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History

The myth of Leibniz’s proof
of the fundamental theorem
of calculus

A paper by Leibniz from 1693 is very often cited as containing his proof of the fundamental

theorem of calculus. However, argues Viktor Blåsjö in this article, when read in its proper

context it becomes clear that Leibniz’s argument is not at all a proof of this theorem but rather

a recourse for the cases where the theorem is of no use.

What was Leibniz’s take on the fundamental

theorem of calculus? He was one of the cre-

ators of the field after all, so one is naturally

curious. But if you go to the library to find the

answer to this question you will be sold a bait-

and-switch. You will be referred to his 1693

article [15], supposedly the only place where

Leibniz explicitly stated and proved the fun-

damental theorem of calculus in print. The

passage in question is reproduced in full in

English translation in Struik [26, pp. 282–

284], Calinger [4, pp. 354–356], Laubenbach-

er and Pengelley [13, pp. 133–135], discussed

in full detail in Cooke [5, pp. 470–471], Hahn

[11, pp. 125–128], Nitecki [25, pp. 292–293],

Bressoud [3, pp. 101–102], Nauenberg [24],

and cited in Katz [12, p. 529], Edwards, [8,

p. 260], Volkert [27, p. 104], González-Velasco

[9, p. 357], Grattan-Guinness [10, p. 55],

The statement of Leibniz and its misleading translation into modern terms

The general problem of quadratures

can be reduced to

the finding of a curve

that has a given law of tangency.

The evaluation of a general integral
∫ b
a f (x)dx

can be reduced to

the finding of a function F (x)

that satisfies F ′(x) = f (x).

Beyer [1, p. 163], et cetera, all on the suppo-

sition that this is Leibniz’s proof of the funda-

mental theorem of calculus. (Leibniz’s com-

plete paper is available in German transla-

tions in [23] and [20], and a French translation

in [22].) If you study the proof you will proba-

bly recognize it as a rather clunky way of say-

ing
∫ b
a f (x)dx = F (b) − F (a) (where F ′ = f )

in geometrical language. I shall argue that it

is not. And this despite the fact that Leibniz

clearly writes: “I shall now show that the gen-

eral problem of quadratures can be reduced

to the finding of a curve that has a given law

of tangency” (p. 390). Today everybody reads

this as shown in the box on this page.

Read through modern eyes in this manner,

then, this looks like smoking-gun evidence

that Leibniz is announcing his intention to

prove the fundamental theorem. So it is not

difficult to see how it came to be generally ac-

cepted as such in the literature. It is natural

that scholars who know the centrality of the

fundamental theorem of calculus in the mod-

ern conception of the field should go look-

ing for its proof in Leibniz, and it is under-

standable that this passage would then catch

their eyes. But I shall argue that this is an

anachronistic reading that misses the point

of the argument completely. When Leibniz’s

paper is understood in its historical context it

becomes evident that it is meant to serve a

different purpose.

Leibniz’s calculus

Before delving into the forgotten historical

context that explains what Leibniz is up to

in his paper, we may ask ourselves: if this

isn’t it, then how did Leibniz think about the

fundamental theorem of calculus? I believe

that, if cornered to argue for this result, Leib-

niz would have argued essentially as follows.

∫ b

a
y′dx =

∫ b

a

dy

dx
dx =

∫ b

a
dy

= sum of little changes in y from a to b

= net change in y from a to b

= y(b)−y(a).

For the other part of the theorem, just note

from Figure 1 that if t increases by dt then
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dtta
Figure 1 The integral

∫ t
a ydx and its differential.

the area
∫ t
a ydx increases byy(t)dt, whence

d
∫ t
a y(x)dx

dt
=
y(t)dt

dt
= y(t).

This mode of reasoning is very much in line

with Leibniz’s conceptions of integrals and

differentials. Indeed, he would most likely

not consider this a ‘proof’ of a ‘fundamen-

tal theorem’, but rather a somewhat tedious

explication of the meaning of differentiation

and integration. That is why he never put it

in print. Instead he was satisfied with the ca-

sual statement that “as powers and roots in

ordinary arithmetic, so for us sums and differ-

ences, or
∫

and d, are reciprocal” [14, p. 297].

The comparison is an apt one not only pro-

cedurally but also foundationally: in neither

case can there be a question of proof of the

reciprocal relationship; rather it is built into

the very meaning of the notions involved.

So much for the fundamental theorem,

which, however, has nothing to do with the

purpose of Leibniz’s 1693 paper. To under-

stand what Leibniz did intend in this paper,

we must first understand its context. In the

seventeenth century, Euclid’s Elements was

Figure 2 Descartes’s curve tracing method [6, p.321]. The
triangle KNL moves vertically along the axis ABLK. At-
tached to it at L is a ruler, which is also constrained by the
peg fixed at G. Therefore the ruler makes a mostly rotation-
al motion as the triangle moves upwards. The intersection
C of the ruler and the extension of KN defines the traced
curve, in this case a hyperbola.

still the gold standard of mathematical rigour

and method. One conspicuous aspect of this

work is that Euclid speaks only of Figures he

can construct using ruler and compasses. The

scope of Euclid’s construction tools was soo

found too restrictive, but his emphasis on

constructions was retained.

Descartes’s construction method

The Euclidean requirement of construction as

a prerequisite for knowledge was taken very

seriously by Descartes, who was to have a

great influence on Leibniz. Descartes taught

the world coordinate geometry and the iden-

tification of curves with equations in his La

Géométrie of 1637. In connection with this

he also argued that the scope of mathemat-

ics should be extended to include all alge-

braic curves — to which his new method was

especially suited — as opposed to being lim-

ited to the lines and circles of Euclid’s Ele-

ments and the handful more complex curves

studied in antiquity. However, Descartes did

not present this as a radically new way of do-

ing geometry, different in principle from that

of Euclid. Rather he argued at great length

that his method was really nothing but the Eu-

clidean programme brought to its logical con-

clusion. In particular, he accepted curves rep-

resented by algebraic equations as legitimate

mathematical objects only after he had found

a way of constructing them in a Euclidean

spirit.

Descartes’s criterion for an acceptable

construction is the following:

“To treat all the curves I mean to introduce

here [i.e., all algebraic curves], only one ad-

ditional assumption [beyond ruler and com-

passes] is necessary, namely, [that] two or

L
A

G

C

Figure 3 Top: The defining property of the conchoid, a famous algebraic curve studied in antiquity. Bottom: Construction of
the conchoid using Descartes’s method of Figure 2 with a circle in place of the line KNC.

more lines can be moved, one [by] the oth-

er, determining by their intersection other

curves. This seems to me in no way more dif-

ficult [than the classical constructions].” [7,

p. 43]

The key phrase is “one by the other”:

Descartes has no objections to assemblages

of curves pushing one another in whatever

fashion as long as all the motions are ulti-

mately generated by one and only one prim-

itive motion. You can build a curve tracing

machine as intricate as you like as long as

one single point needs to be moved to op-

erate it. This single-motion criterion is the

key to Descartes’s division of curves into ‘ge-

ometrical’ (i.e., exact) and ‘mechanical’ (i.e.,

not susceptible to mathematical rigour).

Figure 2 shows an example of Descartes’s

construction method. It can be adapted to

generate algebraic curves of higher and high-

er degree. For example, it is quite easy to see

that replacing the line KNC by a circle pro-

duces a conchoid (Figure 3). And so it con-

tinues: once e.g. the conchoid has been gen-

erated it can be taken in place of the starting

curveKNC to generate an even more complex

curve, and so on.

These curve-tracing methods are what

made algebraic curves legitimate geometry

to Descartes. And they were so not in the

sense of incidental or half-hearted attempts

at justifying his new mathematics to obsti-

nate colleagues stuck in old ways of thinking.

Rather, these considerations formed the ba-

sis for his mathematical researches from the

very beginning. Already in 1619, before he

had the idea of a correspondence between a

curve and an equation, Descartes was con-

cerned with “new compasses, which I con-
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Figure 4 The quadratrix. C moves along the arc of a circle
and X along its radius. Both points start at A and move at
uniform speed in such a way as to reach the vertical axis at

the same time, i.e., d
dt AC=

π
2

(
d
dt AX

)
. The intersection Q

generates the quadratrix.

θ

r

Figure 5 The Archimedean spiral r=θ. The radial motion
must be exactly coordinated with the rotational motion —
a constructively impossible task, according to Descartes.

sider to be no less certain and geometrical

than the usual compasses by which circles

are traced” (quoted from [2, p. 232]). The

key criterion for these ‘new compasses’, ac-

cording to Descartes, was that they should

trace curves ‘from one single motion’, con-

trary to the ‘imaginary’ curves traced by ‘sep-

arate motions not subordinate to one anoth-

er’, such as the quadratrix (Figure 4) or the

Archimedean spiral (Figure 5). The coordina-

tion of motions in both of these constructions

involve π , which, since π is transcendental,

is non-constructible (and hence unknowable)

by Euclidean and Cartesian standards. As

Descartes puts it in the Géométrie:

“The spiral, the quadratrix, and similar curves

. . . are not among those curves that I think

should be included here, since they must be

conceived of as described by two separate

movements whose relation does not admit of

exact determination, [. . .] since the ratios be-

tween straight and curved lines are not known,

and I believe cannot be discovered by human

minds, and therefore no conclusion based up-

on such ratios can be accepted as rigorous

and exact.” [7, pp. 44, 91]

By the time he published his Géométrie,

Descartes had become convinced that his

single-motion criterion included all algebraic

curves (i.e., curves with polynomial equation

of any degree), and nothing else. Convincing

his readers of this — and thereby justifying the

new algebraic methods in terms of the stan-

dards of classical, construction-based geom-

etry — is one of the dominant themes of the

Géométrie. (This is one of the main points

of Bos [2], the definitive study of Descartes’s

geometry.)

Leibniz’s construction method

These considerations form the direct back-

ground of Leibniz’s 1693 article. He believed,

as firmly as Descartes, that constructions are

the bedrock of geometrical rigour. That is

why he offered his own single-motion con-

struction method, which can produce not only

any algebraic curve but in fact any curve de-

scribed by a differential equation of the form

dy/dx = f (x), where f (x) can be any pre-

viously constructed function, just as the line

KNC in Descartes’s construction can be re-

placed by any previously constructed curve.

This construction is what Leibniz’s paper is

all about.

Leibniz’s construction goes as follows (Fig-

ure 6). The planeΠ is a horizontal surface, say

a table. On it is placed a weight at C = (x,y)

attached to a string TC. If we move the free

end T of the string along the edge ABT of

the table, the curve (C)C generated by the

moving weight would be the ordinary tractrix.

But we shall modify this situation by having

part of the string hang over the edge of the ta-

ble. This end also has a weight attached to it,

G, which ensures that it hangs straight down

along the vertical plane Θ, until it hits the

edge E(E) protruding from this plane. Thus

x

y

C
(C)

T

A

B

R

H

(E)

E
L M

G

Figure 6 Leibniz’s tractional-motion device for constructing the solution curve C(C) of any inverse tangent problem. From
[15], figure 3 (left), and my reproduction (right).

the fixed string length is CT + TE, and the

length of the part TE hanging below the table

is determined by the curve E(E), which catch-

es the weight at a point vertically below T .

In fact, the length of TE is a funtion of the x-

coordinate of the weight atC, for asCmoves it

pushes the ‘ruler’HR and thereby the vertical

plane Θ ahead of it, so that E(E) is effectively

the graph of a function with RT = x as input

and TE as output. The curve (C)C is traced as

T is moved along the edge of the table away

from A. The motion of T thus inflicts two

separate motions on the plane Θ: one in the

y-direction resulting directly from the motion

of T , and one along the x-direction resulting

from the motion of C.

In this way we can generate a curve for

which the lengthTC of its tangent is any given

function of its x-coordinate. For if we seek a

curve C(C) for which TC = φ(x), say, then we

can always choose the curve E(E) so that TE

is the total string length minus φ(x), which

leaves just the required amount of string for

the tangent TC. Thus if we write a for the

total string length CTE, the required curve

E(E) is simply the graph of the function a −

φ(x) plotted in the planeΘ withRT asx-axis

and RL as y-axis.

Alternatively, we can generate a curve with

a given slopedy/dx = TB/BC. This reduces

to the above problem sinceTC =
√
TB2 + BC2

is a simple algebraic function of TB and BC.

Thus if we want to generate the curve C(C)

with the given slope dy/dx = f (x), we note

that in this case BC = x and TB = xf (x),

so that TC = x
√
f (x)2 + 1. Once we have

this expression for TC we can complete the

construction of E(E) as above.

In either case, then, since φ(x) or f (x)

are given, it takes only ‘ordinary’ Cartesian

geometry to construct the required curve E(E)
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Figure 7 The tractrix is the curve traced by a weight
dragged along a horizontal surface by a string whose other
end moves along a straight line.

that will enable the curve C(C) with the

desired property to be traced. In partic-

ular, Leibniz’s construction gives the solu-

tion to dy/dx = f (x), where f (x) is any

previously constructed curve, while assum-

ing nothing more than Cartesian geometry

and a single-motion tracing procedure. In

this way he enlarged the domain of con-

structible curves vastly beyond the algebra-

ic curves admitted by Descartes, while still

adhering very strictly to Descartes’s require-

ment of single-motion tracing and to the

Euclidean–Cartesian construction framework

generally.

Construction of quadratures

Such was the purpose of Leibniz’s paper. The

confusion regarding the fundamental theo-

rem arises from Leibniz’s application to the

problem of the construction of quadratures,

i.e., the problem of constructing a line seg-

ment whose length equals a given area, or

integral. This is quite clearly the guiding

idea of the whole paper, whose title promis-

es “a general construction of all quadratures

by motion”. In other words, Leibniz wants to

clarify that his construction not only solves

any differential equation dy/dx = f (x) but

also any integral
∫ b
a f (x)dx. This prob-

lem readily reduces to the above as follows

Figure 8 Leibniz’s reduction of quadratures to rectifications. From [15], Figure 2, and as reproduced in [20, p. 31].

(Figure 8). Let AF = x and let f (x) = FH

be the function whose integral is to be con-

structed. As above, construct a curve C(C)

such that its slope dy/dx = TB/BC always

equals f (x). Then it follows that FC = y =∫
f (x)dx = AFHA, so the quadrature has

been constructed as a line segment, as re-

quired.

Since the tractional construction itself

is prima facie concerned with constructing

curves with given tangent properties, a casual

reader of Leibniz’s paper might have missed

that it can also be used to find a line segment

equal to a given integral had Leibniz not taken

the trouble to spell out this application specif-

ically and even note it in the title of the paper.

This construction of quadratures was a ma-

jor problem at the time, quite apart from dif-

ferential equations, so it was certainly worth

highlighting.

Leibniz’s statement reevaluated

It is in the course of this explanation that we

encounter Leibniz’s sentence quoted above

that seemed to be a statement of the fun-

damental theorem: “I shall now show that

the general problem of quadratures can be re-

duced to the finding of a curve that has a given

law of tangency.” Now that we understand its

context we see that to Leibniz this is a lem-

ma linking the problem of quadratures to the

tractional construction. It is not a fundamen-

tal theorem telling you to find an antideriva-

tive F whenever you seek an integral
∫
fdx.

Rather it is a specification of how the traction-

al motion needs to be set up to produce the

values of
∫
fdx as the y-coordinates of the

tractional curve C(C).

It is true that Leibniz’s argument here con-

cerns the relation between the differential

equation dy/dx = f (x) and the integral∫ b
a f (x)dx, and as such, to be sure, it is close-

ly related to the fundamental theorem of cal-

culus. But Leibniz’s point is a much more

specific one, and one very much specifically

tailored to the setup of his tractional construc-

tion. It would be a big mistake, therefore,

to forget about the context of the tractional

construction and cut out the few lines relat-

ing to the fundamental theorem and study

them as if they were meant as a proof of

this general theorem. Yet this is precisely the

mistake that occurs so often in the historical

literature.

Leibniz would certainly consider it mad-

ness to apply his construction to an inte-

gral
∫
f (x)dx for which an explicit antideriva-

tive F (x) can be found. Indeed, Leibniz

says precisely this in a letter: “One cannot

determine by this construction whether the

sought quadrature can not also be carried

out by common geometry; when this is pos-

sible one does not need the extraordinary

route.” [17, p. 694] In such cases he would

simply go straight to F (x), as he had done

many times in print already before his 1693

paper.

Cases where F (x) is algebraic had long

been done and dusted, and logarithmic and

trigonometric functions were also becoming

common currency at this time. Certainly Leib-

niz would not spill ink in his 1693 paper on

proving the fundamental theorem for use on

such trivial cases.

The problem that interested him was inte-

grals such as
∫ √

1 + x4dx, or the correspond-

ing differential equation dy =
√

1 + x4dx.

Indeed, whenever Leibniz refers back to his

paper it is certainly never with reference to

the fundamental theorem, but rather always

as “my general construction of quadratures

by traction” [18, p. 127], i.e., as showing

that the tractional device “serves to con-

struct all quadratures by an exact and reg-

ular motion” [16, p. 665]. Again, Leibniz

[19, p. 157] explains that “I wished for the

tractional method to be applied to the in-

versions of tangents [i.e., solving differen-

tial equations] rather than to quadratures

where we already have [a method, namely

finding F (x)].”

Conclusion

So, in conclusion, the irony of the story is

that what is commonly referred to as Leibniz’s

proof of the fundamental theorem of calculus

is actually his strategy for what to do when

the theorem is of no use (in that one cannot

find F (x)). k
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