij .With the solution being still

rather implicit, Kingman also tried to look at

the asymptotic behavior of π (n1, n2). He

proved

π (n1, n2) ∼ c ρ2n2 (2 + ρ)n1−n2 (16)

as n1, n2 → ∞ (while n1 ≤ n2), for some

constant c > 0. Furthermore, it is worth not-

ing that the dominant singularity (x0, y0) ap-

pearing in (15) is capturing the asymptotic be-

havior of the steady state distribution, i.e.,

1/x0 = ρ2 and 1/y0 = ρ2/(2 + ρ).

An alternative approach

An approach which is not based on generat-

ing functions, is developed by Adan et al. in

[2–3]. The idea is to directly solve the balance

equations, thus leading to an explicit solution

for the sub-class of two-dimensional mod-

els having a meromorphic generating func-

tion. The essence of the approach is to first

characterize the products satisfying the bal-

ance equations for states in the inner region

(i.e., 0 < n1 ≤ n2), by putting π (n1, n2) =

x−n1yn1−n2 into the balance equations for

the interior, cf. (11), and simplifying all com-

mon terms. This results in a kernel equation

for the parameters x and y associated with

these product forms, cf. (13). Next it is re-

quired that they also satisfy the balance equa-

tions on the boundaries (i.e., n1 = 0 and/or

n2 = n1). For JSQ it can be checked that there

is no single product form satisfying simulta-

neously the balance equations in the interi-

or and on the boundaries. To remedy this,

a product form, called the ‘initial solution’,

is chosen to satisfy the balance equations

in the interior and on one of the boundaries

(say n1 = 0), but not necessarily on the other

boundary (n2 = n1). Then a second product

form is added to deal with this other bound-

ary, now violating the balance equations for

n1 = 0. For this reason, new product forms

are alternatingly added in order to compen-

sate for the errors on the boundaries, even-

tually leading to an infinite series of the form

(15). The structure of the alternating compen-

sations gives the method its name: the com-

pensation approach.

The difficulty of the approach lies in prov-

ing that the series of product forms converges,

due to the fact that typically there exists no

closed-form expression for the terms of the

infinite series. It is interesting to note that

the initial solution of the compensation ap-

proach is the dominant term of the boundary

value problem given in equation (16).

For more details on the various meth-

ods that have been developed for two-

dimensional models, the interested reader is

referred to [1].

Concluding remarks

In this paper we have discussed techniques

for identifying the steady-state distribution

of the numbers of customers in various ele-

mentary queueing systems. We have seen

that sometimes elegant closed-form solu-

tions exist, but that the analysis typically sub-

stantially complicates when slightly chang-

ing the underlying dynamics. It is fair to say

that the queueing systems presented in this

paper often serve as useful baseline mod-

els, but in applications their assumptions

(Poisson arrivals, exponentially distributed

service times, et cetera) tend to be rather

restrictive.

Considering more realistic systems, in

terms of size, underlying dynamics, and as-

sumptions on arrival processes and service

times, results in most cases in no explicit re-

sults being available. In those situations, one

typically resorts to approximations [11] (which

are sometimes exact in specific asymptotic

regimes), or alternatively computational tech-

niques such as Laplace inversion and Monte

Carlo simulation [4]. k
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