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The Solution

The André–Oort conjecture

The André–Oort conjecture is a problem in algebraic geometry from around 1990, with arith-

metic, analytic and differential geometric aspects. Klingler, Ullmo and Yafaev, as well as Pila

and Tsimerman have now shown that the Generalized Riemann Hypothesis implies the André–

Oort conjecture. Both proofs appeared in the Annals of Mathematics in 2014. In this article Bas

Edixhoven and Lenny Taelman describe the conjecture and these recent solutions.

The story of the André–Oort conjecture starts

in 1988, with a question, posed by Yves André

[1, X.4.3] at the end of his book on solutions of

differential equations coming from algebraic

varieties defined over Q.

Elliptic integrals and complex multiplication

The simplest such differential equation is the

equation

λ(λ− 1)η′′(λ) + (2λ− 1)η′(λ)

+ 1
4η(λ) = 0,

(1)

which was already studied by Gauss [9]. It

arises from the Legendre family of elliptic

curves:

y2 = x(x − 1)(x − λ), λ ∈ C− {0,1}.

For each λ, the set of solutions (x,y) ∈ C2 is

a Riemann surface that can be compactified

by adding one point. The compactification E

is an elliptic curve. It is homeomorphic to a

torus S1 × S1. If λ is not in (−∞,1), then the

solutions with x in the real segments [0,1]

and [1, λ] form circles C1 and C2 on E. These

two circles intersect transversally, see Figure

1, in a unique point, and therefore generate

the fundamental group of E. Integrating the

algebraic differential form ω = y−1dx along

the two circles gives the periods (defined up

to sign):

η1 =

∫

C1

ω = 2

∫ 1

0

dx√
x(x − 1)(x − λ)

,

and

η2 =

∫

C2

ω = 2

∫ λ

1

dx√
x(x − 1)(x − λ)

.

For varying λ, these form a basis of the com-

plex vector space of solutions of (1). The inte-

gral linear combinations of η1 and η2 form a

lattice

Λ = {k1η1 + k2η2 : k1, k2 ∈ Z} ⊂ C.

The Weierstrass P-function and its derivative,

suitably normalised, give an isomorphism of

complex analytic manifolds:

C/Λ ∼−→ E.

Each morphism of elliptic curves a : E1 → E2

corresponds to a homothetyz 7→ αz such that

αΛ1 ⊂ Λ2.

The complex number λ is called special

if the lattice Λ has complex multiplications,

meaning that there are non-real complex

numbers α such that αΛ ⊂ Λ (such an α

defines an endomorphism of C/Λ). For ex-

ample, λ = 2 is special as the corresponding

lattice,

Λ = Z2.622 . . . + Zi·2.622 . . . ,

has multiplication by i. This gives the map

E → E, (x,y) 7→ (2− x, iy).

The special λ form a countable subset of C.

Figure 1 The intersection of C1 and C2 near the point
(1,0) , projected to the complex y-coordinate (for λ=1+i).
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Manin–Mumford for C× × C×

Let C ⊂ C× × C× be the set of zeroes of an irreducible complex polynomial f in two

variables. Assume that C contains infinitely many torsion points (pairs (x,y) ∈ C× × C×

with bothx andy a root of unity). The Manin–Mumford conjecture for C××C× predicts that

f = aXnYm − b with n and m coprime, and b/a a root of unity. Equivalently, it predicts

that C is the image of a complex line

{(x,y) ∈ C2 : αx + βy + γ = 0} (α,β, γ ∈ Q)

under the exponential map

C× C → C× × C×, (x,y) 7→ (e2πix , e2πiy ).

In fact the Manin–Mumford conjecture for C× × C× is not hard to prove, and would be

suitable for the problem section in this journal.

This statement is analogous to (but much easier than) the André–Oort conjecture forA1×A1:

torsion points correspond to special points, and the exponential map corresponds to the

quotient map H± ×H± → A1 ×A1.

We can now state an explicit case of André’s

question. Let Z ⊂ C2 be the set of zeros

of an irreducible complex polynomial in two

variables. Assume that Z contains infinitely

many points (λ1, λ2) such that both λ1 and

λ2 are special, and that Z is not a fiber of

one of the two coordinate projections. In this

case, André asked if for all (λ1, λ2) in Z, there

is a non-zero complex number α such that

the pair of lattices (Λ1,Λ2) corresponding to

(λ1, λ2) satisfies αΛ1 ⊂ Λ2? (The answer is

yes, as was shown, independently, in [4] (un-

der GRH) and in [2].) The relation between λi
and Λi is not algebraic, which makes it dif-

ficult to use the polynomial relation between

λ1 and λ2.

Statement of the conjecture

The André–Oort conjecture is the following

statement.

Conjecture. Let A be a Shimura variety, and

Z ⊂ A an irreducible algebraic subvariety.

Assume that Z contains a subset Σ of spe-

cial points that is not contained in a strict

subvariety of Z. Then Z is a Shimura sub-

variety.

We will say more about Shimura varieties

and special points below.

This conjecture was formulated (as a ques-

tion) by André for Z of dimension 1. Inde-

pendently, this was also formulated by Frans

Oort, for the Shimura variety Ag (see be-

low). Both André and Oort were inspired

by the analogy with the Manin–Mumford

conjecture (see box). Oort’s motivation al-

so came from work of Johan de Jong and

Rutger Noot [10] on a conjecture of Robert

Coleman on curves with complex multiplica-

tions.

Since the general theory of Shimura vari-

eties is rather technical, we will restrict our-

selves to examples.

Lattices Λ1 and Λ2 give isomorphic ellip-

tic curves C/Λ1 and C/Λ2 if and only if they

are homothetic, that is, if there is a complex

number α such that αΛ1 = Λ2. Every lattice

is homothetic to a lattice of the form

Λτ := Z · 1 + Z · τ

for a τ ∈ H± := C− R. The group GL2(R) acts

transitively on H± by

(
a b

c d

)
· τ :=

aτ + b

cτ + d

and homothety classes of lattices correspond

to orbits under the discrete subgroup GL2(Z).

The quotient

A1 := GL2(Z)\H±

is an example of a Shimura variety. It is the

moduli space of elliptic curves: the points of

A1 are in bijection with isomorphism class-

es of complex elliptic curves. As before a

point x ∈ A1 is special if its corresponding

lattice Λ has complex multiplications. These

are precisely the images of the points in

H± of the form a + b
√
−d with a, b and d

rational.

The only Shimura subvarieties of A1 are

the special points and A1 itself, so that the

André–Oort conjecture holds for trivial rea-

sons.

The simplest non-trivial case of the conjec-

ture is for the Shimura variety

A1 ×A1 = (GL2(Z)× GL2(Z)) \
(
H
± ×H

±) .

The special points are the pairs (x,y) with x

and y special. There are three types of one-

dimensional Shimura subvarieties: A1×{y}
with y special, {x} ×A1 with x special, and

the image of

{(ατ,βτ) : τ ∈ H
±} ⊂ H

± ×H
±,

with α,β ∈ GL2(Q). The André–Oort conjec-

ture for A1×A1 is equivalent to the statement

given in the previous section.

The most interesting case of the André–

Oort conjecture is for the moduli space Ag of

(principally polarized) complex abelian vari-

eties of dimension g:

Ag := GSp2g(Z)\H±g ,

where H±g is the space of symmetric complex

g by g matrices whose imaginary part is defi-

nite. The group GSp2g(R) of symplectic simil-

itudes acts transitively on H±g by

(
a b

c d

)
· τ := (aτ + b)(cτ + d)−1

where now a,b, c, d are real g by g matri-

ces. The special points of Ag correspond

to abelian varieties A with many endomor-

phisms (H1(A,Q) is generated over Q⊗End(A)

by one element).

A general Shimura variety A is of the form

Γ\X, where Γ is a discrete subgroup of G(R)

for some matrix group G over Q, and where

G(R) acts transitively on X. The Shimura sub-

varieties of A are images of orbitsH(R) ·x for

certain algebraic subgroupsH ofG over Q and

certainx in X. The zero-dimensional Shimura

subvarieties are precisely the special points.

The set of special points is dense in A.

Shimura and Deligne have shown that

each Shimura variety has a natural structure

of algebraic variety, defined over a number

fieldK. It is the subspace of a complex projec-

tive space defined by a finite system of poly-

nomial equalities and inequalities (6=, not <)

with coefficients in K. The special points are

defined over finite extensions of K, and all

Galois conjugates of special points are spe-

cial points.
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Strategies and results

In his thesis Ben Moonen gave a thorough

treatment of Shimura subvarieties, including

two characterisations. Using one of these he

proved the André–Oort conjecture for subva-

rieties of Ag under an additional hypothesis

on the set Σ [13, 3.7 and 4.5].

As remarked above, André proved the con-

jecture for A1 ×A1 in [2].

Let A = Γ\X be a Shimura variety, and

Z ⊂ A an irreducible algebraic subvariety.

Assume that Z contains an infinite subset

Σ of special points that is not contained in

a strict subvariety of Z. A general strate-

gy for proving the conjecture is to first show

that for almost all z ∈ Σ there is a positive-

dimensional Shimura subvariety Yz with z ∈
Yz ⊂ Z, and to deduce from this that Z it-

self is a Shimura subvariety. The first step is

the hardest.

One method, introduced in [4], for produc-

ing such Yz is to exploit the Galois action on

the set of special points in A combined with

the action of G(Q) on X. The idea is to inter-

sect Z with a Z′ obtained from the action by

a carefully chosen g inG(Q), such that Z∩Z′
contains GalK · z and such that the Galois

orbit has so many elements that Z ∩ Z′ can-

not be finite. Then Yz is obtained as an irre-

ducible component of a repeated such inter-

section. This method works if one has suf-

ficiently good lower bounds for the sizes of

The Pila–Wilkie theorem

A subset of Rn is called definable in Ran,exp if it can be defined using finitely many formulas

involving the logical symbols ∃, ∀, ¬, ∧, ∨, addition and multiplication, inequalities,

real numbers (occurring as ‘constants’), the real exponential function ex , and functions

[0,1]m → R that can be extended to a real analytic function on an open neighbourhood of

[0,1]m. For example, semi-algebraic sets (defined by polynomial inequalities) are definable.

The Pila–Wilkie theorem roughly states that if a definable X contains many points with

rational coordinates, then these must accumulate on semi-algebraic subsets of X. More

precisely, for a subset X of Rn we define the counting function

N(X, t) :=

∣∣∣∣∣∣





(
p1

q1
, . . . ,

pn

qn

)
∈ X

∣∣∣∣pi, qi ∈ Z∩ [−t, t]




∣∣∣∣∣∣
.

For X = Rn we see that N(Rn, t) ∼ ct2n for some c. Now let X be a definable subset of Rn,

and let Xalg be the union of all positive-dimensional semi-algebraic subsets of X.

Theorem (Pila–Wilkie [15]). For every ǫ > 0 there is a c such that for all t we have N(X −
Xalg , t) < ctǫ.

As an example, let X ⊂ R2 be the graph of a function f : [0,1] → R. If f is a polynomial

with rational coefficients, then f (x) is rational for every rational x and N(X, t) will grow

polynomially in t. But if we take f (x) = sin(πx) then the theorem says that this cannot

happen, since Xalg = ∅. In fact by Niven’s theorem N(X, t) ≤ 5.

the Galois orbits GalK · z, and sufficient con-

trol on the complexity of the g that can be

used. Lower bounds for Galois orbits depend

on lower bounds for class numbers of number

fields. For the choice of g one needs suffi-

ciently many small primes in number fields.

Both are hard problems in analytic number

theory. The best known bounds depend on

the Generalised Riemann Hypothesis (GRH)

for number fields.

Using this strategy, the André–Oort con-

jecture was proved, under GRH, for A1 × A1

in [4], for Hilbert modular surfaces in [6], for

curves in general Shimura varieties (André’s

question) by Andrei Yafaev in [21] (building

on [7, 20]), for powers of A1 in [8]. Finally,

Bruno Klingler, Emmanuel Ullmo and Yafaev

treated the general case (under GRH) in [12,

19]. To make the strategy work in this case is

a real tour de force, which took the authors

(and the referees) quite a few years (the first

versions are from 2006).

Another strategy was introduced more re-

cently by Jonathan Pila in [16], where he

proved the conjecture for powersA = A
n
1 . The

main idea is to work in X = (H±)n instead of in

the quotient A = Γ\X. Of course, everything

that takes place in A can be seen in X, but,

because the quotient map is not algebraic,

the inverse images of algebraic subvarieties

of A are then genuine complex analytic sub-

varieties of X. On the other hand, X is an

open subset of Cn = R2n in which one again

has the notion of algebraic subsets (defined

by polynomial equations) and even the notion

of algebraic subsets defined over Q. This is

relevant to the problem: the inverse images

of special subvarieties are of that kind. Pila

imported the tool of O-minimal structures [3]

to deal with this mixed algebraic and analytic

context. Here, Pila could apply (a generali-

sation of) his result with Alex Wilkie [15] (see

box). This result is used to show that large

Galois orbits of special points z in Z ⊂ A

give rise to positive dimensional special sub-

varieties Yz ⊂ Z, as in the previous strate-

gy, but now without having to take intersec-

tions. An important intermediate result is the

Ax–Lindeman theorem, which is also proved

using [15]; it says that maximal irreducible al-

gebraic subsets of the inverse image of Z are

already very close to being the inverse image

of a special subvariety.

Pila and Jacob Tsimerman generalised Pi-

la’s strategy to Ag in [17]. They proved the

conjecture in that case, under GRH. In the

case of Ag for g ≤ 6 (and products of those)

they give an unconditional proof. In this case

GRH is not needed, as there are sufficiently

strong unconditional lower bounds for Galois

orbits.

Epilogue

We have seen that the André–Oort conjecture

has been proved, under GRH, but many ques-

tions remain open.

At this moment, Klingler, Ullmo, Yafaev

and Chris Daw are making Pila’s strategy work

for general Shimura varieties [11]. It is not in-

conceivable that number theorists can make

the proof unconditional, by providing suffi-

cient lower bounds for Galois orbits (see [5,

Problem 14] for what is needed). Ziyang Gao

has announced a proof, under GRH, of the

conjecture generalised to mixed Shimura va-

rieties [22].

Each Shimura variety A has a natural prob-

ability measure. One expects that for a se-

quence zn of special points in A such that no

subsequence is contained in a strict Shimu-

ra subvariety, the Galois orbits of the zn are

equidistributed. This would imply André–

Oort immediately, but this is known only in

very special cases.

In the wider context of ‘unlikely intersec-

tions’, Richard Pink has formulated [18] a

conjecture on subvarieties of mixed Shimu-

ra varieties, simultaneously generalising the

André–Oort, Manin–Mumford, Mordell–Lang

and Zilber conjectures. Pink’s conjecture re-

mains wide open. k
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plane non modulaire, J. Reine Angew. Math. 505
(1998), 203–208.

3 L. van den Dries, Tame topology and O-minimal
structures, London Mathematical Society Lec-
ture Note Series, No. 248, Cambridge University
Press, Cambridge, 1998.

4 S.J. Edixhoven, Special points on the product
of two modular curves, Compositio Math. 114
(1998), 315–328.

5 S.J. Edixhoven, B.J.J. Moonen and F. Oort, Open
problems in algebraic geometry, Bull. Sci. Math.
125 (2001), 1–22.

6 S.J. Edixhoven, On the André–Oort conjecture
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