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In the Vici project ‘Longe range stochastic dynamics’ Ronald Meester and his team worked on

sandpile models and the Bak–Sneppen model. In this article Meester describes these two

systems. However, their research was certainly not restricted to these two subjects. They also

investigated dependent percolation models with long range interactions, models for forest

fires, invasion percolation, self-destructive percolation, divide and colour models, and more.

If I remember correctly my own Vici story be-

gan with Jan van Mill stepping into my office

with the Vici call in his hands, simply saying:

“Ronald, I think this is something for you.”

And well, yes, it was something for me. Ap-

plying for so much money of course required

a big and ambitious program. Although I had

been (and still am) interested in many other

things as well, it was rather obvious that such

a big and ambitious program should centre

around some aspect of spatial random pro-

cesses. Much of my research until that point

had been devoted to percolation theory in a

classical, continuum, and fractal setting. Per-

colation theory is also of obvious interest to

many theoretical physicists and as such it was

not unusual for me to participate in confer-

ences where mathematicians and physicists

actually talk to each other. As such, I had

come across the notion of so called ‘Self-

Organised Criticality’ (SOC). The phrase was

coined by physicists like Per Bak, and referred

in some vague sense to models that behaved

as classical systems (like percolation) at the

critical point, but without any tuning of pa-

rameters.

Let me elaborate on this point. Sup-

pose you take classical percolation on the d-

dimensional lattice Z
d, which means that ev-

ery nearest neighbour bond is retained with

probability p, and deleted with probability

1 − p. For small values of p, all connected

components of the resulting graph will be fi-

nite, while for large p, infinite components

will arise (in fact, at most one infinite compo-

nent will be formed but this is not important

for my purposes here). In the former case,

spatial correlations decay exponentially fast,

while in the latter case, correlations do not de-

cay to zero at all. It is precisely at the critical

value for p, denoted by pc , which separates

the two regimes, where the correlations do

decay, but according to a power law, rather

than exponentially fast. Hence, power law

behaviour is associated with criticality, and in

this example,pmust be tuned topc precisely

in order to observe this power law behaviour.

(How much of this can be demonstrated rigor-

ously is another matter, I will not go into that

direction here.)

In many physical, ecological and biological

systems, power law behaviour is observed,

but apparently without any tuning parameter.

The systems ‘organise’ themselves into this

apparent critical behaviour, hence the name

Self-Organised Criticality. Examples are mod-

els for earthquakes, avalanches, evolutionary

systems, forest fires and many more. For in-

stance, when you plot the energy released in

an earthquake versus the frequency of occur-

ring, you will observe a power law, the basis

for Richter’s scale.

Much of this is rather attractive from a

physics point of view, and there are many,

many publications in the physics literature

describing systems that are supposedly self-

organised critical in the above, rather vague

sense. For mathematicians, there are other

things at stake. Even the precise mathemati-

cal formulation of some of these concepts is

rather unclear, let alone proving them. This

is not to say that the models that were intro-

duced by the physicists would not be interest-

ing from a mathematical point of view. In fact,

they are very interesting, exactly because of
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the fact that standard and classical methods

seem to break down completely. In my Vi-

ci project, I took up the challenge to study

some of these models. I already had some

experience with some of them, and the Vi-

ci project seemed a very good opportunity to

carry this further. The project was certain-

ly not restricted to sandpiles and the Bak–

Sneppen model: we also investigated depen-

dent percolation models with long range inter-

actions, models for forest fires, invasion per-

colation, self-destructive percolation, divide

and colour models, and more. The general

nature of the project was reflected in the ti-

tle: ‘Long range stochastic dynamics’. This

encompasses a lot, and I thought it wise not

to restrict myself too early.

In this article, I will of course not be able

to discuss all the work done in the project.

I will therefore restrict myself to two specif-

ic systems, namely sandpile models and the

Bak–Sneppen model, which are easy to ex-

plain and hopefully interesting for a broader

audience.

The Abelian sandpile model

The Abelian sandpile model (ASM) is a finite

state discrete time Markov process, supposed

to model avalanches. It is defined on a finite

connected subset Λ of Z
d. It starts with a so

called configuration, that is, every site in Λ
contains a non-negative integer-valued num-

ber of particles, or sand grains. This number

is typically called the height of the site. A

site is stable if its height is at most 2d − 1.

When all sites in Λ are stable we call the

configuration stable. The state space of the

Markov chain is the collection of stable con-

figurations. The dynamics is as follows. We

start with a stable configuration. Every dis-

crete time step, an addition of one sand grain

is made to a randomly chosen site. If this

site becomes unstable, i.e., it has at least 2d

grains, it topples, that is, it simply gives one

grain to each neighbour. Hence the height

of the toppled site decreases by 2d, and the

height of each of its neighbours increases by

1. When a site at the boundary of Λ topples,

then the number of neighbours may be less

than 2d. This simply means that the corre-

sponding grains leave the system. This is not

the end of a time step, because the result-

ing configuration may not be stable. Indeed,

a toppling may cause a neighbouring site to

become unstable. Hence, we continue with

toppling unstable sites until every site is sta-

ble again. The total of all necessary topplings

is called an avalanche. After the avalanche we

have reached the new configuration, and this

finishes one time step of the Markov process.

It is not hard to see that a new stable con-

figuration is reached after finitely many top-

plings. It is also not very difficult to show

that the order in which topplings are execut-

ed has no effect on the final stable configu-

ration. Although not too difficult, this simple

fact already caused some discussion between

the mathematical and the physics communi-

ty. The physicists insisted that it was enough

to observe that if you perform two topplings,

one at sitex and one at sitey, then the order

in which you do this does not matter, hence

the name Abelian sandpile model. However,

this obviously does not settle the issue, be-

cause you have to prove that when you top-

ple x first, say, then the collection of sites

that topples until stabilization, is the same as

when you topple y first. I am not sure I have

been able to convince my physics friends on

this issue.

This sandpile model is said to exhibit self-

organised critical behaviour, for the following

reason. As the model evolves in time, it reach-

es a stationary distribution that is character-

ized, in the large-volume limit, by long-range

height correlations and power law statistics

for avalanche sizes. What I mean by this is

that when Λ is large, it seems that the proba-

bility to observe an avalanche which involves

at least k sites, decays with a power law in k,

and similarly for the number of topplings of

a randomly chosen avalanche (this must be

made precise of course). As indicated above,

this reminds one of critical behaviour in sta-

tistical mechanical models, like percolation.

In percolation, one sees power law behaviour

of cluster sizes only at the critical point, so

one must choose parameters very, very care-

fully in order to observe this. For the sandpile

however, it seems that this is achieved in a

natural way, without apparent tuning of any

parameters. Hence the model organises it-

self into behaviour which is associated with

criticality, hence the name SOC.

One may wonder whether or not this math-

ematical model is suitable for describing any-

thing which looks like a real avalanche. In-

deed, isn’t it more natural to let height dif-

ferences decide whether or not an avalanche

takes place? I would say yes, but the problem

is that a sandpile model based on height dif-

ferences is a lot more difficult to study since it

is not Abelian. As a result, very little has been

done in this direction.

Preceding my Vici project, I had already

worked on the ASM with Dmitri Znamenski,

a PhD student, and Frank Redig. Among other

things, we had written a paper in which we

gave rigorous proofs of various claims by the

physicist.

The Bak–Sneppen model

The Bak–Sneppen model was originally intro-

duced as a very simple model for evolution

by Per Bak and Kim Sneppen [2]. I had al-

ready worked on it with Dmitri Znamenski in

the years preceding the Vici grant. The model

is as simple as one can imagine, but at the

same time very difficult to study in a rigorous

mathematical way. It is defined as follows.

Let N vertices (‘species’) be arranged regu-

larly on a circle, and denote this structure by

ΛN . Assign a fitness to each vertex, that is,

independent random variables, uniformly dis-

tributed on (0,1). At each discrete time step

the system is updated by locating the vertex

with the lowest fitness and replacing this fit-

ness and those of its two neighbours by inde-

pendent and uniform (0,1) random variables.

The Bak–Sneppen model is again a discrete

time Markov process. In some vague sense,

the dynamics should remind us of evolution-

ary processes in which species with the low-

est fitness disappear. Other species which

somehow depend on the one with lowest fit-

ness, run into trouble then, hence the rule

that also neighbours obtain new fitnesses.

This neighbour interaction makes this

model very interesting but also very difficult.

One may wonder why this model is interpret-

ed as a model for SOC. The reason for this is

that one can define avalanches in a very natu-

ral way, as follows. An avalanche at threshold

0 < b < 1 (also called a b-avalanche) is said

to occur between times s and s + t if at time

s all the fitnesses are equal to or greater than

b, and time s + t is the next time after s at

which this occurs. Note that if we have a min-

imum fitness value of b, then we can choose

any value up to (and including) b to be our

avalanche threshold. Furthermore, it is the

threshold and not the exact initial values of

the model that determines the behaviour of

an avalanche. Once we have used the ini-

tial fitnesses to find out the minimal fitness

and its location, all other information can be

discarded for the purposes of analysing indi-

vidual avalanches.

The notion of an avalanche helps to ex-

plain the self-organised critical nature of the

model. Indeed, when b is small, avalanch-

es appear to be (exponentially) short, both

in the time of duration as in the number of

sites involved. When b is large, avalanche

durations are not uniformly bounded in the

system size N. The critical threshold bc is

the threshold values separating these two
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Figure 1 A snapshot of the Bak–Sneppen model in stationarity.

regimes. Running the model on a computer

(this is really simple; I do not think that there

are many models which are so simple to de-

scribe, and at the same time so deep from a

mathematical point of view) there seems to

be a threshold bc , close to 2
3 , such that af-

ter a while, the dynamics appear to consist

of consecutive avalanches at bc , and in addi-

tion, these avalanches seem to exhibit power

law behaviour in the sense that both duration

and range can be described by power laws

[2]. The threshold bc is not set beforehand;

the model seems to organise itself into this

state. See Figure 1 for a typical snapshot of

the Bak–Sneppen model in stationarity, with

N = 300. On the horizontal axis we have the

300 vertices, with the dots representing the

fitnesses of the vertices.

Some philosophical issues

I will discuss some progress in understand-

ing these models later. Before that, it is per-

haps interesting to elaborate on the claim

that these processes indeed organise them-

selves into a critical state. How self-organised

are these systems, really? And how realis-

tic is the implicit or explicit claim that power

law behaviour in spatial or temporal quan-

tities can or should be interpreted as being

the result of self-organised criticality? Pow-

er law behaviour is abundant, and probably

for a variety of reasons. In this connection it

is useful to read Per Bak’s book How nature

works on the subject. The title of the book of

course already gives away what seems to be

at stake: self-organised criticality as the lead-

ing principle in many physical, ecological and

biological processes. Ignoring the obvious

self-satisfaction displayed by Bak, reading his

book it is hard to avoid the conclusion that

they had great difficulties to formulate a mod-

el which in fact showed power law behaviour

as desired. Especially the description of the

Bak–Sneppen model did not come for free.

Isn’t this careful formulation in itself slightly

at odds with the claim that everything goes

‘by itself’? One has to define a model very

cautiously in order to see critical behaviour.

The tuning of parameters has been replaced

by careful selection of the model, perhaps. In

addition, claiming that SOC is the way nature

works is claiming that a power law behaviour

can be explained by SOC which, in my opin-

ion, is not well founded. When you have a

hammer, everything looks like a nail.

There have been philosophical attempts

to explain the fact that sandpile models be-

have like a critical classical system. These at-

tempts involve the definition of parametrized

sandpiles in infinite volume, and since we will

need this later anyway, this is the right mo-

ment to introduce them.

Consider the Abelian sandpile described

above, but this time in infinite volume, let us

say on Z. In this situation, we cannot choose

a site uniformly any more. Hence, this sys-

tem has no additions, only topplings. Start-

ing from an initial configuration of heights,

one step of the ensuing Markov process is to

simply topple all unstable sites once. In this

context, the question is whether or not the

configuration converges (in the usual product

topology) to a limiting configuration. Clearly

this depends on the initial configuration, and

in order to formulate this as a classical para-

metric model, we let the heights in the initial

configuration be distributed as independent

Poisson-ρ random variables. In this set-up,

we expect a phase transition in ρ: when ρ

is small, not many sand grains are present,

and probably all motion will stop locally af-

ter a transient period, that is, all sites topple

only finitely many times. If ρ is large, then

there is no limiting configuration since there

will not be enough space to accommodate all

particles in a stable way, that is, all sites will

topple infinitely many times. The critical point

of this system separating the two regimes is

denoted ρc ; the similarity between this crit-

ical density and the critical probability pc in

percolation is clear.

With this infinite volume model in place,

we can look at the connection between the

original Abelian sandpile and this infinite-

volume system. In a widely cited series of

papers [6–7, 23, 25–26], Dickman, Muñoz,

Vespignani and Zapperi developed the fol-

lowing heuristic argument. If the density of

particles in the finite volume system is larg-

er than ρc , one ‘typically’ should have top-

plings, and as a result particles might leave

the system. If this density of particles is small-

er than ρc , then ‘typically’ one should only

have addition of particles. Hence the density

of particles should always change in the di-

rection of ρc and therefore the finite volume

sandpile resides, when the volume is large,

around the density ρc , and as such, its be-

haviour should be close to the behaviour of

the infinite-volume system at criticality. Ac-

cording to this reasoning, for n large, the fi-

nite volume ASM should behave very similar-

ly to the infinite volume model at its critical

point, so it would be reasonable to expect crit-

ical behaviour in the finite volume sandpile.

In the above situation, that is, the Abelian

sandpile on the line, one can actually prove

that the above intuition is correct [19]. How-

ever, when we change the graph, this need

not be true any more. As an example (taken

from [8]), consider the bracelet graph. This

graph is similar to the line, except for the fact

that there are two edges between neighbour-

ing vertices (this can be done both in finite

and infinite volume). The ASM on the bracelet

graph closely resembles the one-dimensional

ASM described above. In fact, we can repeat

the entire description, except for two differ-

ences: first, sites are called stable if their

height is 0,1,2 or 3, and second, in a toppling

occurring at site x, the height of x decreas-

es by 4 and the height of both its neighbours

increases by 2.
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In this model, the parity of a given site is

invariant under topplings. Indeed, the height

changes that occur in a toppling are all even.

This simple observation allows one to calcu-

late explicitly the various critical densities.

For a configuration in the bracelet ASM, we

write

η = 2ηe + ηo,

whereηe(x) = ⌊η(x)/2⌋ is the number of pairs

of particles at x, and ηo(x) = η(x) mod 2 is

the indicator that η(x) is odd. Let us look

at the infinite volume model, where we only

have topplings. Topplings have no influence

on ηo, therefore the expected value of ηo(x)

is constant in time, and for every x equal to

the probability that a Poisson-ρ random vari-

able is odd. We denote this probability as

Pρ(odd). Topplings influence ηe as follows:

only sites x where ηe(x) > 1 are unstable,

and in a toppling, ηe(x) decreases by 2 and

the number of pairs of the neighbours increas-

es by 1. In other words, ηe in the bracelet

ASM evolves in precisely the same way asη in

the one-dimensional ASM. We can conclude

immediately that there is a phase transition

when the ‘pair density’ is 1. A simple com-

putation now yields that ρc is the solution

of ρ = Pρ(odd) + 2. However, a rather ele-

mentary analysis of the finite-volume version

leads to the conclusion that the average den-

sity of sand grains converges to 5
2 , as the sys-

tem size grows to infinity, so the finite volume

will not reside around the critical value from

the infinite volume model, and the picture of

Dickman et al. breaks down.

The situation is, therefore, not so clear.

One of the ways to get rid of local toppling

invariants, is to let the topplings themselves

being random in the sense that each particle

randomly chooses a neighbour. In this model,

the so called Manna model, a lot of structure

is lost, and the picture sketched by Dickman

is still a possibility; we do not know.

Progress in the Bak–Sneppen model

Maximal avalanches

Prior to the Vici project, we had concentrated

on the expected duration of an avalanche at

a fixed and non-random threshold b [22].

Results include a number of useful mono-

tonicity results, as well as an explicit differ-

ential equation relating the expected dura-

tion of avalanches to their expected range.

During the project we studied the avalanch-

es at random thresholds which appear in, or

are strongly related to, the thresholds in the

so called maximal avalanche decomposition.

Here the first avalanche threshold is defined

to be the minimum fitness value from the ini-

tial fitness values. After this and every subse-

quent avalanche, another avalanche begins

with the threshold chosen to be the new min-

imal value of the model; this is the maximal

threshold choice. It is clear that this will lead

to the Bak–Sneppen model being seen as

a series of avalanches at strictly increasing

thresholds. The gap function at time s, G(s),

is defined to be the avalanche threshold at

time s. The gap function is a stepwise in-

creasing random function which jumps to a

new value each time an avalanche finishes.

Note that for all finite systems the gap func-

tion tends to 1 almost surely. Figure 2 shows

a realisation of the gap function represented

by the line, with the dots being the minimum

fitness values at each time step. The initial fit-

nesses were independent and uniform (0,1)

distributed.

One reason for looking at the maximal

avalanche decomposition is to gain insight

into how the Bak–Sneppen model tends to-

wards criticality.

On ΛN the threshold is the only variable

needed in order to determine the distribution

of an avalanche’s duration. By this we mean

that the durations of two avalanches on a tran-

sitive graph are identically distributed if their

thresholds are the same. Consider the Bak–

Sneppen model onΛN . Concentrating first on

the initial avalanche in the maximal decom-

position, we see that the initial threshold is

the minimum ofN independent uniform (0,1)

random variables. To be more explicit, we
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Figure 2 A realisation of the gap function when N=100.

have an avalanche with random threshold B

whose density hN (b) is given by

hN (b) = N(1− b)N−1, 0 ≤ b ≤ 1.

Letting DN denote the duration of the initial

avalanche on ΛN , we have the following the-

orem.

Theorem 1 [12]. The expected duration of the

first avalanche on ΛN is infinite, i.e. E(DN ) =

∞.

One consequence of this result is that any

subsequent avalanche also has infinite ex-

pected duration, as its threshold is stochasti-

cally larger. Hence the gap function consists

of a sequence of steps, each of which has in-

finite expected length.

The usual way to analyse the Bak–

Sneppen model has been to run computer

simulations. Compared to these simulations,

our result seems somewhat surprising, since

divergent behaviour is not typically noticeable

under numerical simulations of the model, es-

pecially when N is large. This is because the

long avalanches that are behind this result

occur when the (random) threshold B is high,

which is exponentially unlikely in N. If one

were to run computer simulations of the ini-

tial avalanche in order to estimate its expect-

ed duration, it would still be possible to de-

tect this, but only from the dramatic variability

of these estimations (even when a very large

number of simulations are used). Theorem 1

is, therefore, an example of the value of an-
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alytic methods, as only very careful interpreta-

tion of computer simulations would lead one

to suspect this result.

We decided to perturb the avalanche

threshold by making it stochastically smaller

and see whether this would lead to conver-

gence. It turns out that E(DN ) is ‘barely infi-

nite’ in the sense that making the threshold a

tiny bit stochastically smaller yields finite ex-

pected durations. To be precise, we denote by

DnN the duration of an avalanche at a thresh-

old which is set by the minimum ofn uniform

(0,1) random variables on ΛN . In this nota-

tion, DNN = DN , with Theorem 1 now stating

that E(DNN ) = ∞. We proved the following re-

sult.

Theorem 2 [12]. An avalanche from a thresh-

old chosen as the minimum of n > N in-

dependent uniform (0,1) random variables

has finite expectation, i.e. E(DnN ) < ∞ for all

n > N.

So just adding one uniform random vari-

able when setting the threshold is enough to

get a finite expected duration, no matter the

size N of the system.

However, it is possible to show that un-

der certain conditions all further avalanches

have infinite expected duration. Recall that

on ΛN , setting the threshold as the minimum

of N independent uniform (0,1) random vari-

ables, gives infinite expected duration. If all

the fitnesses (except the minimum) are inde-

pendent and uniformly distributed above the

threshold at the start of the avalanche, then

at the end of the avalanche all the vertices

will again be independent and uniformly dis-

tributed above the threshold. So even if you

fix b and choose your fitnesses to be uniform

above it, it follows from Theorem 1 that the

next avalanche will have infinite expected du-

ration.

A more general, but weaker form of this re-

sult applies when we drop the condition that

the fitnesses had to be nicely distributed at

the start of the avalanche. All the vertices up-

dated by the avalanche will be independent

and uniformly distributed above the thresh-

old at the end of the avalanche. So once we

have had a spanning avalanche (one that up-

dates every vertex in the system during its du-

ration) all subsequent avalanches (from max-

imal thresholds) will have infinite expected

duration, no matter what initial fitness values

are taken.

The critical value

We already noticed that a sandpile model in

infinite volume can be defined, without addi-

tions and only topplings. Obviously, there is

also a problem if we want to define the Bak–

Sneppen model on an infinite graph, since

every time step requires the choice of the ver-

tex with minimal fitness. Nevertheless, for

certain initial configurations we can define

the model on an infinite graph, at least for

a certain number of time steps. For instance,

choose a threshold b ∈ (0,1), and consider

a configuration of fitnesses with exactly one

vertex, x say, having fitness below b, and all

other fitnesses above b. In this situation we

can start the system and run it at least until

the first time that all fitnesses are above b

again (if this happens). In other words, the

notion of a b-avalanche makes perfect sense

in infinite volume. As such it is very natural to

define the critical thresholdbc as the infimum

over all thresholds b for which the probability

of an infinite b-avalanche is positive. In fact,

we can do this on any infinite graph G.

The question then is what we can say

about the critical value bc . Computing it

seems beyond reach, but interesting lower

and upper bounds can be computed. A non-

trivial lower bound is obtained by comparing

the Bak–Sneppen model to a branching pro-

cess. This is not very demanding and a very

common technique. In this case this quickly

leads to the following result.

Proposition 3 [13]. On any locally finite tran-

sitive graph G with common vertex degree ∆,

we have

bc (G) ≥ 1

∆ + 1
.

A non-trivial upper bound, however, is an-

other matter. One of the most satisfactory

things in mathematics is to relate two models

to each other which did not have an obvious

connection form the outset. In this direction,

we were able to relate the Bak–Sneppen mod-

el on a graph G top independent site perco-

lation on the same graph. In independent

site percolation, we independently colour the

vertices black or white with probability p and

1−p respectively, andpsitec (G) is the infimum

over al p for which the probability that an in-

finite black component arises is positive. It

turns out that the following is true.

Theorem 4 [13]. On any locally finite transitive

graph G, we have

bc (G) ≤ psitec (G).

This result implies that on many locally fi-

nite transitive graphs, bc is non-trivial. For

the Bak–Sneppen avalanche on Z, Theorem

4 gives a trivial upper bound, but in this case

we know from [21] that bc (Z) ≤ 1− exp(−68).

The following heuristics make Theorem 4

plausible. If a vertex’s fitness is not minimal,

then its conditional distribution based on this

information is stochastically larger than its

original uniform (0,1) distribution. So if a

vertex is updated by a neighbour having min-

imal fitness, this makes its fitness stochas-

tically smaller, making the vertex more like-

ly to be active and therefore, intuitively at

least, the avalanche is more likely to con-

tinue. This means that on average the in-

terference from the non-extremal vertices of

the Bak–Sneppen model on the extremal ver-

tices should be beneficial to the spread of the

avalanche.

A proof is another matter. We are inter-

ested in comparing the open cluster at the

origin of site percolation to a Bak–Sneppen

avalanche. Typically, site percolation is con-

sidered to be static, but it is also possible to

build up the open cluster at the origin dynam-

ically. This can be done as follows. To begin

with, consider the origin to be open and look

at its neighbours. Decide which of these ver-

tices are open. Then look at the new neigh-

bours of the open cluster and iterate.

The growth of both a Bak–Sneppen avalan-

che and the open cluster at the origin is driven

by the extremal vertices. These are those ver-

tices that are contained within the avalanche

and have neighbours outside the avalanche.

It is only through one of the extremal vertices

having the minimal fitness that the range of

the avalanche can increase. For site percola-

tion, the extremal vertices are those having a

neighbour in the open cluster at the origin,

but that are themselves unknown as to be

open or closed. These are exactly the vertices

at the edge of the cluster that will increase the

size of the cluster by being open. Since it is

the extremal vertices that drive the spread of

both processes, the task is to relate the two

sets of extremal vertices to each other.

The major difficulty to overcome is that in

the Bak–Sneppen model an extremal vertex

may be updated by neighbouring activity be-

fore having minimal fitness itself, whereas in

site percolation a vertex is just either open

or closed. This means that it is not useful to

couple the two models in the naive way by re-

alising the fitness and determining if the ver-

tex is open and closed immediately with the

same random variable, and suggests that the

coupling needed is rather subtle and requires

great care.
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Since the critical value of site percolation

on T∆, the regular tree with common degree

∆, equals 1/(∆ − 1), the following corollary

holds.

Corollary 5. The critical value of the Bak–

Sneppen model on a regular tree with com-

mon degree ∆, T∆, satisfies

1

∆ + 1
≤ bc (T∆) ≤ 1

∆− 1
.

A power law

One may wonder whether any progress has

been made on power law behaviour in the

Bak–Sneppen model. During the course of

the Vici project we have not addressed this

issue, but some years later, we realised that

power law behaviour of avalanches can be rig-

orously demonstrated in a modified version of

the Bak–Sneppen model [24]. This modifica-

tion is defined as follows. At each discrete

time step, the particle with the lowest fitness

is chosen, together with one other particle,

chosen uniformly at random among all re-

maining particles. (The restriction to update

only one extra particle is rather arbitrary. The

proof — suitably reformulated — goes through

for multiple choices as well.) The fitnesses

of both chosen particles are replaced by new

fitnesses, according to independent uniform

random variables on (0,1).

We define the duration of an avalanche

at level t ∈ (0,1), also referred to as a t-

avalanche, as follows. Consider an initial con-

figuration of fitnesses in which one particle

has fitness 0 and all other particles have fit-

nesses strictly larger than t. Let ANt denote

the first time at which all fitnesses are strict-

ly larger than t. The random variable ANt is

the duration of a typical avalanche at level t.

The number of particles updated in such an

avalanche is called the size of an avalanche,

and the corresponding random variable is de-

noted SNt .

Theorem 6 [24]. In the modified Bak–Sneppen

model, the following hold.

(a) For t < 1
2 , we have for all N,

P (ANt ≥ k) ≤ e−c1(t)k,

for some positive constant c1(t) independent

of N.

(b) For t > 1
2 and all k, we have

lim
N→∞

P (ANt ≥ k) ≥ c2(t),

for some positive constant c2(t).

(c) For t =
1
2 , we have

lim
k→∞

lim
N→∞

√
kP (ANt ≥ k) = 2/

√
π.

The statements in (a)–(c) remain valid when

we replace ANt with SNt .

A rigorous power law at last; the proof of

this result proceeds through coupling with a

branching process, in combination with the

known power law behaviour of a branching

process at criticality. At least this result shows

a proof of principle. The critical threshold is
1
2 in this case, and one can understand why

power law behaviour is observed now. In-

deed, if the minimal threshold is below 1
2 ,

then the avalanche at that threshold is ex-

ponentially short. Only when the minimal

threshold is close to 1
2 , one notices the pow-

er law statistics, and the system seems to

organise itself, roughly, around consecutive

avalanches at level 1
2 .

Progress on sandpile models

Stabilization in infinite volume

I already mentioned the stabilization problem

in infinite volume. Above, we simply toppled

all unstable sites once, but there are many

other ways to organise the topplings in infinite

volume. We mention some of them.

− Markov toppling processes. These are ex-

amples of random stationary toppling pro-

cedures and are defined as follows. Each

site x ∈ Z
d has a Poisson clock (differ-

ent clocks are independent) with rate one.

When the clock at site x rings at time t

and in the configuration ηt−, x is unsta-

ble, then x is toppled.

− Toppling in nested volumes. Choose a se-

quence V1 ⊂ V2 ⊂ · · · of subsets of Z
d

such that ∪nVn = Z
d, but all Vn contain

finitely many sites. We start toppling all

the unstable sites in V0 until the configu-

ration inV0 has no unstable sites left, then

we do the same with V1, et cetera.

− Topplings in waves. This procedure is only

used for initial configurations having a sin-

gle unstable site, say atx ∈ Z
d. In the first

step, we topple x once and subsequently

all other sites that become unstable. All

these topplings form the first wave. If after

these topplings, x is still unstable, then

we perform the second wave, et cetera. In

each wave, no site topples more than once.

Now the question about an infinite-volume

analogue of the Abelian property arises: how

do we know that the order in which we ap-

ply the topplings has no effect on the final

stable configuration, or, for that matter, on

the very question whether or not stabilization

occurs? We formulated the following answer

to this question. We call a toppling proce-

dure T finite for initial configuration η if start-

ing from η, every site topples at most finitely

many times. We call it stabilizing for initial

configuration η if it is finite for η and eventu-

ally leads to a stable configuration. We call a

configuration η stabilizable if there is at least

one stabilizing toppling procedure for η.

Theorem 7 [10].

1. IfT andT ′ are two stabilizing toppling pro-

cedures for η, then for all x ∈ Z
d, x top-

ples the same number of times under T

and T ′. In particular, this means that for

stabilizableη, the limit configurationη∞ is

well-defined.

2. For stabilizable η, there does not exist a

non-finite toppling procedure.

3. IfT is stabilizing forη, then there is at least

one site x that does not topple.

Strictly speaking, the above is only true

under a very weak technical condition, which

is empty in case the topplings evolve in dis-

crete time, and satisfied for Markov topplings.

The upshot of this result is that we can talk

about stabilizable initial configurations since

it essentially does not matter which toppling

procedure we use.

Another interesting question is the be-

haviour of the infinite volume sandpile at its

critical density ρc . Does the system stabilize

at ρc or not? The behaviour at criticality is

in general one of the most difficult things to

understand and to prove, but for the infinite-

volume ASM in dimension 1, it turns out to be

within reach. We say that a probability mea-

sure µ on initial configurations is stabilizable

if µ-almost all configurations are stabilizable.

The following result is not the most general

result we obtained, but it has a short and ele-

gant proof which I sketch below.

Theorem 8 [10]. Let µ be a translation invari-

ant probability measure such that Eµ(η(0)) =

1 and such that 1√
n

∑n
x=−n(η(x) − 1) con-

verges in distribution, as n → ∞, to a non-

degenerate normal random variable. Then µ

is not stabilizable.

Proof. The toppling matrix ∆ is defined as the

matrix indexed by sites x,y ∈ Z, with entries

∆x,y = 21x=y − 1|x−y|=1.

Suppose now that µ is stabilizable. Then
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the only final stable configuration can be the

configuration which is constant and equal to

1. Denote by N(x) the number of topplings

needed at x to stabilize η. From the way top-

plings are defined, we then must have

η−∆N(x) = 1. (1)

where 1 denotes the configuration with height

1 everywhere. By stationarity of the toppling

mechanism, the joint distribution of N(x) is

stationary under translations. From (1) we ob-

tain

1√
n

n∑

x=−n
(η(x)− 1)

=
1√
n

( n∑

x=−n
∆N(x)

)

=
1√
n

(
N(−n− 1)−N(n)

+N(n + 1)−N(−n)
)
.

The right hand side converges to 0 in proba-

bility as n → ∞. This leads to a contradic-

tion since, by assumption, the left hand side

converges in distribution to a non-degenerate

normal random variable. �

Zhang’s sandpile model

A less well known sandpile model was intro-

duced by Zhang [27]. Instead of discrete sand

grains, he uses continuous height variables,

as follows.

Consider a finite connected subset Λ ⊂
Z
d. Initially, every lattice site x ∈ Λ is giv-

en an energy 0 ≤ Ex < Ec , where Ec is the

so called critical threshold, and often cho-

sen to be equal to 1. Then, at each discrete

time step, one adds a random amount of en-

ergy, uniformly distributed on some interval

[a,b] ⊂ [0, Ec ], at a randomly chosen lattice

site. If the resulting energy at this site is still

below the critical value then we have arrived

at the new configuration. If not, an avalanche

is started, in which all unstable sites (that is,

sites with energy at least Ec) ‘topple’ in paral-

lel, i.e., give a fraction 1/(2d) of their energy

to each neighbour in Λ. Hence, after toppling

of site x, Ex = 0. For boundary sites, ener-

gy leaves the system in complete analogy to

the Abelian sandpile model. As in the ASM ,

the stabilization of an unstable configuration

is performed instantaneously, i.e., one only

looks at the final stable result of the random

addition, and the transition form one stable

configuration to the other comprises one step

the Markov process.

For this process, it is not even obvious that

a (unique) stationary distribution exists, and

one of our contributions is to prove precisely

this in the special case of the Zhang model on

the line, with N sites.

Theorem 9 [9, 11]. For every 0 ≤ a < b ≤ 1,

andN ≥ 2, Zhang’s sandpile model (N, [a,b])

has a unique stationary distribution which we

denote by µa,b,N . Moreover, for every initial

distribution on [0,1)N , the distribution of the

process at time t converges exponentially fast

in total variation to µa,b,N , as t →∞.

This result was proved in a number of pa-

pers, with special proofs for various special

cases first. The proof technique is to find a

coupling between the evolution of the process

starting from different initial configurations in

such a way that the processes eventually coa-

lesce. Conceptually this proof method is clas-

sical, but to carry it out is not always so easy.

It quickly becomes rather technical.

It is not so easy to obtain specific informa-

tion about the stationary distribution. Here I

state one result in this direction. Obviously

the one-dimensional marginals have an atom

at 0. Apart from this, the marginals turn out

to be absolutely continuous with respect to

Lebesgue measure on (0,1). This is of some

independent interest, since in [4], a version of

Zhang’s sandpile model is discussed in which

additions are deterministic and this model

behaves radically different.

Theorem 10 [11]. Let ν be the stationary dis-

tribution for Zhang’s model on N sites. Every

one-site marginal of ν is on (0,1) absolute-

ly continuous with respect to Lebesgue mea-

sure.

There are interesting connections between

the ASM and Zhang’s sandpile model, and I

discuss one of them. In his original paper,

Zhang observes from numerical simulation,

that for large lattices, the energy variables

in the stationary state tend to concentrate

around discrete values of energy. He calls

this the emergence of energy ‘quasi-units’.

Furthermore, he argues that in the thermo-

dynamic limit, that is, when the volume tends

to infinity, the stationary dynamics should be-

have as in the discrete ASM, with the grains

of sand replaced by the discrete values of the

energy.

One of the things we proved is that these

quasi-units do indeed appear when a ≥ 1
2 ,

in the following sense: as N → ∞, all one-

site marginals of the stationary distribution

concentrate on a single, non-random value.

(We believe that the same is true fora < 1
2 but

we cannot prove this.) This is consistent with

the behaviour of the ASM in one dimension,

since the stationary distribution of the ASM is

uniform over all configurations with at most

one site with no sand grains. Hence, also in

the ASM, the one-site marginals concentrate,

in the limit as the system size tends to infinity,

on a single value.

To state our result, we introduce the nota-

tion µN for the stationary distribution for the

model on N sites, with expectation and vari-

ance EN and VarN , respectively.

Theorem 11 [11]. Consider the (N, [a,b]) mod-

el with a ≥ 1
2 , and write U for the random

addition quantity. For the unique stationary

measure µN we have

lim
N→∞

µN = δU (2)

where δE(U ) is the Dirac measure concentrat-

ing on the (infinite-volume) constant configu-

ration ηi = E(U ) for all i ∈ N, and where the

limit is in the sense of weak convergence of

probability measures.

We proved this theorem by showing that

for η distributed according to µN , in the limit

N →∞, for every sequence 1 ≤ jN ≤ N,

1. limN→∞ EN (ηjN ) = EU ,

2. limN→∞ VarN (ηjN ) = 0.

The proof of the first item is not difficult. How-

ever, the proof of the second part is rather

complicated.

Finally ...

Many people have asked me at some point

what the effect of the Vici grant has been on

my career. On this point I can be brief: of

course a grant like the Vici helps a lot and it

is a wonderful feeling to be financially inde-

pendent for a number of years. But there are

other effects as well.

Supervising so many students in such

a short time is rather demanding, certainly

when you take the postdocs also into account.

The grant was supposed to run over a rather

limited period, and was not supposed to be

extended too easily. Hence one should find

good students on a rather short notice which

has not been so easy.

Furthermore, we all know that in mathe-

matics, one cannot advice too many PhD stu-

dents at the same time. The way I dealt with

it, was to ask other people to help me super-

vising some students. However, the point of
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discussion remains: is the Vici grant system,

with at least for mathematics a very substan-

tial amount of money, the best way to finance

mathematical research? Or would it be bet-

ter to give less money to more researchers?

I have the impression that the mathemat-

ics community would in majority vote for the

latter and I tend to agree. This point be-

comes even more important these days, with

even more concentration, for instance with

the Zwaartekracht call. It is great, really, that

so much money flows into mathematics, but

I feel that mathematics would even be better

off if that amount of money would be spread

out more evenly over various disciplines with-

in mathematics. k
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