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This Problem Section is open to everyone; everybody is encouraged to send in solutions and

propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token worth

D 20. At times there will be a Star Problem, to which the proposer does not know any solution.

For the first correct solution sent in within one year there is a prize of D 100.

When proposing a problem, please either include a complete solution or indicate that it is

intended as a Star Problem.

Please send your submission by e-mail (LaTeX is preferred), including your name and address

to problems@nieuwarchief.nl.

The deadline for solutions to the problems in this edition is 1 September 2015.

Problem A (proposed by Gabriele dalla Torre)

Show that there are infinitely many primes that divide at least one integer of the form

2n
3+1 − 3n

2+1 + 5n+1.

Problem B (proposed by Jinbi Jin)

Let n be a positive integer. Two players, Ann and Bill, play the following game. First, Ann

distributes a number of balls over boxes numbered from 1 up ton. Then Bill chooses one of the

boxes, and adds a ball to it. Finally, Ann attempts to empty all boxes, using only the following

moves.

− Taking one ball from three consecutive boxes.

− Taking three balls from one box.

Ann wins if she succeeds in doing so, otherwise Bill wins.

1. Determine (as a function in n) the maximum number of losing moves Bill can have. What is

the minimum number of balls Ann needs to attain this number?

2. Do the same as in point 1, if Ann in addition is allowed only once to remove two balls from

one box.

Problem C (proposed by Hendrik Lenstra)

Let p be a prime number and let k be a positive integer. Prove that for every integer n there

exist integersw,x,y, z such that

n ≡ wp + xp +yp + zp mod pk.

Edition 2014-4 We received solutions from Raymond van Bommel and Julian Lyczak, Alex

Heinis, Alexander van Hoorn, Jos van Kan, Thijmen Krebs, Gerard Renardel, Hendrik Reuvers

and Kees Vugs.

Problem 2014-4/A (proposed by Jan Turk)

Let k > 3 be an integer. Determine the variance of the greatest common divisor of k positive

integers. Here we mean the limit, as n → ∞, of the variance of the greatest common divisor of

k integers in {1,2, . . . , n} with respect to the uniform distribution on {1, . . . , n}k.

Solution We received solutions from Raymond van Bommel and Julian Lyczak, Alex Heinis,

Alexander van Hoorn, Thijmen Krebs and Hendrik Reuvers. The book token goes to Alex Heinis.

This solution is based on that of Thijmen Krebs.

We show that the desired variance is

ζ(k− 2)ζ(k)− ζ(k− 1)2

ζ(k)2
,

where ζ denotes the Riemann zeta function.
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Let r be a positive integer, and let Ek,r denote the function sending a positive integer n to the

expectance of the r -th power of the greatest common divisor of k integers in {1, . . . , n}. In other

words, for all positive integers r and n, we have

nkEk,r (n) =
∑

a∈{1,...,n}k

gcd(a)r .

Let Jr denote the Jordan totient function, i.e. the function sending i to the number of elements

j ∈ {1, . . . , ir } such that gcd(j, ir ) is r -th power free. We show that

nkEk,r (n) =

n
∑

i=1

Jr (i)⌊
n
i ⌋
k.

We interpret the i-th term on the right hand side as counting the k-tuples divisible by i, each

with a weight Jr (i). Therefore on the right hand side, each k-tuple a is counted with a weight

∑

d|gcd(a)

Jr (d).

So to prove our claim, it suffices to show that for all positive integersn, we have
∑

d|n Jr (d) = nr .

For this, note that for all positive integersm,nwe have that Jr (n) is also the number of elements

i ∈ {1, . . . ,mrnr } such that gcd(i,mrnr ) ismr times an r -th power free integer. In particular,

for all divisors d of n, we see that Jr (d) is the number of elements i ∈ {1, . . . , nr } such that

gcd(i,nr ) is (
n
d )r times an r -th power free integer. Hence we have

nr =
∑

d|n

Jr (d) (1)

for all positive integers n, as desired.

Let ιr (s) denote the Dirichlet series of Jr , i.e. ιr (s) =
∑∞
i=1

Jr (i)
is . We show that if k > r + 1, then

Ek,r (n) converges to ιr (k) as n→∞. Let n be any positive integer. Then we have

∣

∣

∣

∣

∣

∣

∑

1≤γ≤n

Jr (γ)

γk
− Er ,k(n)

∣

∣

∣

∣

∣

∣

= n−k
∑

1≤γ≤n

Jr (γ)
(

(
n
γ )k − ⌊

n
γ ⌋
k
)

≤ n−k
∑

1≤γ≤n

γr
(

(
n
γ )k − (

n
γ − 1)k

)

.

As the function R>0 → R>0, x 7→ xk is convex, we have (x − 1)k > xk − kxk−1 for all real

numbers x > 0. Therefore we have

∣

∣

∣

∣

∣

∣

∑

1≤γ≤n

Jr (γ)

γk
− Er ,k(n)

∣

∣

∣

∣

∣

∣

≤ n−k
∑

1≤γ≤n

(

γrk(
n
γ )k−1

)

= kn−1
∑

1≤γ≤n

γr−k+1

≤ kn−1

(

1 +

∫ n

1
γr−k+1 dγ

)

.

In the last step, we use that k > r + 1, so r − k + 1 < 0, and that hence the integrand is

decreasing. Moreover, as r − k + 1 < 0, we have

∫ n

1
γr−k+1 dγ = o(n),

so therefore Er ,k(n) converges to ιr (k) as n→∞.
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Next, we compute ιr (k) for k > r + 1. Note that by (1), we have

ζ(k− r ) =

∞
∑

n=1

nr

nk
=

( ∞
∑

n=1

Jr (n)

nk

)( ∞
∑

n=1

1

nk

)

= ιr (k)ζ(k),

so ιr (k) =
ζ(k−r )
ζ(k) .

In particular, the desired variance is, for k > 3,

ι2(k)− ι1(k)2 =
ζ(k− 2)ζ(k)− ζ(k− 1)2

ζ(k)2
.

Problem 2014-4/B (folklore)

The evil Eve has locked Alice and Bob in a room without windows. Outside the room, there is

a corridor with 64 doors. Eve puts a key behind one of the doors and a crocodile behind each

of the others. Then she hangs up a light bulb above each of the doors, and for each light bulb,

switches it on or off. Then Eve brings Alice into the corridor, tells her which door hides the key

and tells her to choose one of the light bulbs and change the state of that chosen light bulb.

After Alice leaves, Eve brings Bob to the corridor, and tells him to open a door of his own choice.

Alice and Bob are allowed to discuss a strategy before Alice is shown where the key is, but not

after.

a. Give a strategy that guarantees Bob to find the key.

b. For which positive integers n does such a strategy exist if there are n doors?

Solution We received solutions from Alex Heinis, Julian Lyczak and Raymond van Bommel,

Thijmen Krebs, Gerard Renardel, Jos van Kan and Kees Vugs. The following solution is based on

that of Julian Lyczak and Raymond van Bommel and they win the book token.

We show that there exists a strategy for Alice and Bob if and only ifn is a power of 2. This solves

both parts a and b.

First suppose that there exists a strategy for Alice and Bob for an n that is not a power of 2.

Bob’s part of the strategy is a map from the set of 2n possible configurations of light bulbs to

the set of n doors. By the pigeon hole principle, there is a door k that is reached by at most

⌊2n/n⌋ light bulb configurations (here ⌊x⌋ is x rounded down to an integer). As Alice has

to choose between n light bulbs, she can reach these configurations from at most n⌊2n/n⌋

starting configurations. Asn is not a divisor of 2n, we haven⌊2n/n⌋ < 2n, so there is a starting

configuration for which the strategy does not work.

Now suppose n = 2d. We give the following strategy. Alice and Bob first agree on a numbering

of the doors, each with a label in Fd2 , where F2 = Z/2Z (equivalently, each door gets a number

from 0 ton−1 of which we take the binary representation). We take sums in Fd2 componentwise

modulo 2, that is, the sum is the bit-wise xor.

When Alice enters the corridor, she computes the sum s ∈ Fd2 of the doors whose lights are on.

Let k ∈ Fd2 be the door with the key. Then Alice changes the state of door s+k. After that change,

the sum of the doors whose lights are on is s + (s + k) = k. When Bob arrives, he computes the

sum of the doors whose lights are on and thus finds k, hence opens door k.

Problem 2014-4/C (folklore)

Let X3 be the collection of three-element subsets of {1,2, . . . ,8}, and let X4 be the collection

of four-element subsets of {1,2, . . . ,11}. Does there exist an injective map φ : X3 → X4 with

the following properties?

1. For all subsets V ⊆ X3, we have #(
⋂

v∈V φ(v)) ≥ #(
⋂

v∈V v).

2. For all v,v′ ∈ X3, if v ∩ v′ = ∅, thenφ(v)∩φ(v′) = ∅.

Solution We received solutions from Raymond van Bommel and Julian Lyczak, Alex Heinis and

Thijmen Krebs. The book token goes to Thijmen Krebs. The following solution is based on his.

The answer to the question is “no”. Suppose for a contradiction that there does exist such a

mapφ.
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We first show that we may assume that v ⊂ φ(v) for all v ∈ X3. Consider for i ∈ {1,2, . . . ,8}

the set Vi = {v ∈ X3 : i ∈ v}. By property 1,
⋂

v∈Vi
φ(v) is non-empty. Choose for every i ∈

{1,2, . . . ,8} an element s(i) of
⋂

v∈Vi
φ(v). We claim that s is an injective map {1,2, . . . ,8} →

{1,2, . . . ,11}. Indeed, for any i 6= i′ ∈ {1,2, . . . ,8}, we can find disjoint v,v′ ∈ X3 with i ∈ v

and i′ ∈ v′. By property 2,φ(v) andφ(v′) are disjoint, so in particular distinct, from which we

deduce that s(i) 6= s(i′), which proves our claim. Therefore we can extend s to a permutation σ

of {1,2, . . . ,11}. So, replacingφ by v 7→ σ−1
[

φ(v)
]

if necessary, we may indeed assume that

for all v ⊂ X3, we have v ⊂ φ(v).

Let us do so. Then we see that for all v ∈ X3, we have φ(v) = v ∪
{

i(v)
}

for some i(v) ∈

{1,2, . . . ,11}. We claim that for allv ∈ X3, we in fact have i(v) ∈ {9,10,11}. Indeed, otherwise

we can find disjoint v,v′ ∈ X3 such that i(v) ∈ v′, but then we have a contradiction with (2).

Therefore we have a map i : X3 → {9,10,11} satisfying the following properties.

1′. For all v ∈ X3, we haveφ(v) = v ∪ {i(v)}.

2′. For all disjoint v,v′ ∈ X3, we have i(v) 6= i(v′).

So now it suffices to show that no maps i : X3 → {9,10,11} satisfying property 2′ exist.

We do this by showing there exist four elements of X3 which map to pairwise distinct elements.

For anyw ⊆ {1,2, . . . ,8}, define Vw = {v ∈ X3 : v ⊆ w}.

Lemma 1. Letw,w′ ⊆ {1,2, . . . ,8} be two subsets defining a partition of {1,2, . . . ,8}. Then i is

constant on either Vw or Vw′ .

Proof. For all v ∈ Vw and v ∈ Vw′ , we see that v and v′ are disjoint, so by (2’), we have

i(v) 6= i(v′). Therefore i[Vw ] and i[Vw′ ] are disjoint subsets of {9,10,11}, so i is constant on

either Vw or Vw′ . �

Choose any collection W of four subsets w ⊆ {1,2, . . . ,8} such that #w = 4 and such that for

all distinct w,w′ ∈ W , we have #(w ∩w′) = 2, so that #(w ∪w′) = 6. Such W exist, take for

example

W =
{

{1,2,3,4}, {1,2,5,6}, {1,3,5,7}, {1,4,5,8}
}

.

Note thatW retains this property if we replace any elementw by its complement. Therefore by

Lemma 1, we may assume, by replacing some of the elements w ∈ W by their complement if

necessary, that Vw is constant for all w ∈ W . So let us do so, and write i(w) for the unique

element of i[Vw ], for allw ∈ Vw .

Note that by construction, for all distinct w,w′ ∈ W , we can find disjoint v,v′ ∈ X3 such that

v ∈ Vw and v′ ∈ Vw′ . Therefore i(w) 6= i(w′) for all distinct w,w′ ∈ W , in other words,

i defines an injection from a four-element set W to a three-element set {9,10,11}, which is

impossible. Therefore noφ satisfying properties 1 and 2 can exist.

Rectifications

i. In the solution of Problem 2014/3-C that appeared in March this year, the symbol l occurs

twice without a subscript. The first one should be l1, and the second one should be l2.

ii. We omitted by mistake some references, submitted to us by Rob van der Waall.

− For the problems of the September issue of 2014, [1] and [2] are two books related to

the subject of the problems.

− Problem 2014/2-C appears as exercise 3.28 in [3]. Its solution also follows from

Theorem VI.II of [4].

We apologise for the mistakes made.
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