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Shock waves and two phase
porous media flows

Models for porous media flow with multiple fluids (water and oil, for example) are important

for studying techniques such as geological storage of CO2 and water driven oil recovery. These

models consist of conservation laws and often contain nonlinearities that preclude the exis-

tence of classical solutions. Hans van Duijn and Sorin Pop discuss important aspects of the

theory of hyperbolic conservation laws, in particular existence and uniqueness of weak solu-

tions, admissibility conditions and shock solutions. This theory explains saturation overshoots

occurring in porous media flows under non-equilibrium conditions.

Mathematical models and simulation tools

are essential for an optimal exploitation of

geological resources. In many cases, for in-

stance groundwater flow, water driven oil re-

covery, or geological CO2 storage [1, 7, 12],

the underlying mathematical models consist

of conservation laws. These are nonlinear

evolution equations having either a hyperbol-

ic or a parabolic character. The nonlinearities

and data appearing in the models allow for

the existence of so-called weak solutions, i.e.

discontinuous solutions. The weak solutions

are defined, based on test functions and par-

tial integration. Natural questions arising in

this context are existence, uniqueness, and

regularity of these solutions. For parabolic

problems, uniqueness generally holds. This

is not the case of hyperbolic problems, where

uniqueness requires additional admissibility

conditions, leading to so-called entropy solu-

tions.

In this paper we discuss two admissibility

concepts. They are based on the observation

that hyperbolic equations arise from evolu-

tion equations involving higher order deriva-

tives, by letting such terms vanish. In porous

media models, this is similar to vanishing

capillarity.

Flows in porous media

In this paper we analyze a model that de-

scribes the flow of two incompressible and

immiscible fluids through a porous medium.

Such models arise in geological CO2 stor-

age. We follow the approach in which the

porous medium is considered as a contin-

uum, characterized by averaged properties

such as porosity φ and permeability K. The

presence of each fluid is described by a satu-

ration, Sw for water and Sn for CO2. The model

equations arise from a combination of mass

balance and Darcy laws for both fluids [1, 7].

When restricting ourselves to horizontal flows

through homogeneous reservoirs, the follow-

ing one-dimensional description results (with

α ∈ {w,n}):

φ
∂Sα
∂t

+
∂vα
∂x

= 0 (mass balance), (1)

vα = −K
krα
µα

∂pα
∂x

(Darcy). (2)

For each fluid, vα is the averaged velocity,

µα the dynamic viscosity and pα the pres-

sure in fluidα. Furthermore, krα denotes the

relative permeability of fluid α. Experiments

show that it is an increasing function of the

corresponding fluid saturation, i.e.

krα = krα(Sα). (3)

One can insert (2) into (1) to reduce the system

to two equations, involving, however, four un-

knowns, two saturations and two pressures.

To close the system one assumes the pores

are occupied completely by the two fluids

(thus no other fluid or void is present), im-

plying

Sw + Sn = 1. (4)

The difference of the fluid pressures, called

capillary pressure, depends on the CO2 satu-

ration Sn. In standard models it is given by

pn − pw = Pc(Sn), (5)

where Pc is strictly increasing.

From (1) and (4) one concludes that the

sum of the fluid velocities,v = vn +vw, is con-

stant in space. It remains constant in time too

if the injection process is at constant flow rate.

Introducing reference quantities the model re-

duces to one scalar equation

∂tu + ∂xf (u) = ε
(
H(u)∂xP

)

for all t > 0 and x ∈ Ω,
(6)

which involves only one dimensionless num-
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ber ε, the capillary number. This is related

to the ratio of viscous forces and surface ten-

sion acting across the interface between the

two fluids.

In (6) u denotes the CO2 saturation, u =

Sn, P is the dimensionless capillary pressure

and Ω is the dimensionless interval of inter-

est. Below we consider Ω = R. The nonlinear

functions are:

f (u) =
ko(u)

ko(u) +Mkw (u)
,

H(u) = kw (u)f (u).

(7)

Typically, the function f has a convex-

concave profile.

In view of (5) one has

P = P (u). (8)

Common choices in the porous media litera-

ture are

ko(u) = u1+p , kw (u) = (1−u)1+q

and P (u) = (1−u)−
1
λ ,

where p,q > 0, λ > 1 and M > 0 are model

specific, [1].

Non-equilibrium models

The above-mentioned model is based on per-

meability — saturation and capillary pres-

sure — saturation functions under so-called

‘equilibrium conditions’. In this case, mea-

surements are performed after achieving a

static distribution of the fluids inside the

pores. However, capillary pressure functions

measured under non-equilibrium conditions,

when the fluids do not reach a steady state,

are different from those under equilibrium

ones. Further, unexpected saturation profiles

have been measured in [2] for infiltration in a

thin and long column filled by homogeneous

sand. As shown in Figure 1, the saturation pro-

files for a low flux at the inflow are monotone,

as predicted by equilibrium models (see e.g.

[10]). For higher fluxes, so-called ‘saturation

overshoots’ are observed: at the infiltration

front, the saturation values are higher than

the ones at the influx. As the flux increases,

this profile becomes even more intriguing: a

saturation plateau that is higher than the in-

flow saturation appears between an infiltra-

tion front and a drainage front.

Such non-monotonic saturation profiles

are ruled out by equilibrium models, there-

Figure 1 Saturation profiles measured for different fluxes
(courtesy of D.A. DiCarlo); note that these profiles become
non-monotonical with the increase of the flux.

fore non-equilibrium ones are required. A

model incorporating dynamic effects in the

capillary pressure is proposed in [6], where

(5) becomes

Pc = Pec (Sn) + τ̂∂tSn. (9)

Pec is the capillary pressure-saturation func-

tion determined under equilibrium. The sec-

ond term accounts for the non-equilibrium ef-

fects. The parameter τ̂ is assumed constant

for simplicity; generally it may depend on Sn.

In the simplified, dimensionless setting con-

sidered here, the capillary pressure becomes

P = P (u) + ετ∂tu, (10)

with the dimensionless dynamic number τ.

Then (6) reads

∂tu + ∂xf (u)

= ε
(
H(u)∂x (P (u) + τε∂tu)

)
,

(11)

for all t > 0 and x ∈ R.

Remark. Both dimensionless numbers ε and

τ depend on the reference quantities, see

[11]. In particular, the dynamic number is pro-

portional to the square of the reference veloc-

ity. In other words, a higher flux at the inflow

results in a higher value for τ. This is a key

observation for explaining the occurrence of

saturation overshoots.

Admissible shocks

Formally, when letting ε tend to 0, both (6) or

(11) become:

∂tu + ∂xf (u) = 0 for t > 0, x ∈ R. (12)

This equation is hyperbolic. We consider Rie-

mann initial data,

u(0, x) = u0(x) =




uℓ if x < 0,

ur if x > 0,
(13)

with given states uℓ, ur ∈ R. We only con-

sider bounded solutions, satisfying

lim
x→−∞

u(t, x) = uℓ

and lim
x→∞

u(t, x) = ur
(14)

for all t > 0. Moreover, since u is the CO2

saturation, we only consider states satisfying

0 ≤ uℓ, ur ≤ 1.

Having formulated the initial value prob-

lem (12)–(13), a natural question arising is

the existence and uniqueness of solutions.

Without entering into details, we mention that

classical solutions fail to exist. Alternative-

ly, one can multiply the original equation by

a test function ϕ and integrate the resulting

equation over the time-space domain. After

integration by parts, a weak solution is de-

fined as a bounded, measurable function sat-

isfying

∫∞

0

∫

R

u∂tϕ + f (u)∂xϕdxdt

+

∫

R

u0(x)ϕ(0, x)dx = 0,

(15)

for all ϕ ∈ C1
0 ([0,∞) × R), the space of con-

tinuously differentiable functions that vanish

uniformly for large t and x. Clearly, any clas-

sical solution is also a weak solution, but the

latter class is much wider. In particular, a

weak solution may even be discontinuous.

The existence of a solution can be proved

in the context above. However, uniqueness

remains an open question, as this does not

hold generally. For example, consider the

Burgers equation,

∂tu + ∂x
(1

2
u2
)

= 0 for t > 0, x ∈ R. (16)

Let the initial condition in (13) withuℓ = 0 and

ur = 1. One can verify that both functions

given below are weak solutions:

ua(t, x) =





0 if x ≤ 0,

x

t
if 0 < x < t,

1 if x ≥ t,

ub(t, x) =





0 if x <
1

2
t,

1 if x >
1

2
t.
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Note that ua is a continuous transition from

the left state uℓ = 0 to the right state ur = 1.

These states are connected by a fan that be-

comes wider in time; such solutions are called

rarefaction waves. At the same time, ub is a

shock, a jump from uℓ to ur . This shock is

located at x(t) =
1

2
t and travels with a fixed

velocity s = x′(t) =
1

2
. The shock satisfies the

general Rankine–Hugoniot condition relating

the shock speed to the states at its left and

right sides,

s =
f (uℓ)− f (ur )

uℓ −ur
, (17)

where f is the flux function in the conser-

vation law (12). In general, one can prove

that functions having discontinuities travel-

ling with a velocity that respects (17), and sat-

isfying the equation in classical sense away

from the shock, are weak solutions (see e.g.

[5]). This rises another question: which so-

lution is relevant? In other words, additional

criteria are required for selecting the weak so-

lution of interest.

A natural approach is to use underlying

physics and to investigate which structure has

been lost by letting ε tend to zero in the orig-

inal, regularized model. In particular, since

the shock profiles are constant in time, one

can think of similar solutions to the regu-

larized model, travelling waves (TW). Such

waves connect the same left and right states

as the shock. In other words, one investigates

solutionsuε to the regularized equation, hav-

ing the structure

uε(t, x) = v(η), with η = (x − st)/ε, (18)

and satisfying

lim
η→−∞

vε(η) = uℓ and lim
η→∞

vε(η) = ur . (19)

A shock u is called admissible if it is the limit

of a TW solution:

u(t, x) = lim
ε→0

vε(x − st). (20)

Note that neither (6) nor (11) depend explicitly

on t or x, so any translation of a TW remains

a TW. Therefore we fix the wave by assuming

that vε(0) = (uℓ +ur )/2.

In what follows we concentrate on shock

solutions to (12), satisfying (in the sense of

left and right limits)

lim
xրst

u(t, x) = uℓ and lim
xցst

u(t, x) = ur . (21)

Such shocks will be denoted by {uℓ, ur }.

Following the above, we call the shock

{uℓ, ur } admissible if it is the limit (ε → 0) of

a TW vε connecting uℓ to ur .

Oleinik’s criterion

In the classical theory for hyperbolic conser-

vation laws, a generally accepted admissibil-

ity criterion is due to O.A. Oleinik (see [9],

Chapter II) and is based on the parabolic regu-

larization of (12). In the context of two-phase

flow in porous media, we consider (6) with

the capillary pressure in (8). This deviates

slightly for the standard approach, where the

terms on the right are replaced by ε∂xxu. We

seek TW solutions uε to (6), satisfying (21),

and having the structure stated in (18). We

assume that the waves v are smooth, i.e.,

twice continuously differentiable. Applying

the chain rule, and integrating the resulting

once with respect to η leads to





A− sv + f (v) = H(v)
(
P (v)

)′
for η ∈ R,

lim
η→−∞

v(η) = uℓ and lim
η→∞

v(η) = ur ,
(22)

with A, s ∈ R to be determined. Note that

the scaling in (18) allows eliminating ε from

(22). However, if a TW solution exists, the pro-

file of the correspondinguε becomes steeper

as ε tends to 0. In the limit, this leads to a

shock solution to (12).

The behaviour of v as η → ±∞ implies

that the term on the right in (22) tends to 0 as

well, yielding

s =
f (uℓ)− f (ur )

uℓ −ur

and A =
urf (uℓ)−uℓf (ur )

uℓ −ur
.

(23)

Note that the TW speed is the shock

speed introduced in (17). With β(v) =∫
H(v)P ′(v)dv, a solution of (22) solves

(
β(v)

)′
= g(v) := A− sv + f (v),

for η ∈ R,

(24)

subject to the initial condition v(0) =

(uℓ +ur )/2.

Clearly, (23) is necessary, but not sufficient

for the existence of TW solutions, as the latter

implies that the solution of (24) also has the

asymptotic behaviour (22). This behaviour

can be reinterpreted in terms of phase plane

analysis, whereuℓ acts as a source-type equi-

librium, and ur as a sink. Moreover, (24)

should have no equilibria between the two

states uℓ and ur . This means that the term

on the right in (24) does not vanish between

the two states, hence g has a constant sign

there. This shows that the waves are mono-

tone. In mathematical terms, this becomes

the celebrated Oleinik entropy condition, say-

ing that shocks {uℓ, ur } are admissible if and

only if for all v between uℓ and ur ,

f (v)− f (uℓ)

v −uℓ
≥ s ≥

f (v)− f (ur )

v −ur
. (25)

In particular, for (16) this implies that shocks

{uℓ, ur } are admissible if and only if uℓ >

ur . Hence ub is not admissible in the sense

of Oleinik.

For model (6), where f has a convex-

concave profile, this means that, if uℓ > ur ,

shocks {uℓ, ur } are admissible only if the

segment connecting the points (uℓ, f (uℓ))

and (ur , f (ur )) is above the graph of f and

has no interior intersection points with the

graph. For example, a shock {1,0} is not ad-

missible in this case. A general feature of ad-

missible shocks (according to this criterion)

is that characteristics from the left and right

sides of a shock converge into the shock (as

time is increasing).

Non-classical shocks

Oleinik’s approach uses a parabolic regu-

larization of the hyperbolic equation (12),

which corresponds to the equilibrium capil-

lary pressure model (5). The TW solutions

discussed before remain monotone. As men-

tioned, there are experimental results contra-

dicting this monotonicity, which justifies non-

equilibrium models as (11).

In this respect, one question is whether

such models can justify non-classical shock

solutions to (12), which violate Oleinik’s ad-

missibility condition (25). We refer to [9],

where ‘connectable’ left and right states,

or admissible shocks {uℓ, ur }, are defined

based on a predefined kinetic function. Sim-

ilarly, in [4] admissible shocks {uℓ, ur } are

defined as the limit ε → 0 of TW solutions to

(11), and satisfying (22).

From a physical point of view, such shocks

are obtained in the vanishing capillary pres-

sure limit of two-phase porous media flow

models, when dynamic effects are included

in the capillary pressure. Clearly, such shocks

depend on τ; for τ = 0 one obtains the clas-

sical shocks in the previous subsection. Al-

though formally the limit equation (12) rem-
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Figure 2 The function f for p = 1 , q = 1 andM = 2;
here α is the tangent point.

ains the same for any τ, the case τ > 0 leads

to important differences in the structure of the

TW solutions and consequently in the admis-

sibility of shocks. With (22), we seek v solv-

ing





H(v)
(
sτv′ − P (v)

)′
= A− sv + f (v),

for η ∈ R,

lim
η→−∞

v(η) = uℓ and lim
η→∞

v(η) = ur ,

(26)

with s given by (23). Moreover, A has the

same value, at least if H does not vanish;

the degenerate case, when H(u) = 0 for e.g.

u = 0 and u = 1, is analyzed in [3].

The existence of TW depends on τ. Here

we consider ur < uℓ, and let α be the point

where the tangent line through (ur , f (ur ))

touches the graph of f (see Figure 2). In this

context, the following results are proved in [4]:

Theorem. Ifur < α ≤ uℓ, there exists τ∗ > 0

such that:

a. If 0 ≤ τ ≤ τ∗, TW connecting uℓ ≤ α to

ur exist and are monotone.

b. If τ > τ∗, there exists a unique ūℓ(τ) >

α that can be connected to ur through a

monotone TW.

c. The ū − τ dependency is continuous and

increasing for τ ≥ τ∗.

If τ > τ∗, with uℓ = u(τ), let u(τ) ∈ (ur , α)

be theu-coordinate of the middle intersection

point of the graph of f with the chord through

(uℓ, f (uℓ)) and (ur , f (ur )). Then

d. For eachuℓ ∈ (ur , u(τ)], there exists a TW

connecting uℓ to ur .

e. For eachuℓ ∈ (u(τ), ū(τ)), no TW connect-

ing uℓ to ur exist.

f. For each uℓ ∈ (u(τ), ū(τ)), TW connecting

uℓ to ū(τ) are possible.

Givenur , Figure 3 displays the values ū(τ)

and u(τ) for different values of τ. These

points are computed by a shooting method

(see [3]).

Case b of the theorem provides TW solu-

tions connecting uℓ = ū(τ) > α to ur . Let-

ting ε → 0, this TW justifies a shock solu-

tion {uℓ, ur } to (12) that violates (25), which

states that shocks {uℓ, ur } are admissible

only if uℓ ∈ (ur , α]. If the choice of ur ,

uℓ and τ places us the case f, the solution

of the Riemann problem (12)–(13) combines

two shocks: one upwards {uℓ, ū(τ)} and one

downwards {ū(τ), ur }. This is again a non-

classical construction, where the solution is

a shock down to ur , possibly preceded by

a rarefaction wave from uℓ to α if uℓ > α.

This behaviour is displayed in Figure 4, pre-

senting two numerical solutions computed for

the regularized models with τ > τ∗, respec-

tively τ = 0. The former presents two fronts

corresponding to the shocks mentioned be-

fore, the latter only one front connecting α to

ur = 0.

Saturation overshoot

The travelling wave analysis in the previ-

ous section provides the mathematical frame-

work for explaining the occurrence of non-

monotonic saturation profiles during infiltra-

tion. As observed in Figure 1, at low fluxes

the saturation has a monotone profile. In this

case, dynamic effects are negligible. The sit-

uation is changing as the flux is increasing;

as mentioned before in a remark, a higher

flux translates into a higher value of the pa-

rameter τ in the dimensionless setting. To

relate the TW construction with the experi-

ments, we mention that the left state uℓ rep-

resents the saturation at the inflow, where-

as the right state ur is nothing but the ini-

tial saturation (clearly, satisfying ur < uℓ).

Then, as follows from the theorem, whenever

Figure 3 The branches ū(τ) (right) and u(τ) (left) com-
puted for ur = 0. With τ > τ∗ , in case b of the theorem
uℓ = ū(τ) , while in case f uℓ ∈ (u(τ), ū(τ)).
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Figure 4 Numerical solutions for the full model (12), τ >
τ∗ (solid) and τ = 0 (dotted).

τ < τ∗, if uℓ < α, TW connecting uℓ to ur
are possible, also providing a monotonic sat-

uration profile.

Increasing the flux at inflow has two impli-

cations in the dimensionless model: an in-

crease of τ, as well as of uℓ. In this case,

the theorem rules out the possibility of TW

connecting uℓ directly to ur . Instead, two

fronts are encountered: an infiltration front

from ū(τ) down to ur and a drainage front

from ū(τ) to uℓ. Between the two fronts, the

saturation has a constant, plateau value ū(τ).

These are also the saturation profiles in Figure

1, determined experimentally at high fluxes.

The present discussion is restricted to ho-

mogeneous media in one spatial dimension.

Of course, realistic situations require two-

or three-dimensional models, and heteroge-

neous media. One interesting phenomenon

in the multi-dimensional case appears dur-

ing infiltration in homogeneous media, when

preferential flow is encountered in some parts

of the medium. This leads to the development

of fingers, which are thin regions of high sat-

uration embedded into regions of low satu-

ration. Such profiles are again ruled out by

standard, equilibrium models, but permitted

in the non-equilibrium case. Figure 5 presents

such profiles, computed for the model (12) by

a heterogeneous multiscale scheme (see [8]).

From practical point of view, the occur-

rence of preferential flow paths impacts the

performance of the system. For example, in

water driven oil recovery, when injecting water

to displace oil, a water saturation overshoot

implies that less oil is left in the reservoir.

However, as seen above such overshoots are

associated with the formation of fingers: in-

side fingers a high water saturation is en-

countered, whereas outside the saturation re-

mains low. Water will prefer flowing through

the fingers, leaving much oil unmobilized out-

side fingers. This reduces significantly the oil

production. Similarly, when injecting super-

critical CO2 in the sub-surface, having fingers
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Figure 5 Fingers developed during infiltration in a hetero-
geneous medium (courtesy of F. Kissling). Note that even
along a finger the saturation profile is non-monotone.

and preferential flow paths means that much

of the storage reservoir is not reached by the

CO2 and therefore left unused. A proper man-

agement of such systems is based on the

thorough understanding of the processes at

various scales. This includes taking into ac-

count dynamic effects in controlling the flow

regimes, so that the global efficiency is not

depleted.

Conclusion

We discussed two mathematical models for

two-phase flows in porous media. The differ-

ence between the two models is in the capil-

lary pressure-saturation dependency. In stan-

dard (equilibrium) models this is a nonlinear,

monotone function, whereas non-equilibrium

models also include the time derivative of the

saturation. In both approaches, we let the

capillary effects tend to zero to obtain ad-

missibility conditions for shock solutions of

the limit hyperbolic equation. These condi-

tions depend on the parameterτ appearing in

the dynamic capillarity term. We also discuss

how non-equilibrium models can explain the

saturation overshoot in the infiltration pro-

files, which are measured experimentally, but

ruled out by the equilibrium theory. k

References
1 J. Bear, Dynamics of Fluids in Porous Media,

Dover, New York, 1972.

2 D.A. DiCarlo, Experimental measurements of
saturation overshoot on infiltration, Water Re-
sour. Res. 40 (2004), W04215.

3 C.J. van Duijn, Y. Fan, L.A. Peletier and I.S.
Pop, Travelling wave solutions for degener-
ate pseudo-parabolic equation modelling two-
phase flow in porous media, Nonlinear Anal.
Real World Appl. 14 (2013), 1361–1383.

4 C.J. van Duijn, L.A. Peletier and I.S. Pop, A
new class of entropy solutions of the Buckley-
Leverett equation, SIAM J. Math. Anal. 39
(2007), 507–536.

5 A. Fasano, Parabolic Free Boundary Problems
in Industrial and Biological Applications, SIMAI
e-Lecture Notes 9 (2011).

6 S.M. Hassanizadeh and W.G. Gray, Thermody-
namic basis of capillary pressure on porous me-
dia, Water Resour. Res. 29 (1993), 3389–3405.

7 R. Helmig, Multiphase Flow and Transport Pro-
cesses in the Subsurface, Springer, 1997.

8 F. Kissling, R. Helmig and C. Rohde, Simula-
tion of Infiltration Processes in the Unsaturated
Zone Using a Multi-Scale Approach, Vadose Z.
Journal 11 (2012), doi:10.2136/vzj2011.0193.

9 P.G. LeFloch, Hyperbolic Systems of Conserva-
tion Laws. The Theory of Classical and Nonclas-
sical Shock Waves, Lectures in Mathematics ETH
Zürich, Birkhäuser Verlag, Basel, 2002.

10 M. Lenzinger and B. Schweizer, Two-phase flow
equations with outflow boundary conditions
in the hydrophobic-hydrophilic case, Nonlinear
Anal. Real World Appl. 73 (2010), 840–853.

11 S. Manthey, S.M. Hassanizadeh, R. Helmig
and R. Hilfer, Dimensional analysis of two-
phase flow including a rate-dependent capil-
lary pressure-saturation relationship, Adv. Wa-
ter Res. 31 (2008), 1137–1150.

12 J.M. Nordbotten, and M.A. Celia, Geological
Storage of CO2, Wiley, New Jersey, 2012.


