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Perspectives on the legacy
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Henri Poincaré (1854–1912) has had a tremendous influence on the development of mathemat-
ics and mathematical physics, the traces of which can be seen till the present day. This paper
by Henk Broer attempts to highlight aspects of this legacy and its influence on certain more
recent developments, focusing on the field of dynamical systems. His various approaches have
invariably led to fruitful subfields, where geometry, algebra and later also measure theory are
effectively at work in combination with analysis and calculus.

Poincaré lived in the happy days when
the boundaries between mathematics and
physics were still very permeable. His great
contributions to the development of mathe-
matical physics, e.g. to special relativity the-
ory, are discussed elsewhere, e.g., see [88],
and the present paper focuses on dynami-
cal systems. Evidently there are many in-
terconnections between these various fields.
Poincaré has been extremely generous with
his ideas and his legacy is large and fruitful,
a legacy from which the current discipline of
dynamical systems greatly profits. The be-
ginning of these developments consisted of
the theory of ordinary differential equations,
mainly applied to problems related to celes-
tial mechanics.

One main, general characteristic of Poinca-
ré’s approach to any of his fields of interest,
is his open-mindedness to all kinds of math-
ematics and his readiness to connect these
several fields. Regarding dynamical systems,
he extended the then dominant calculus- and
analysis driven-approach by including geom-
etry and algebra and also certain consider-
ations close to probability. To some extent

this holds for topology as well, although this
branch of mathematics was still in its infan-
cy. In fact Poincaré himself has stood at its
cradle when developing his ‘analysis situs’,
treated elsewhere in this volume. For rea-
sons of readability in this paper we deliber-
ately maintain an anachronistic style; for a
more faithful translation of Poincaré’s diction
into more modern terminology, we refer to,
e.g., [88].

In particular we shall discuss elements
of Poincaré’s [63, 65] and of his monumen-
tal [69], also see [73]. Already in [65] the idea
of a phase portrait was introduced, where
the attention is not focused on the compu-
tation or approximation of one single solu-
tion, but where his geometric organization
of all solution curves in a state space is be-
ing considered. Also we mention the so-
called Poincaré map with respect to a trans-
verse section is introduced in [69], restrict-
ing to a fixed energy-level, useful for similar-
ly organizing the dynamics of a two-degrees-
of-freedom system. (Poincaré sections and
maps are generally defined also for dissipa-
tive systems: the sections then should have

co-dimension 1 in the state space.) Here the
concept of homo- or heteroclinic orbit occurs,
which can give rise to a phenomenon today
called tangle. In the analytic approach, tan-
gle implies the divergence of certain pertur-
bation series, and in later days was related
to chaos. Another geometric tool is the index
of a singularity of vector fields (now called
Poincaré–Hopf index) as well as its relation-
ship with the Euler characteristic of the do-
main or surface at hand. We also briefly touch
upon the theorems of Poincaré–Bendixson
and Poincaré–Birkhoff. Although many appli-
cations of these ideas occur in the conserva-
tive dynamics of celestial mechanics, also the
general qualitative phenomenon now called
Hopf bifurcation (also called phenomenon of
Poincaré–Andronov [4]) forms one of the ge-
ometric discoveries. The Poincaré recurrence
theorem [68] and the relationship with statis-
tical mechanics will also be discussed.

Celestial mechanics
According to Leonardo da Vinci mechanics is
the paradise of mathematicians. Between
1700 and 1900 this assertion surely holds for
celestial mechanics, which during four cen-
turies has exerted an enormous impact on the
development of science and technology.

Remarks.
− The pièce de résistance of mathematical

power in celestial mechanics surely was
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the discovery of Neptune in 1846, predict-
ed from aberrations in the orbit of Uranus.
In these Newtonian computations Adams
and Leverrier played a role [46], while also
Bessel made some contributions.

− To illustrate the accuracy of astronomical
observations and computations we men-
tion the perihelion precession of Mercury,
established at a value of 5600′′ = 1.55560

per century. Computations have shown
that, within the classical Newtonian me-
chanics, the perturbations of the other
planets account for 5557′′ = 1.54360 per
century. The difference of 42.98′′ can be
explained by Einstein’s general theory of
relativity [53]. This amount of accuracy was
already attained around 1900.

Stability of the solar system
Since Newton, Euler and Laplace a central
question has been whether the solar system
as witnessed and reported by mankind is ‘sta-
ble’ in the sense that the observed multiperi-
odic motion will persist for ever. Here one may
think of the effectiveness of the Gregorian
leap year convention (give or take a corrective
leap second now and then) or the prediction
of the Easter dates and ask how all this works
out in the perpetually long run. The solar sys-
tem itself is quite large and subsystems of it
often have been described in terms of three
bodies: say the Earth-Moon-Sun or a Sun-
Jupiter-asteroid system. Moreover, mathe-
matical simplifications exist like the Restrict-
ed Planar Three Body Problem (RPTB), where
two primary bodies move uniformly in circles
and where the mass of the third body is con-

sidered to be small enough not to effect the
motion of the primaries and where everything
takes place in one fixed plane.

The main mathematical techniques for a
long time came from perturbation theory: that
is the analysis of a given motion as a perturba-
tion of a more well-known one, say, in terms
of one or several Kepler ellipses. One major
tool here consists of series expansions.

Analytic methods, normal forms
Poincaré’s thesis [63] contributed a lot to this
classical perturbation theory. One part of his
legacy consists of a local normal form theory,
where the series expansions of a vector field
(system of ordinary differential equations) in
a equilibrium is duly simplified. For later de-
velopments also compare Birkhoff [13], de-
velopments that extend till today. This sim-
plification facilitates the perturbation analy-
sis based on the series, where the simplified
(or normalized) lower-order part forms the un-
perturbed system and the higher-order terms
the perturbation. One important aspect of the
simplification often is given by a toroidal sym-
metry that turns the lower order part of the se-
ries into an integrable system. The integrable
approximation in turn can be reduced to low-
er dimensions as is common in classical me-
chanics, for a more modern point of view com-
pare Arnold [3]. As we shall see later, such se-
ries generically do not converge. (Generically
they diverge, where the space of real analytic
systems is endowed with the compact-open
topology on holomorphic extensions [19, 35,
74, 83].) Needless to say however, they al-
ways can serve asymptotic purposes. (At the

time this was a controversial issue: conver-
gence was considered essential by mathe-
maticians like Cauchy and Weierstraß.)

In [69] a similar problem is addressed, but
now the aim is to continue a periodic solu-
tion in terms of a perturbation parameter, for
Poincaré’s comments on these Lindstedt se-
ries see [66–67]. Nowadays one generally
speaks of Poincaré–Lindstedt series. Conver-
gence of such a series in general can be ob-
tained as an application of the implicit func-
tion theorem or similar methods.

Remarks.
− I like to mention the celestial mechanics

computations by De Sitter on the 1 : 2 : 4

orbital resonance of the Galilean Jupiter
satellites Io, Europa and Ganymede, that
leads to a libration in their motion. This
phenomenon was observed by David Gill
(Cape Town) and De Sitters computations
started around 1900 leading to a PhD the-
sis under Kapteyn. Later he again spent a
lot of time on this subject [81–82], using
Poincaré’s normalized resonant series ex-
pansion [63, 69]. (It seems that De Sitter
himself esteemed this celestial mechanics
project higher than his work on a global
solution for the equations of general rela-
tivity, later on coined as the De Sitter uni-
verse.)

− For more historical details and references
see the very readable De Sitter biography
by Guichelaar [29].

Example 1 (Holomorphic linearization). To
fix our thoughts mathematically, we consider
the problem of holomorphic linearization that
runs as follows, see [64]. Also see [4, 52]. Giv-
en is a holomorphic germ F : (C,0) → (C,0) of
the form

F (z) = λz + f (z), (1)

where f (0) = f ′(0) = 0 and the question is
whether a bi-holomorphic diffeomorphismΦ :

(C,0) → (C,0) exists, such that

Φ ◦ F = λ · Φ, (2)

i.e., that linearizes F . Here λ is a complex
parameter. A brief computation shows that a
formal solution Φ(z) = z +

∑
j≥2φjzj exists

in terms of the Taylor series of f , if and only
if λ 6= 0 and λ 6= e2π ip/q for all p ∈ Z and
q ∈ N, i.e., if λ is not a root of unity. Indeed,
it easily can be shown that the coefficientφn
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contains a factor

1
λ(1− λ) · · · (1− λn)

. (3)

The question then is whether or not the series
converges. In the hyperbolic case 0 < |λ| 6= 1

this question is answered affirmatively by
Poincaré [64]. For an elaborate discussion,
including Poincaré’s elegant, geometric solu-
tion of this hyperbolic case, see [4]. In the
elliptic case where λ belongs to the complex
unit circle, the exclusion of λ from being a
root of unity is not enough for convergence.
Indeed, even in this case the denominators
in (3) accumulate on zero, which forms an
example of the notorious small divisor prob-
lem. Sufficient for convergence are Diophan-
tine conditions on λ, which require that for
positive constants τ and γ inequalities∣∣∣∣λ− e2π i pq

∣∣∣∣ ≥ γ
qτ
, (4)

hold true for all p ∈ Z and q ∈ N. The cor-
responding subset of λ’s in the complex unit
circle is both meagre and of full measure. This
solution was given by Siegel in 1942, compare
with [80]. In his 1969 thesis Bruno extend-
ed this sufficient condition in terms of the
decay rate of continued fractions; the latter
Bruno condition was proven also necessary
by Yoccoz [91], for which he received a 1994
Fields medal. This is a highly successful part
of mathematical research, that surely belongs
to Poincaré’s mathematical legacy.

Small divisors
In the conservative dynamics of classical me-
chanics, including celestial mechanics, small
divisor problems occur a lot. As in the
above example this phenomenon is related
to a dense set of resonances where a cer-
tain series is not even defined. The situ-
ation can be described as follows, for in-
stance by Moser [57]. In the n-dimensional
space of frequencies ω1,ω2, . . . ,ωn a reso-
nance occurs if for some integer vector k =

(k1, k2, . . . , kn) ∈ Zn \ {0} the relation

k1ω1 + k2ω2 + · · · + knωn = 0 (5)

holds. For fixed k equation (5) defines a
hyperplane in the frequency space and the
union of these planes over all k ∈ Zn \ {0}
forms the dense resonance web. Certain per-
turbation series of the form∑

k∈Zn\{0}

ck

k1ω1 + k2ω2 + · · · + knωn

· e2π i (k1x1+k2x2+···+knxn),

show up, where the constants ck ,k ∈ Zn a
priori only satisfy a certain decay condition
as |k| → ∞. As in Example 1 exclusion of the
resonances gives formal existence of the se-
ries, but convergence still is problematic due
to small divisors.

Poincaré recognised the problem that was
solved later by Kolmogorov [41–42] and many
others, see below. This problem concerns the
persistence of quasi-periodic motion as these
occur in simplified approximations in which,
e.g., uncoupled Keplerian motions show up.
This perturbation problem was at the heart of
the contest called by king Oscar II of Sweden.

Remarks.
− This history is world-famous, for a very

readable and historically detailed account
see June Barrow-Green [10]. Summarizing
we recall that Poincaré’s essay, although
containing a wealth of ideas, contained
one essential mistake, namely the claim
that the perturbation series do converge.

− Poincaré discovered (triggered by a query
of Phragmén) and repaired the mistake,
concluding that the series have to diverge
for a significant set of frequencies. Mittag-
Leffler let him use the prize money to
buy the volumes of the Acta Mathemati-
ca that were already published. His diver-
gence proof, published in the article [68] in
the same journal, uses geometric methods
that we will address now.

Tangle and divergence
The restricted planar three body (RPTB) prob-
lem ends up with a two-degrees-of-freedom
Hamiltonian system, which lives in a four-
dimensional state space. Then, restricting
to a three-dimensional energy hypersurface
we can consider a section (or slice) trans-
verse to the dynamics. Following the inte-
gral curves of the system in turn gives rise
to a two-dimensional Poincaré map, compare
the sketch in Figure 1 for some orbits. In the
present setting of classical mechanics such a
map preserves area. If the perturbation se-
ries at hand were convergent the orbits of this
map would nicely trace the integral curves of
a vector field. The presence of tangle how-
ever prevents this convergence, as Poincaré
himself concluded, compare with, e.g., Tak-
ens [84].

What then is tangle? To understand this
we recall that a hyperbolic fixed point p of a
map has both a stable manifold W s (p) and
an unstable manifold Wu(p), which in the
present planar case are smoothly immersed
curves. The points ofW s (p) converge top un-

Figure 1 Hetero- and homoclinic ‘tangle’ in the stable and
unstable manifolds of a periodic orbit, sketched for a pla-
nar iso-energetic Poincaré map as this occurs in a suitable
three-body problem.

der forward iteration and similarly the points
of Wu(p) by backward iteration. For two of
such saddle points p1 and p2 it may happen
that the intersectionWu(p1)∩W s (p2) is non-
empty. The intersection consists of point het-
eroclinic to p1 and p2. In the case where
p1 = p2 the intersection points are called ho-
moclinic (Poincaré himself speaks of double-
asymptotique [88]). For a vector field, by
uniqueness of solutions, this would imply co-
incidence of Wu(p1) with W s (p2). For a map
however, this intersection generically is trans-
verse, again see [19, 35, 74, 83]. In Figure 1
a sketchy impression is given of tangle, for a
realistic impression how the tangle explodes
near a saddle point see Figure 3 (right).

From that time on the mainly analytical in-
vestigation of dynamical systems has been
extended by considering the geometrical or-
ganisation of the entire state space (or phase
space). This involved the study of equilibria,
periodic solutions, invariant manifolds like
stable and unstable manifolds and invariant
tori. At the same time the mathematical as-
sertions became more qualitative.

Geometric ideas
We introduce a few geometric ideas and re-
sults introduced and obtained by Poincaré.
This includes the rotation number and the
Poincaré–Hopf index theory for equilibrium
points of vector fields in the two-dimensional
case; the higher dimensional case was added
later by Heinz Hopf. Also we deal with
the Poincaré–Birkhoff and the Poincaré–
Bendixson theory.

Rotation number of circle homeomorphisms
The rotation number for an orientation pre-
serving homeomorphism of the circleΦ : S1 →
S1, first considered in Poincaré [65], is defined
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as the average rotation

%(Φ) =
1

2πn
lim
n→∞

(Φ̃n(x)− x
)

mod Z,

where Φ̃ : R → R is a lift of Φ. This notion de-
pends neither on the point x ∈ S1 nor on the
choice of the lift Φ̃ and moreover is invariant
under topological conjugation.

Rationality or irrationality of the rotation
number. If Φ has a periodic orbit of (prime)
period q, then %(Φ) = p/q for some p co-
prime with q. Conversely %(Φ) is rational im-
plies that Φ has a periodic orbit. On the other
hand, if %(Φ) is irrational and Φ is of class
C2, then Φ is topologically conjugated to a
rigid rotation. These results go back to Den-
joy [21]. For details also see Devaney [22] and
Nitecki [59].

In the case where the rotation number is
Diophantine there exist smooth conjugations
with rigid rotations, compare with Example 1.
The perturbative version of this by now is a
standard result in Kolmogorov–Arnold–Moser
theory as described further on, but the non-
perturbative case certainly is not, see Her-
man [33–34].

The Poincaré–Birkhoff theorem on period-
ic orbits. The Poincaré–Birkhoff fixed point
theorem fits in the theory of area preserving
planar maps as met before, compare with the
settings of Figures 1 and 3. Consider such a
planar map Φ with two invariant circles with
rotation numbers %1 < %2, bounding an an-
nulus. The Poincaré–Birkhoff theorem then
asserts that for any rational number p/q with
%1 < p/q < %2 there exists a Φ-periodic orbit
of rotation number p/q. Also see the contri-
bution of Verhulst to this volume. For proofs
see Poincaré [72] and Birkhoff [12]. A simple
proof can be given in the case where Φ is a
perturbed twist-map, see Birkhoff [13]. See
Arnold et al. [5] and Moser [56] for presenta-
tions of this proof based on the implicit func-
tion theorem. For further developments we
refer to [31–32, 40].

Poincaré–Hopf index theory
This topic connects the possible dynamics of
any system to the global topology of the mani-
fold on which it is defined, see [65]. Consider
a vector field X on a closed surface M. If
p ∈ M is an isolated equilibrium point (also
called rest point or singularity) of X we can
define the index indpX by taking any small
simple curve t ∈ S1 7→ γ(t) ∈ M around
p and considering the well-defined direction

field 1/(|X(γ(t))|) · X(γ(t)). Here S1 denotes
the unit circle. This induces a map S1 → S1

and we define indpX as its winding number.

Remarks.
− Locally one can define the closed 1-form

d̄ϕ =
X2 dX1 −X1 dX2

X2
1 +X2

2
,

where

X(x1, x2) =X1(x1, x2)∂x1

+X2(x1, x2)∂x2 ;

in this case we can express indpX =
1

2π
∮
γ d̄ϕ , compare with [2, 51].

− This definition was generalized to higher
dimension by Heinz Hopf, using Brouwer’s
notion of degree, see [38].

There is an interesting connection with the
global topology of the surface, given by the
formula

∑
p

indpX = χ(M) ,

where χ(M) is the Euler-characteristic of M,
also compare with Lakatos [44]. One conse-
quence of this is the well-known ‘hairy ball’
theorem that any vector field X on the 2-
sphere M = S2 must have at least one sin-
gularity since χ(S2) = 2.

The Poincaré–Bendixson theorem
Another interesting result [65] concerns the
surfaces M = R2 or M = S2, dealing with the
possibilities of the asymptotic dynamics as
time goes to infinity. The corresponding set
is theω-limit set of a point p ∈ M given by

ω(p) = {y ∈ M | lim
j→∞

Φtj (p) = y

for a sequence {tj}∞j=1

with lim
j→∞

tj = ∞} .

The Poincaré–Bendixson theorem asserts
that on M = R2 or M = S2 the ω-limit sets
of vector fields with a finite number of equi-
libria can only be
− equilibria,
− limit cycles,
− or graphs of equilibrium points and their

stable and unstable manifolds,
see Poincaré [65] and Bendixson [11]. This
result often is used to prove the existence of
a (i.e., at least one) limit cycle in the absence

of any equilibria. Compare with Palis and De
Melo [61] or with Verhulst [87].

Multi- or quasi-periodicity
Multi-periodic and chaotic dynamics have ob-
tained a lot of interest in the second half of the
20th century, an interest that surely belongs
to the legacy of Poincaré. A central role was
played by Kolmogorov [41–42]. To explain this
we again address the stability of the solar sys-
tem, the prize essay question.

Integrable systems
Multi- or quasi-periodic dynamics were very
well-known from the completely integrable
systems of classical mechanics. In a Hamil-
tonian system with n degrees of freedom
an open and dense part of the entire state
space then is foliated by n-dimensional La-
grangian invariant tori. Examples are giv-
en by systems of uncoupled Keplerian mo-
tion. Locally an integrable system is de-
scribed by action-angle coordinates (I,ϕ) =

(I1, I2, . . . , In,ϕ1,ϕ2, . . . ,ϕn), in which the
symplectic form reads dI ∧ dϕ =

∑n
j=1 dIj ∧

dϕj . Compare with Arnold [3]. The La-
grangian tori are parametrized by I varying
over an open piece of Rn. (The entire union
of Lagrangian tori forms a bundle, for a nice
description see Duistermaat [23].)

The motion on such a torus Tn =

(R/2πZ)n then is generated by a constant
vector field

ϕ̇1 = ω1

ϕ̇2 = ω2

...

ϕ̇n = ωn ,

or ϕ̇ = ω for short, where ω = ω(I). Usually
such a motion is called conditionally periodic
or multi-periodic [3, 18]. Here the resonance
web (5) again plays a role. Indeed, in the com-
plement of the web any individual integral
curve densely fills the invariantn-torus that it
is part of. Usually this form of multi-periodic
is called quasi-periodic. Within the web the
n-tori are foliated by lower-dimensional in-
variant tori with similar dense orbits and at
n-fold resonance points the torus is foliated
by periodic orbits.

The matter of stability of the solar system
has boiled down to the question to what ex-
tent this geometric structure persists under
small perturbations that destroy the toroidal
symmetry. A simple-minded, yet significant,
setting of this problem runs as follows. A
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p
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D

Φn(D)

Figure 2 Two-dimensional diffeomorphism Φ with a sad-
dle point p and a transversal homoclinic intersection q.
The setD, homeomorphic to the unit square, by a well-
chosen iterate Φn coversD in a horseshoe-like way.

completely integrable approximate system is
formed by considering the Newtonian plane-
tary motion around the sun, neglecting the in-
teractions between the planets. This approx-
imation is formed by the uncoupled dynam-
ics on a number of Keplerian ellipses. One
first obstacle to prove stability for the full sys-
tem, i.e. including the interaction between
the planets, is formed by rather strong orbital
resonances that occur in the integrable ap-
proximation, which has led to a similar but
more sophisticated set-up.

Kolmogorov–Arnold–Moser theory
The persistence problem of tori in nearly inte-
grable Hamiltonian systems again has to deal
with small divisors, it is basically the same
problem that Poincaré faced in his [68–69],
also compare with [80]. We present the solu-
tion given by Kolmogorov [41–42].

Given suitable constants τ > n − 1 and
τ > 0, Diophantine non-resonance condi-
tions are introduced of the form

|〈k,ω〉| ≥ γ
|k|τ , (6)

for all k ∈ Z \ {0}, compare with (4). This de-
fines a closed, nowhere dense set of positive

-2
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x
Figure 3 Chaos in a model of the swing in a 1 : 2 resonance, e.g., see [18]. Left: Iterates of a Poincaré map (or stroboscopic
map) are shown. The invariant circles are within reach by KAM theory. The large cloud of points is part of one single ‘chaotic’
orbit, which is related to tangle and Smale horseshoes. Right: a few ‘switches’ of the tangling separatrices near the central,
unstable fixed point.

Lebesgue measure, tending to full measure
as γ ↓ 0. Moreover a non-degeneracy con-
dition — later named after Kolmogorov — is
introduced, requiring that the frequence map
I 7→ω(I) is a local diffeomorphism.

Kolmogorov’s theorem now roughly reads
as follows. Given Kolmogorov non-degeneracy,
for sufficiently small perturbations of the in-
tegrable system, the Diophantine tori are per-
sistent, their union forming a subset of the
state space having positive Liouville measure.

Remarks.
− Refinements and further proofs have been

added by Arnold [1] and Moser [54], also
see [5, 7] and [55–58], for which reason we
now speak of Kolmogorov–Arnold–Moser
(or KAM) theory. A similar result holds
when restricting to a fixed level of energy,
this is the iso-energetic KAM theorem.

− In fact the quasi-periodic motion on the
unperturbed and perturbed tori is smooth-
ly conjugated, where in the I-direction
smoothness has to be interpreted in the
sense of Whitney [89].

− The KAM theory extends to other classes
of systems, such as the general dissipa-
tive class, reversible or volume-preserving
systems, etc., see [55], for an overview and
many references see [16–17].

A second obstacle for proving the stabili-
ty of the solar system in this way, is formed
by the fact that the perturbations are far too
large for applications of KAM theory. Recently
rumours go that the inner solar system might
very well be chaotic, see Laskar et al. [43].
Based on an estimate of Lyapunov exponents
the first major disasters in this respect may
be expected on a time-scale of the order of

100 million years... This is relatively soon as
compared to the age of the solar system.

Tangle and the Smale horseshoe
Homoclinic tangle leads to chaos. This is
an anachronism, but the description that
Poincaré himself gives of Figure 1 explains
that he must have had an insight in the enor-
mous complexity of a generic area preserving
map ([69], Vol. III):

“Que l’on cherche à se représenter la fig-
ure formée par ces deux courbes [...] On sera
frappé de la complexité de cette figure, que je
ne cherche même pas à tracer. Rien n’est plus
propre à nous donner une idée de la com-
plication du problême des trois corps et, en
général, de tous les problèmes de dynamique
où il n’y a pas d’intégrale uniforme et où les
séries de Bohlin sont divergentes.”

In fact it is this complexity that prevents
the series from converging, compare with Tak-
ens [84]. Throughout the 20th century this
phenomenon recurred in various examples,
where several forms of symbolic dynamics
were introduced to describe this, starting with
Birkhoff [13] and Cartwright–Littlewood [20].
In the 1960s the topologist Smale [83] intro-
duced a universal model in the form of the
horseshoe map, see Figure 2. Often it takes
a sufficiently high iterate of the map to turn
heteroclinic points, e.g. as in Figure 1, in-
to homoclinic ones. This largely reduced the
problem to geometry and symbolic dynamics.
The presence of horseshoes already implies a
weak form of chaos, since the topological en-
tropy is non-zero [5, 49]. At the end of this
paper we will say more about chaos.

Invariant measures
The phase flow of an n degree-of-freedom
Hamiltonian system conserves the Liouville
volume, which is the nth wedge-power of the
symplectic form, compare with [3]. Similarly
the restriction of this flow to an energy hyper-
surface conserves the conditional (2n − 1)-
dimensional volume. The corresponding iso-
energetic Poincaré maps from Figures 1 and 3
inherit a natural area form.

One consequence of measure-preservation
is that no point attractors can occur. Below we
first discuss the Poincaré recurrence theorem
and next indicate a few links with statistical
mechanics, where also the subject of ergod-
icity will come to pass. An important part of
the current status quo in the area of dynami-
cal systems rests on these theories, compare
with Ruelle [75–76]. This part of Poincaré’s
legacy runs by Kolmogorov and Sinai [78].
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The Poincaré recurrence theorem
The Poincaré recurrence theorem stems from
[68], for the formulation below see also [3].
Let D be a set of bounded volume and con-
sider a mapΦ : D → D that preserves volume.
Then for any point x ∈ D and any neighbour-
hood U of x there exists a point y ∈ U such
that the iterate Φn(y) ∈ U for some n > 0. A
proof can be given as follows. In the infinite
sequence

U,Φ(U ),Φ2(U ), . . . ,

of sets all have the same volume. SinceD has
bounded volume, there must be some k ≥ 0

and ` ≥ 0 with k 6= `, say with k > `, such
that

Φk(U )∩ Φ`(U ) 6= ∅,

which implies that Φk−`(U ) ∩ U 6= ∅. From
this the assertion follows by taking n = k− `
and y ∈ Φk−`(U )∩U.

Repeating the argument with U replaced
by Φn1 (U ) with n1 = k − ` gives an infinite
sequence of instantsn1, n2, n3, . . . , for which
the iterate comes close to the initial point x.

Remarks.
− Periodic and quasi-periodic motions are

recurrent as well as are certain forms of
more complicated motions, like ergodic or
chaotic motions. See below.

− Recurrence times can be extremely long,
a great many orders of magnitude longer
than the age of the universe, also see [86].
Below we shall return to this.

Links with statistical mechanics
Boltzmann was a pioneer in statistical me-
chanics and thermodynamics [14], where he
introduced probability in many-particle sys-
tems that model gases and fluids. In the
ensuing thermodynamics macroscopic quan-
tities emerge like energy, temperature, pres-
sure, entropy, where the latter is a measure
for the disorder of the dynamics. The first law
of thermodynamics is conservation of ener-
gy, while the second concerns the increase
of entropy. The relation of the second law
with dynamics was puzzling. From the be-
ginning on a leading question has been to
what extent thermodynamics is compatible
with classical mechanics. Two themes play
a special role in this development, namely ir-
reversibility (leading to the well-known ‘arrow
of time’ [24]) and ergodicity.

Reversibility. In general classical mechan-
ics is invariant under time-reversal, while
thermodynamics is not as a consequence of
the second law. This controversy was al-
ready noted by Loschmidt [48], the so-called
‘Umkehreinwand’, for continuation of the dis-
cussion see Boltzmann [15]. The answer
to the problem lies in statistics: reversal is
possible, but highly improbable. (This al-
so ‘explains’ the extremely long recurrence
times noted before. For later considerations
see [45].) Zermelo [92] moreover observed
that Poincaré recurrence gives an explicit
obstruction to irreversibility; this is the so-
called ‘Wiederkehreinwand’. We now quote
Poincaré himself as follows [70], indicating
that he was not convinced by these applica-
tions of his recurrence theorem:

“Qu’une goutte de vin tombe dans un verre
d’eau; quelle que soit la loi du movement in-
terne du liquide, nous verrons bientôt se colo-
rer d’une teinte rosée uniforme et à partir de
ce moment on aura beau agiter le vase, le vin
et l’eau ne paraîtront plus pouvoir se séparer.
(...) Tout cela, Maxwell et Boltzmann l’ont ex-
pliqué, mais celui qui l’a vu plus nettement,
dans un livre trop peu lu parce qu’il est diffi-
cile à lire, c’est Gibbs dans ses principes de la
Mécanique Statistique.”

Ergodicity. Ergodicity of a particle system
also goes back to Boltzmann [14]. Heuristi-
cally it expresses that all possible states of
the system will be approximated from virtu-
ally any given initial state. A mathematical
characterisation is that a measure preserving
system with evolution Φt , t ∈ R, is ergodic
whenever no disjoint, Φ-invariant subsets A
and B of positive measure exist. This indeed
expresses that the dynamics of the (particle)
system is quite mixing. For stronger mixing
conditions also see the ensuing work on er-
godic theory of dynamical systems [5, 13, 49,
78].

In statistical mechanics often ergodicity is
assumed per hypothesis, restricting to an en-
ergy level set. The existence of further in-
tegrals, e.g., due to additional assumptions
like symmetry, would form an obstruction to
the ergodic hypothesis. It was already not-
ed early that stability of the solar system, in
the sense that integrals exist, would provide
a counterexample. Later it was proven that
generically in the dynamics of classical me-
chanics, apart from the energy, no further in-
tegrals occur [19, 74]. However by definition
near-integrability is a persistent property.

Kolmogorov [42] (we recall his 1954 clo-

Edward Norton Lorenz (1917–2008)

sing address of the IMC in the Amsterdam
Concertgebouw) noticed a far more serious
obstruction to the ergodic hypothesis when
initiating KAM theory, see above. Indeed, the
persistent occurrence of a union of invariant
quasi-periodic of positive measure per ener-
gy level [3] leads to a generic violation of er-
godic hypothesis in classical mechanics. It
seems, however, that this particular obstruc-
tion is diminishing when the number of de-
grees of freedom increases, e.g., see [39].

Remarks.
− As reported in [30] (a book review is con-

tained in this same volume) there was an
interaction between Postma and Poinca-
ré [71] on fluctuations in the entropy where
the notions ‘entropie grossière’ (or ‘coarse
grained entropy’) and ‘entropie fine’ play a
role. The former of these is related to the
modern concept of Markov partition [18,
40].

− It should be mentioned here that Ein-
stein’s paper [25] on Brownian motion

Figure 4 An enormous input to ‘chaos theory’ came from
fields like meteorology; here we see a hurricane.
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has a predecessor in Bachelier’s PhD
thesis [9], written under supervision of
Poincaré on an analogous piece of mathe-
matics, applied to financial problems.

− Regarding special relativity there is some
controversy on priorities between Lorentz
and Poincaré on the one hand, and Ein-
stein on the other. None other than Whit-
taker [90] attributes special relativity to
Lorentz and Poincaré. Also see [88].

Chaos
From the 1970s on the idea of chaos, as
a possible property of non-linear dynamical
systems that implies a fundamental unpre-
dictability of evolutions, became increasingly
important. Needless to say that the develop-
ment of this part of the theory also belongs
to the Poincaré legacy. In a further character-
ization of chaos an invariant measure comes
into play, for instance the measures related
to the Liouville volume as discussed before
and as these show up in conservative dy-
namics. In fact one characterisation then is
whether the system is ergodic with respect to
this. In Figure 3 (left) the large cloud is part of
one orbit and one long-standing conjecture is

that this orbit densely fills a set of positive
area on which the dynamics is ergodic [5].

Remarks.
− Also in the world of dissipative systems

chaos has become important. Triggered
by Lorenz’s ground-breaking paper [47], al-
so see Figure 4, and other examples, the
idea of strange attractor [77] came up on
which later on invariant measures were
constructed which led to ergodicity as a
characterization of chaos. One key notion
in this respect is the Sinai–Bowen–Ruelle
measure, for details see [17–18, 31–32, 40,
78–79].

− Related to this development dynamical
invariants were developed, like entropy
(both topological and metric i.e. measure
theoretical), Lyapunov exponents, etc.,
that also are important for application in
concrete models, also see [26, 60, 74, 87–
88].

Concluding remarks
Inevitably in a rather short paper like the
present one it is not possible to give a com-
plete description of Poincaré’s legacy in the

theory of dynamical systems. We have fo-
cused on the lines via Birkhoff, Kolmogorov,
Sinai and Arnold, for instance tacitly pass-
ing by the Russian schools of Lyapunov, Bo-
golyubov and Andronov. For supplementary
information the reader is referred to [27]. After
Siegel and Moser the emphasis on celestial
mechanics was also diverted to other fields.
Smale and Thom [83, 85], both Fields medal
winners on variations of the Poincaré conjec-
ture, introduced the concepts of transversal-
ity and genericity in the field of dynamical
systems. (The Poincaré conjecture is treated
elsewhere in this volume. The conjecture was
recently solved by the Russian mathematician
Perelman.) Among many other things they
had a profound influence on the systematic
study of singularity theory and bifurcations [6,
8, 85], for another link with chaos also see
Palis and Takens [62]. k
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Comptes Rendus 108 (1889), 21-24.
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