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A mixed integer non-linear
optimization approach to
optimize dike heights in the
Netherlands

In the Netherlands, dike rings protect a large part of the country against flooding. In this article,

Ruud Brekelmans, Carel Eijgenraam, Dick den Hertog and Kees Roos describe an optimization

model that has been developed to optimize dike heights in the Netherlands. The project led to

a saving of D 7.8 billion and has won the prestigious international Franz Edelman Award.

This paper is based on the material in two ear-

lier papers, [1] and [5], that were published in

the journals Operations Research and Inter-

faces, respectively. It describes the optimiza-

tion model that has been developed to opti-

mize dike heights in the Netherlands. More-

over, it briefly describes the high impact of

the results of this project on political deci-

sion making in the Netherlands. The project

was awarded with the INFORMS Franz Edel-

man 2013 Award. For more details on the val-

idation of the model, the method used, and

the political process and impact, we refer to

these papers.

In the Netherlands, dike rings, consisting

of dunes, dikes and structures, protect a large

part of the country against flooding. After

the catastrophic flood in 1953, a cost-benefit

model was developed by van Dantzig [2] to

determine optimal dike heights. The objec-

tive of the cost-benefit analysis (CBA) is to

find an optimal balance between investment

costs and the benefit of reducing flood dam-

ages, both as a result of heightening dikes.

The question then becomes when and how

much to invest in the dike ring. In [6] we im-

prove and extend van Dantzig’s model. In that

paper we show how to properly include eco-

nomic growth in the cost-benefit model, and

how to address the question when to invest

in dikes. All these models consider dike rings

that consist of a homogeneous dike. This

means that all parts in the dike ring have the

same characteristics with respect to invest-

ment costs, flood probabilities, water level

rise, et cetera.

Many dike rings in the Netherlands, how-

ever, are non-homogeneous, consisting of dif-

ferent segments that each have different char-

acteristics. Differences occur, for instance, if

along a dike ring in the delta area a river dom-

inated regime changes into a sea dominated

regime, or if a dike ring contains a large sluice

complex. Currently, there are dike rings with

up to ten segments in the Netherlands. In

this non-homogeneous case, it is not neces-

sary and not desirable to enforce that all these

segments are heightened simultaneously and

by exactly the same amount. Hence, the deci-

sion problem for the non-homogeneous case

concerns when and how much to invest in

each individual dike segment.

In the current paper, we consider the ex-

tension of the homogeneous case in [6] to

the non-homogeneous case. The research has

been carried out as part of a project initiated

by the government. The project’s main goal

is to support decision-making with respect to

setting new flood protection standards for the

dike rings in the Netherlands. Efficient flood

protection standards can be derived from the

optimal investment strategy and the resulting

flood probabilities. How this can be done is

explained in [5]. Here we confine ourselves to

a description of the first stage: finding the
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The catastrophic North Sea flood of 1 February 1953

optimal investment strategy. In order to lay

a firm base for the new standards, the

53 larger dike rings in the Netherlands

need to be analysed thoroughly. This re-

quires that particular scenarios can be anal-

ysed within a reasonable amount of time,

where each scenario represents a certain

instance of the model parameters such as

economic growth, interest rate, water level

rise, flood characteristics, investment costs

and so on.

It is shown in [6] that the homogeneous

case can be solved analytically. Unfortunate-

ly, we did not succeed in solving the non-

homogeneous case analytically. In this pa-

per we show how the non-homogeneous dike

height optimization problem can be modelled

as a Mixed Integer Non-linear Programming

(MINLP) problem.

In addition to the MINLP formulation of

the decision problem, we constructed an it-

erative optimization algorithm that speeds up

the solution time considerably. The algorithm

has been implemented in AIMMS, which has

subsequently been integrated in user-friendly

software to perform the dike ring analysis

[3–4]. The final results have had a big impact

in the political decision making process.

Non-homogeneous Optimization Problem

Problem formulation

In this section we present our model for the

non-homogeneous dike height optimization

problem. The model is an extension of the

homogeneous problem, as introduced in [6].

The reader is referred to [6] for the foundation

of the common model parts. A dike ring pro-

tects a certain area of land against flooding.

The number of segments is denoted as L (L ≥

1). A dike ring is said to be non-homogeneous

if L > 1, and homogeneous otherwise. All

segments can be heightened independent-

ly of each other. Moreover, each segment

has its own properties with respect to invest-

ment costs and flood probabilities. To indi-

cate the dependence of a model parameter

on a particular dike segment, a subscript l

(l = 1, . . . , L) will be added to this parame-

ter. The set of all segments is denoted by L.

The objective is to find an investment plan

that minimizes the expected total costs. Only

investments in a finite planning horizon [0, T )

are considered. An investment plan is repre-

sented by a tuple (U, t), with U ∈ R
L×(K+1)
+ and

t = (t0, t1, . . . , tK )T . The vector t represents

the possible timings of dike segment height-

enings, where t0 = 0 < t1 < · · · < tK < T .

Hence, K + 1 is an upper bound on the num-

ber of segment heightenings in the planning

horizon. For notational convenience, we de-

note tK+1 = T . The matrix U represents

the segment heightenings, where the element

Ulk = ulk is the heightening (cm) of segment

l at time tk (l = 1, . . . , L, k = 0, . . . , K). Of

course, heightenings are assumed to be non-

negative. If ulk = 0, then this means that

segment l is not heightened at time tk. The

l-th row of U, with the K + 1 heightenings of

dike segment l, is denoted by u(l).

Throughout the remainder of this paper we

use the following notation for the cumulative

segment heightening and the absolute seg-

ment height at time t (t ≥ 0):

hlt =
∑

k:tk≤t

ulk and Hlt = H−l0 + hlt ,

where H−l0 is the absolute height of segment

l immediately prior to a possible heightening

at time t = 0. For notational convenience,

we also use hlk = hltk and Hlk = Hltk . Note

that it follows from this definition that the seg-

ment height is a non-decreasing step func-

tion. Moreover, this implicitly means that

heightenings are measured at the moment

that the investment actions are completed.

A lead time is not modelled.

The flood probability of segment l at time

t is given by

Plt = P−l0 exp (αl(ηlt − hlt )), (1)

with P−l0 (1/year) the initial flood probability,

αl (1/cm) the parameter of the exponential

distribution for extreme water levels and ηl
(cm/year) the structural increase of the water

level. Both the hydraulic conditions and the

quality of the dike segment are summarized

by one indicator: height above the level that

corresponds to the flood probability P−l0. The

weakest segment fully determines the flood

probability of the entire dike ring. Hence, we

define the flood probability of the entire dike

ring at time t by Pt = maxl∈L Plt .

A property that all segments have in com-

mon is that they protect the same area of

land. Hence, if there is a flood, the damage

does not depend on the segment in which

a breach occurs. Furthermore, the potential
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damage costs increase in time with the eco-

nomic growth rate γ. The damage costs do,

however, also depend on the resulting height

of the water level within a dike ring after a

flood. In particular, along rivers the dam-

age costs increase by the rise in the height

of the lowest segment (in absolute height).

Putting all this together yields the following

damage costs, at time t, in the case of a non-

homogeneous dike ring:

Vt = V−0 exp

(

γt + ζ

(

min
l∈L

Hlt −min
l∈L

H−l0

))

,

withV−0 the initial damage costs andζ (1/cm)

the parameter that represents the increase in

damage costs depending on the height of the

lowest dike segment.

The expected damage costs at time t is

given by the product of the flood probability

and the damage costs:

St = PtVt

= max
l∈L

S−l0 exp

(

βlt −αlhlt +ζ

(

min
l∈L

Hlt −H
−
l00

))

,

(2)

where S−l0 = P−l0V
−
0 , βl = αlηl + γ and l0 =

argminlH
−
l0. By using the fact that the seg-

ment heights remain unchanged in the inter-

val [tk, tk+1), the total expected damage in

this interval can be written as

∫ tk+1

tk

St exp(−δt)dt

= exp(−ζHl0 0)
∫ tk+1

tk

exp

(

−δt + ζmin
l∈L

Hlt

)

·max
l∈L

(

S−l0 exp (βlt −αlhlk)
)

dt,

(3)

where δ is the discount rate.

From an optimization point of view there

are two problems with the integral in (3):

− The minimum absolute segment height

minlHlt cannot be incorporated in an op-

timization model as a convex constraint.

− Even though the segment heights do not

change during the interval [tk, tk+1), the

segment flood probabilities Plt as de-

fined by (1) increase monotonically in time.

Hence, the segment l for which the max-

imum flood probability is obtained may

change during the interval [tk, tk+1).

If we want to use (3) in a MINLP model, then

we have to make some assumptions about

these two issues. The minimum operator in

(3) refers to the fact that the size of the dam-

age depends on the segment that is lowest

in absolute height. Since in practice it is

usually clear which of the segments along

rivers is the lowest in absolute height, it is

assumed that this segment is known in ad-

vance. Let this dike segment be denoted by

l∗. It turns out that, for the dike rings in

the Netherlands, this assumption is always

satisfied.

An obvious approach to deal with the max-

imum operator in (3) is to interchange the in-

tegral and the maximum operator. Note that

this yields a lower bound for (3), which intro-

duces an error only if the segment for which

the maximum is obtained changes within the

interval [tk, tk+1). Clearly, the effect of the er-

ror will be more serious if the length of the in-

terval is longer, and consequently this should

be taken into account when defining the in-

tervals. In the implementation of the MINLP

model to be introduced in the next subsec-

tion, we shall make sure that these intervals

are small enough to guarantee a sufficiently

accurate approximation.

Using the two assumptions from above, (3)

can be approximated by

Ek(U, t)

= max
l∈L

S−l0
β1l

exp
(

ζ(Hl∗tk −H
−
l00)−αlhlk

)

·

[

exp(β1ltk+1)− exp(β1ltk)

]

,

(4)

with β1l = βl −δ. The total expected damage

in the planning horizon [0, T ) is then approxi-

mated by

E(U, t) =

K
∑

k=0

Ek(U, t).

Note that for a fixed investment plan, it is pos-

sible to evaluate the size of the approxima-

tion error, since we can accurately evaluate

the minimum and maximum operators in (3).

This evaluation can be used to obtain a true

comparison between investment plans with

different discretization schemes.

To take into account the period after the

planning horizon, it is assumed that there are

no changes to the expected damage after T ,

and hence no more investments are required.

Thus, the discounted expected damage af-

ter the planning horizon is ST
∫∞
T exp(−δt)dt,

which can be approximated analogously to

(4), i.e.,

R(U, t) = max
l∈L

S−l0
δ

exp
(

β1lT −αlhlK

+ ζ(Hl∗tK −H
−
l00)
)

.

(5)

The investment costs associated with the

heightening of segment l at time tk depend,

of course, on the actual amount of the height-

ening. The costs, however, are assumed to be

independent of the heightening of other seg-

ments, regardless of the moments of these

heightenings. We use the same investment

cost function as introduced by [1], and refer

to it as exponential investment costs. For any

positive heightening ulk, the exponential in-

vestment costs are given by

Ilk(u(l) = (cl + blulk) exp
(

−λl
∑k
i=0uli

)

,

u(l) ∈ R
K+1
+ .

(6)

Hence, the investment costs depend on the

amount of the heightening and the amount

of the total heightening up to time tk. Since

there are no investment costs when there is

no heightening, the investment cost function

is discontinuous at zero, i.e.,

Ilk(u(l)) =







Ilk(u(l)) if ulk > 0,

0 if ulk = 0.

The total discounted investment costs in the

planning horizon are then given by

I(U, t) =

L
∑

l=1

K
∑

k=0

Ilk(u(l)) exp(−δtk).

Since the objective is to minimize the sum of

the investment costs and expected damage

costs, the resulting optimization model can

now be formulated as

min I(U, t) + E(U, t) + R(U, t)

s.t. U ∈ R
L×(K+1)
+ ,

t0 = 0 < t1 < · · · < tK < T.

(7)

MINLP model

This section discusses how the general dike

height optimization problem (7) can be trans-

formed into a mathematical optimization

model that can be solved using optimiza-

tion solvers. The problem as stated by (7)

can be considered as a Non-Linear Program-

ming (NLP) model since the decision variables

U and t are continuous and the objective

function’s components are clearly non-linear.
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Dike ring Segments MINLP objective (MD ) True objective (MD ) Solution time (min)

10 4 107.51 107.51 0.52

13 4 10.38 10.38 0.07

14 2 94.04 94.04 0.54

16 8 1044.45 1046.08 6.24

17 6 377.05 377.37 3.33

21 10 217.40 217.71 2.23
22 5 373.98 374.08 7.62
36 6 395.65 395.65 60.19

38 3 136.26 136.29 59.33

43 8 486.72 488.10 1.65

47 2 16.57 16.57 8.54

48 3 42.92 42.92 2.77

Table 1 Results optimization algorithm for a selection of dike rings.

From an optimization point of view, however,

there are some issues that prevent us from

actually solving the problem as stated by (7):

the discontinuity of the investment cost func-

tions at zero, and the approximation error of

the expected damage in (4). The latter issue

forces us to discretize the planning horizon,

since continuous time variables could result

in large intervals and consequently serious

approximation errors. The discontinuity of the

investment cost function can be resolved by

discretization of the heightenings as well, or

by adding binary decision variables that indi-

cate whether a heightening is actually greater

than zero or not. If both the moments and the

amounts of the heightenings are discretized,

then, theoretically, the problem can be solved

using a dynamic programming approach. Un-

fortunately, the state space grows too large if

multiple segments are considered, which im-

plies that a dynamic programming approach

is not applicable. Therefore, we consider

a MINLP approach with discretization of the

planning horizon only.

Next, the reformulation of problem (7) into

a MINLP model is discussed. We assume that

a discretization scheme t = (t0, . . . , tK+1) with

t0 = 0 < t1 < · · · < tK < tK+1 = T has been

prefixed. The MINLP model then becomes:

min

L
∑

l=1

K
∑

k=0

exp(−δtk)(clylk + blulk)

· exp
(

−λl

k
∑

i=0

uli

)

+

K
∑

k=0

Ek + R

(8)

s.t. Ek ≥
S−l0
β1l

exp
(

ζ(Hl∗k −H
−
l00)−αlhlk

)

·

[

exp(β1ltk+1)− exp(β1ltk)

]

,

l = 1, . . . , L, k = 0, . . . , K,

(9)

R ≥
S−l0
δ

exp
(

β1lT −αlhlK

+ ζ(Hl∗K −H
−
l00)
)

,

l = 1, . . . , L,

(10)

hlk =

k
∑

i=0

uli,

l = 1, . . . , L, k = 0, . . . , K,

(11)

Hlk = H−l0 + hlk,

l = 1, . . . , L, k = 0, . . . , K,
(12)

0 ≤ ulk ≤ ylkM, ylk ∈ {0,1},

l = 1, . . . , L, k = 0, . . . , K,
(13)

hlk,Hlk, Ek, R ∈ R,

l = 1, . . . , L, k = 0, . . . , K.
(14)

The objective function (8) includes the expo-

nential investment costs with the fixed cost

component cl multiplied by ylk. The binary

variablesylk combined with (13) are required

to ensure that either ulk = 0 and the invest-

ment costs in the objective function are ze-

ro, or ulk > 0 and the investment costs are

equal to Ilk(u(l)). In (13),M denotes an upper

bound of the highest possible dike heighten-
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Figure 1 Cumulative segment heightenings for a dike ring with six segments.

ing. The auxiliary variables Ek and R repre-

sent the expected damage costs in [tk, tk+1)

and [T ,∞) respectively. Constraints (9) and

(10) are used to model the damage costs as

convex constraints without using the maxi-

mum operator, as occurs in (4).

It is clear that the optimal solution to

problem (8)–(14) is fully determined by the

decision variables ulk (l = 1, . . . , L, k =

0, . . . , K, ). These decision variables could

be considered the ‘pure’ decision variables

of problem (8)–(14), which, together with the

discretization scheme t, represent the invest-

ment plan (U, t) that answers the fundamental

questions of when and how much should be

invested in dike heightening.

Implementation issues

One of the project goals, set by Deltares, was

that the model (8)–(14) could be solved for

all major dike rings in a reasonable amount

of time without the necessity to tune the al-

gorithm’s settings for specific dike rings. We

were able to design a generic solution method

that can solve any particular instance of the

model without any fine-tuning. The model

(8)–(14) has been implemented in AIMMS.

Moreover, the software company HKV has

integrated this model in the software pack-

age OptimaliseRing [3–4], used by the actual

performers of the cost-benefit analysis. We

used the AIMMS Outer Approximation (AOA)

method that is implemented in AIMMS to

solve the MINLP problems.

A heuristic algorithm is needed because

MINLP (8)–(14) cannot be solved in reason-

able time for dike rings with more than six

segments. For example, we used a dedicated

discretization scheme to reduce the number
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Figure 2 Segment flood probabilities for the same dike ring as in Figure 1.

of variables, and we added (nearly) redundant

constraints to reduce the search space. More-

over, since it is clear that model (8)–(14) re-

quires the input of several parameters, which

in practice are often uncertain, we also devel-

oped a regret approach to obtain a solution

that is robust with respect to these uncertain-

ties. For more details we refer to [1].

Numerical results

As discussed in the previous section, the

optimization algorithm has been implement-

ed in AIMMS using the AOA solver. All

numerical results in this section were ob-

tained using AIMMS 3.8.5 with CPLEX 11.2 and

CONOPT 3.14G on a PC with an Intel Core 2 CPU

processor.

A database with data about the dike rings

in the Netherlands was provided by Deltares.

This database contains all relevant parame-

ters for the non-homogeneous dike height op-

timization problem.

Overview dike rings

A selection of the dike rings from Deltares’

First heightening Second heightening Third heightening

Dike ring t P−(t) P+(t) t P−(t) P+(t) t P−(t) P+(t)

10 68 6.6× 10−4 6.7× 10−5 156 1.2× 10−4 1.4× 10−5 244 2.5× 10−5 2.9× 10−6

13 140 1.8× 10−4 1.6× 10−5 244 3.7× 10−5 2.5× 10−6 - - -
14 36 1.5× 10−4 2.3× 10−5 104 4.6× 10−5 6.5× 10−6 168 1.3× 10−5 1.8× 10−6

16 0 5.0× 10−4 2.8× 10−4 40 3.7× 10−4 7.7× 10−5 105 1.2× 10−4 2.5× 10−5

17 20 3.8× 10−4 9.1× 10−5 81 1.9× 10−4 1.3× 10−5 165 4.3× 10−5 2.9× 10−6

21 0 5.0× 10−4 2.5× 10−4 45 5.2× 10−4 5.3× 10−5 120 1.5× 10−4 1.4× 10−5

22 7 5.2× 10−4 4.5× 10−5 100 1.1× 10−4 8.5× 10−6 200 2.3× 10−5 1.2× 10−6

36 36 1.1× 10−3 1.7× 10−4 102 4.1× 10−4 6.3× 10−5 165 1.5× 10−4 2.4× 10−5

38 0 6.7× 10−4 2.7× 10−4 28 4.6× 10−4 1.9× 10−5 126 8.6× 10−5 3.2× 10−6

43 0 2.7× 10−4 2.7× 10−4 30 4.6× 10−4 3.9× 10−5 120 9.7× 10−5 7.3× 10−6

47 30 2.5× 10−4 1.2× 10−5 120 4.0× 10−5 1.2× 10−5 200 1.6× 10−5 5.8× 10−7

48 0 2.8× 10−4 1.2× 10−5 77 3.0× 10−5 2.9× 10−6 154 7.1× 10−6 6.6× 10−7

Table 2 Moments (in years measured from the start of the planning horizon) of the first three dike ring updates and the flood probabilities just before (P−(t)) and after (P+(t)) the updates.

database was optimized by our optimization

algorithm. For all experiments we used com-

mon values for the discount rate per year

(δ = 0.0247) and the economic growth rate

per year (γ = 0.019). A summary of the re-

sults for the exponential investment costs is

shown in Table 1. The first two columns give

the dike ring number along with the number of

segments in the dike ring. The third column

gives the MINLP model’s objective value of

the algorithm’s final iteration. The fourth col-

umn gives a true evaluation of this objective

value that does not suffer from an approxima-

tion error in the expected damage. It can be

seen that the MINLP’s objective is indeed a

lower bound and that the approximation error

is very modest, which indicates that the ap-

proximation of the expected damage is suit-

able for our MINLP model.

The fifth column in Table 1 gives the solu-

tion time in minutes. There does not appear

to be a clear relationship between the num-

ber of segments and the solution time. This

is mainly due to the fact that the discretiza-

tion scheme is created in such a way that the

number of resulting decision variables does

not depend on the number of segments. In

other words, a dike ring with more segments

has a rougher discretization scheme than a

dike ring with less segments, as explained in

[1].

For the same set of experiments, Table 2

shows the moments of the first three updates

of the dike rings, which correspond to one or

more segment heightenings taking place at

the same point in time. In addition, the ta-

ble shows the effect the heightenings have

on the dike ring’s flood probability, i.e., the

flood probabilities just before and just after

the updates are listed. For the new safety

standards in this example, there are five out

of twelve dike rings that require immediate

segment heightenings at t = 0. The results

also clearly indicate that the flood probabili-

ties just prior to a heightening decrease over

time. This is a result of the economic growth,

which increases the damage costs if a flood

occurs, and therefore it is beneficial to let the

flood probabilities decrease over time.

Let us take a closer look at the resulting

solution for a dike ring with six segments. Fig-

ures 1 and 2 give a graphical overview of the

final solution obtained with the iterative algo-

rithm. Figure 1 shows the cumulative height-

enings of the six segments during the 300-

year planning horizon. Figure 2 shows the

resulting segment flood probabilities. It can

be seen that the two segments 1 and 5 are not

heightened together with the other segments

at t = 20. Figure 2 also shows why it is not

necessary to heighten these two segments:

their flood probabilities are still very low com-

pared to the other segments. Although in this

particular example there is a moment at which

not all segments are heightened simultane-

ously, the figure clearly demonstrates why si-

multaneity very frequently leads to very good,

or even optimal, results. Recall that a dike

ring’s flood probability is determined by the

maximum segment flood probability. Hence,
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if a single segment is not heightened simul-

taneously with the other segments, then it

is likely that this segment’s flood probability

will become, or even remain, the dike ring’s

maximum flood probability. The benefit of

heightening the other segments, in terms of

decreasing the expected damage, is therefore

usually smaller than the incurred investment

costs. Finally, we remark that this is an exam-

ple of a dike ring where, in the optimal solu-

tion, not all segments are always heightened

simultaneously. Very often this is the case,

however.

Practical impact

The ultimate goal of our project was to give

recommendations for new flood protection

standards in the Netherlands. In [5] it is

described how to construct flood protection

standards based on the optimal investment

strategy resulting from our MINLP model.

Based on the final results, published in [7–8],

we concluded that increasing the legal protec-

tion standards of all dike-ring areas tenfold,

as the Second Delta Committee recommend-

ed, is unnecessary. The current protection

standards are (more than) appropriate, ex-

cept for three regions: a part of the dike rings

along the Rhine and Meuse Rivers (i.e., part of

the areas that now have a standard of 1/2000

or 1/1250 per year), the southern part of dike

ring 8 Flevoland (comprising the large, rapidly

growing city of Almere), and some dike rings

(e.g., 20) near Rotterdam.

The Water Advisory Committee, chaired

by Crown Prince (currently the King) Willem-

Alexander, discussed the final report of the

CBA WV21 [7] and endorsed our results in a

letter dated 9 March 2012. The House of Par-

liament discussed the report on 5 December

2011 and 4 April 2012. In an unanimous mo-

tion on 17 April 2012, the parliament asked

the government to present a concrete propos-

al for new legal standards in 2014, explicitly

referring to the three regions named in [7–8]

and under the condition that improvements

are justified by a CBA. The state secretary of

the Ministry of Infrastructure and the Environ-

ment (I&M) followed the report’s results and

recommendation: A tenfold increase in pro-

tection standards for all dike-ring areas is not

needed and only the protection standards in

the three regions named in the report need

improvement.

The state secretary therefore instructed the

Delta Commissioner to adapt, as necessary,

the protection standards derived for these ar-

eas according to local situations, and to en-

sure that a minimal protection level is guar-

anteed everywhere in a dike ring area. On

26 April 2013, the Minister of I&M, Melanie

Schultz van Haegen, confirmed these conclu-

sions in a policy letter to the parliament.

The Delta Commissioner has announced

that his proposal for new flood protection

standards will closely follow the main con-

clusions of this project, which have already

been recognized in discussions with the wa-

ter boards and the provinces. In 2014, the

cabinet will take a decision on these propos-

als. In 2015, the final decision on the im-

provement of these protection standards will

be taken in parliament, such that new stan-

dards — after approval of the law in parlia-

ment — will be legally effective by 2017. Fi-

nally, in a letter dated 27 November 2012, the

chairman of the renowned Second Delta Com-

mittee agreed with these conclusions, which

clearly deviate from the committee’s earlier

advice. Compared to this earlier recommen-

dation, this successful application of oper-

ations research yields both a highly signifi-

cant increase in protection for these regions

(in which two-thirds of the benefits of the

proposed improvements accrue) and approx-

imately 7.8 billion Euro in cost savings. k
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