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An inequality of Gauss

In this article Gerard Hooghiemstra and Piet van Mieghem explain why the Gauss inequality is

overshadowed by the Chebychev inequality. Furthermore, they present a proof of the Gauss

inequality in modern notation.

In his general analysis on measurement er-

rors [4], Gauss treats random errors in a prob-

abilistic manner, which is, with respect to to-

day’s standards, surprisingly modern. Our in-

terest here is a particularly general inequali-

ty involving probabilities, stated and proved

by Gauss in [4], that does not seem to be

well-known in the stochastic community. The

Gauss inequality is, for instance, not men-

tioned in either of the two introductory vol-

umes [2–3] written by William Feller. The main

goal of this note is to explain why this inequal-

ity is overshadowed by the well-known Cheby-

chev inequality and to present (a slightly mod-

ified) proof of the Gauss inequality.

We start by restating Gauss’ inequality in

modern notation. We consider a random vari-

able X having a density fX , which is symmet-

ric around 0 (i.e., fX (−x) = fX (x), ∀x > 0),

and which is non-increasing for x > 0. More-

over, we assume a finite second moment

E[X2] =
∫∞
−∞ x

2fX (x)dx < ∞. By symme-

try, the first moment (also called the mean µ)

satisfies µ = E[X] =
∫∞
−∞ xfX (x)dx = 0, so

that the variance of X satisfies:

σ2 = Var [X] = E[(X − µ)2] = E[X2].

Theorem 1 (Gauss [4]). Consider a random

variableX having a density fX , which is sym-

metric around 0 (i.e., fX (−x) = fX (x), ∀x >
0), and which is non-increasing for x > 0.

Moreover, we assume that σ2 = E[X2] =
∫∞
−∞ x

2fX (x)dx <∞. Defining for a > 0

m = Pr [|X| ≤ aσ] ,

it holds that

if m ≤ 2

3
then a ≤m

√

3, (1)

if m >
2

3
then a ≤ 2

3
√

1−m, (2)

At first glance, the two inequalities (1) and

(2) provide little insight. After rearranging, (1)

and (2) can be rewritten as,

if m ≤ 2

3
then m ≥ a√

3
, (3)

if m >
2

3
then m ≥ 1− 4

9a2
. (4)

The conclusions in (3) and (4) are somewhat

peculiar, since the magnitude of m (m ≤ 2
3

or m > 2
3

) is needed, before the respective

statement gives a lower bound for m. The

conclusion in (4) is

Pr [|X| ≤ aσ] ≥ 1− 4

9a2
, (5)

which is valid in the tail of the distribu-

tion, i.e., for a large enough such that

Pr [|X| > aσ] < 1
3

, very closely resembles

the inequality of Chebychev given below. The

inequality of Chebychev below involves the

mean µ = E[X] =
∫∞
−∞ xfX (x)dx of X, which,

in general, is unequal to 0.

Chebychev’s inequality

We assume that X has a finite second mo-

ment. Let us denote the mean by µ = E[X] =
∫∞
−∞ xfX (x)dx and the variance by σ2 =

Var[X]= E[(X − µ)2]= E[X2] − µ2. In 1867,

Chebychev [6] has proved that

Pr [|X − µ| ≤ aσ] ≥ 1− 1

a2
, a > 0. (6)

The proof of Chebychev’s inequality [3, p. 151]

or [5, p. 103] needs a few lines only:
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1. apply the Markov inequality to

Y = ((X − µ)/σ )2 ≥ 0,

where

2. the Markov inequality is given by

E[Y ] =

∫∞

0
yfY (y)dy

≥
∫∞

a
yfY (y)dy

≥ a
∫∞

a
fY (y)dy

= aPr [Y > a] .

Comparison of the two inequalities

Before we proceed with the comparison of the

inequalities of Gauss and Chebychev, let us

first treat some examples.

Example 1. Let X possess a uniform distribu-

tion on the interval (−s, s), i.e.,

fX (x) =







1
2s , −s < x < s,
0, |x| ≥ s.

The distribution function FX (x), defined by

FX (x) = Pr [X ≤ x], for real numbers x,

reads:

FX (x) =



















0, x ≤ −s,
∫ x
−s

1
2sdt =

x+s
2s , −s < x < s,

1, x ≥ s.
(7)

In this example, µ = E[X] = 0 and σ2 =
∫ s
−s

x2

2s dx = s2/3, so that σ = s/
√

3. By

straightforward calculation, we have

Pr [|X| ≤ aσ]
= FX (min{s, aσ})− FX (−min{s, aσ})
= min{1, a/

√

3}.

a 1
2

1
3
2

2
5
2

3

Pr[|X| < aσ ] for Example 1. 0.289 0.577 0.866 1 1 1

Pr[|X| < aσ ] for Example 2. 0.383 0.683 0.866 0.954 0.988 0.997

Pr[|X| < aσ ] for Example 3. 0.704 0.875 0.936 0.963 0.977 0.984

Lower bound from Gauss (m ≤ 2
3

) (cf. (3)) 0.289 0.577 n.r. n.r. n.r. n.r.

Lower bound from Gauss (m > 2
3

) (cf. (4)) −0.778 0.556 0.802 0.889 0.929 0.951

Lower bound from Chebychev (cf. (6)) −3 0 0.556 0.750 0.840 0.889

Table 1 Comparison table.

Example 2. We perform the same computa-

tions for X, now having a normal distribution

with parameters µ = 0 and σ2 = E[X2]. The

probability distribution function

FX (x) =
1

σ
√

2π

∫ x

−∞
e−t

2/2σ dt,

cannot be expressed in elementary functions,

but the specific probabilities can be found

from tables of the standard normal distribu-

tion. An accurate series for the inverse F−1
X (x)

exists [5, p. 44]. LetZ have a standard normal

distribution, i.e., a normal distribution with

parameters µ = 0 and σ2 = 1, then

Pr [|X| ≤ aσ]
= Pr[X ≤ aσ ]− Pr[X ≤ −aσ ]

= Pr[Z ≤ a]− Pr[Z ≤ −a]

= 1− 2 Pr[Z > a],

where the probability Pr[Z > a] can be found

in many places, for instance, in [1, Table B.1,

p. 432].

Example 3. As a third example, we take a sym-

metric distribution with heavy tails. Roughly

speaking, a distribution has a heavy tail, if the

survival function Pr [|X| > t] decays polyno-

mially in t. A well-known example is the Pare-

to distribution [1, p. 63]. A random variable

X is said to have a Pareto distribution with

parameter α > 0, if its probability density

gα(x) = 0 is, for x < 1, and equal to

gα(x) =
α

xα+1
, for x ≥ 1.

To satisfy the conditions of Theorem 1, we

make the density fX symmetric by defining,

fX (x) =







1
2
gα(1 + x), x ≥ 0,

1
2
gα(1− x), x ≤ 0.

Rather than computing the distribution func-

tion FX , we instead derive Pr [|X| ≤ aσ] di-

rectly from the density fX . By construction,

E[X] = 0 and the second moment is

σ2 = E[X2] =

∫∞

−∞
x2fX (x)dx

= 2

∫∞

0
x2 1

2
gα(1 + x)dx

=

∫∞

1

α(x − 1)2

xα+1
dx

=
2

(α− 1)(α− 2)
,

since
∫∞
1

αxβ

xα+1 dx = α/(α − β) for α > β.

Hence, we need to require thatα > 2 in order

to have a finite variance E[X2] <∞. We shall

take α = 3 (and hence σ = 1) and find by

integration:

Pr [|X| ≤ aσ] = 2

∫ a

0

1

2
g3(1 + x)dx

=

∫ a

0

3

(x + 1)4
dx

= 1− 1

(1 + a)3
.

In Table 1, we present Pr [|X| ≤ aσ] for the

distributions of Examples 1,2 and 3 and com-

pare for various values of a the lower bounds

of Gauss (5) and Chebychev (6), respective-

ly. In the table, the abbreviation ‘n.r.’ stands

for ‘not relevant’, since for the correspond-

ing values of a in all three cases, we have

m > 2
3

.

The lower bound (5) of Gauss is in all exam-

ples tighter than (6) of Chebychev. However,

two remarks are in order: (i) the lower bound

of Gauss is only valid under more stringent

conditions, but more importantly (ii) we must

know, whether m = Pr(|X| < aσ ) is larger or

smaller than 2
3

, which is not straightforward

at all.
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Figure 1 A distribution function u=FX (x) (in the inset) of a random variable X that is symmetric around x=0 and its in-

verse function x=F−1
X (u).

One might consider to approximatem by the

lower bound, because we know that m falls

in between the lower bound and 1. This ap-

proximation is rather crude, however in the

tail (m > 2
3

), the lower bound of Gauss is

definitely better than that of Chebychev. Also

note that in case (i), the uniform distribution,

the lower bound of Gauss gives the exact val-

ues form = Pr (|X| < aσ ), form < 2
3

.

For the theoretical value of the lower

bounds, we consider an important applica-

tion, namely the weak law of large numbers

[3, p. 234]. Informally, the weak law of large

numbers states that the average of repetitive

and independent measurements converges

(in probability) to the mean of the distribu-

tion. Indeed, for a series of repetitive and

independent measurements X1, X2, . . . , Xn

with density satisfying the conditions of Theo-

rem 1, the mean of the underlying distribution

is 0 and

X̄n =
X1 +X2 + · · · +Xn

n

converges to 0, in the sense that for each ε >

0,

lim
n→∞

Pr[|X̄n| > ε] = 0.

This follows directly from the inequality (5) of

Gauss, since

Var
[

X̄n
]

= Var

[

X1 +X2 + · · · +Xn

n

]

=
1

n2
Var [X1 +X2 + · · · +Xn]

=
1

n2
{Var [X1] + · · · + Var [Xn]}

=
1

n2
nσ2 =

σ2

n
.

Indeed, we find that, for n → ∞, and with

a = ε
√
n/σ ,

Pr
[

|X̄n| > ε
]

= 1− Pr
[

|X̄n| < ε
]

= 1− Pr

[

|X̄n| <
σ√
n
ε

√
n

σ

]

≤ 4σ2

9ε2n
→ 0.

However, the same conclusion can be drawn

by applying the Chebychev inequality (6), in

which case the upper bound is replaced by

1
(

ε
√
n
σ

)2
=
σ2

ε2n
,

which also converges to 0. Hence, for theoret-

ical purposes, the advantage of the factor 4
9

in Gauss’ inequality (5) compared to Cheby-

chev’s inequality (6) is unimportant and is

washed out entirely by the fact that Cheby-

chev’s inequality holds under the single con-

dition that X must have a finite second mo-

ment. We believe that this explains why

Gauss’ inequality (5) is barely known in the

stochastic community.

Proof of the Gauss inequality

In this section we present a proof of the Gauss

inequality in modern notation. In his proof [4]

in Latin (translated to English in [5, pp. 111–

112]), Gauss uses the inverse of the function

hdefined byh(x) = FX (x)−FX (−x), x ≥ 0. It

is slightly easier to concentrate on the inverse

function F−1
X , which we define below. Since,

in the framework of Theorem 1, we exclusively

work with continuous distribution functions

and since these functions are by definition

non-decreasing, we can define

F−1
X (u) = inf{x : F (x) = u}, 0 < u < 1,

and, on intervals where fX (x) = 0, or sim-

ilarly, where FX (x) is constant, we take the

left-endpoint of that interval.

The general definition of the expectation

of a function g of X is

E
[

g(X)
]

=

∫∞

−∞
g(x)dFX (x) . (8)

After the substitution x = F−1
X (u) or u =

FX (x) and du = dFX (x) = fX (x)dx, we

obtain

E
[

g (X)
]

=

∫ 1

0
g
(

F−1
X (u)

)

du,

from which the mean

µ = E [X] =

∫ 1

0
F−1
X (u)du

and the second moment

E[X2] =

∫ 1

0
(F−1
X (u))2 du

follows. A probabilistic way to obtain the

same result is as follows. Let U be a uni-

form random variable on (0,1), then for all

real numbers x,

{U ≤ FX (x}) = {F−1
X (U ) ≤ x}. (9)

For a random variable with a uniform distribu-

tion on (0,1), we have

Pr[U ≤ u] =

∫ u

0
dx = u, 0 < u < 1,

so that substitution of u = FX (x) yields

Pr[U ≤ FX (x)] = FX (x). (10)
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Combining (9) and (10) gives:

Pr[F−1
X (U ) ≤ x] = FX (x),

so that X and F−1
X (U) are equal in distribu-

tion. Thus, also the expectations E
[

g (X)
]

and E
[

g
(

F−1
X (U)

)]

are equal, for any func-

tion g. Invoking the general definition (8), we

find again

E
[

g(X)
]

=

∫ 1

0
g
(

F−1
X (u)

)

dFU (u)

=

∫ 1

0
g
(

F−1
X (u)

)

du.

After this preparation, we start with the proof.

Since Gauss assumed that fX is symmetric

around 0 and that fX (x) is non-increasing for

x > 0, the function u = FX (x) is concave for

x > 0. As a consequence and also illustrated

in Figure 1, the inverse function x = F−1
X (u) is

convex for u ∈ [
1
2
,1].

The idea of the proof is that, for the uniform

distribution on a symmetric interval around

zero, the inequality (1) is sharp for a ≤
√

3,

as was shown in Example 1, where we de-

rived that m = a/
√

3 for a ≤
√

3. Since

the uniform distribution function is a linear

function on its support (see (7)), we will re-

place F−1
X (u) on a sub-interval of [

1
2
,1] by

the tangent to the function F−1
X (u) in the

point u = FX (aσ ), where a is any positive

real number (see Figure 1). From the ba-

sic identity F−1
X (FX (y)) = y, we find that

(F−1
X )′(FX (y))fX (y) = 1. Hence, the equation

of the tangent at u = FX (aσ ) reads

x − aσ =
1

fX (aσ )
(u− FX (aσ )).

The intersection of the tangent to the func-

tion F−1
X (u) at u = FX (aσ ) with the u-

axis is given by u⋆ = FX (aσ ) − aσfX (aσ ).

Now, by symmetry of fX (x), the relation

FX (x) = 1 − FX (−x), x > 0, holds, so that

F−1
X (

1
2

+ u) = −F−1
X (

1
2
− u), 1

2
< u < 1, and

as a consequence

σ2 = E[X2] =

∫ 1

0
(F−1
X (u))2 du

= 2

∫ 1

1
2

(F−1
X (u))2 du.

(11)

Since F−1
X is convex on [

1
2
,1], the tangent

does not intersect the graph of F−1
X (u), and

the intersection u⋆ of the tangent with the

u-axis satisfies u⋆ ≥ 1
2

, so that the follow-

ing inequalities are satisfied (note that we

first use that u⋆ ≥ 1
2

and secondly that

F−1
X (u) ≥ u−u⋆

fX (aσ )
; when the inequalities are

performed the other way around, the reason-

ing is false),

2

∫ 1

1
2

(F−1
X (u))2 du

≥ 2

∫ 1

u⋆
(F−1
X (u))2 du

≥ 2

∫ 1

u⋆

(

u−u⋆
fX (aσ )

)2

du.

(12)

A simple computation gives

2

∫ 1

u⋆

(

u−u⋆
fX (aσ )

)2

du =
2

3(fX (aσ ))2

· [1− FX (aσ ) + aσfX (aσ )]
3
.

(13)

After combining (11), (12) and (13), we end up

with

σ2 ≥ 2

3(fX (aσ ))2

· [1− FX (aσ ) + aσfX (aσ )]
3
.

(14)

Let z = u − u⋆ = aσfX (aσ ) and recall that

m = FX (aσ )−FX (−aσ ) = 2FX (aσ )−1. Sub-

stitution in (14) yields

2a2σ2

3z2

[

1−m
2

+ z

]3

≤ σ2. (15)

Define the functionG(z) by the left-hand side

of (15). Obviously z = u − u⋆ > 0. On the

other hand z ≤m/2, since by hypothesis fX
is non-increasing on (0,∞), so that for x > 0,

xfX (x) ≤
∫ x

0
fX (y)dy

= FX (x)− FX (0)

= FX (x)− 1
2 (FX (0) = 1

2 ),

and if we take x = aσ , we obtain:

aσfX (aσ ) ≤ FX (aσ )− 1
2

or z ≤m/2.

In order to find the minimum value of

G(z) on the interval (0,m/2], we compute the

derivative

G′(z) =
2a2σ2

3z2

[

1−m
2

+ z

]2 [

1− 1−m
z

]

.

The minimum of G is attained at z = 1 −m,
when 1−m ≤m/2, or equivalently for m ≥
2
3
, and in the point z = m/2, when 1 −m >

m/2 or m < 2
3

. Substitution of z = 1 −m,

which corresponds tom ≥ 2
3

, gives

9

4
a2(1−m) ≤ 1 or a ≤ 2

3
√

1−m.

Form < 2
3

, we obtain

2a2σ2

3(m/2)2
· 1

8
≤ σ2 or a ≤m

√

3.

This yields (1) and (2), since for m =
2
3

we

havem
√

3 =
2

3
√

1−m =
2
3

√
3. k
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