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Poincaré and Analysis Situs,
the beginning of algebraic topology

In 1895 Henri Poincaré published his topological work ‘Analysis Situs’. A new subdiscipline in
mathematics was born. Analysis Situs was an inspiration to new fields like algebraic topology,
Morse theory and cobordism. With use of today’s knowledge and notation, Dirk Siersma views
back to this historical work of Poincaré.

What was the impact of Poincaré on topology?
He introduced the concept of manifold in any
dimension and defined homologies and fun-
damental groups. This was the starting point
for the development of algebraic topology. Al-
though he discusses the general case, his
work is quite concrete. He works often with
examples and makes computations. This was
his way to get intuition. His topological work
‘Analysis Situs’ [5] appeared in 1895. Before,
in 1892 he had published a short (four pages)
announcement in Comptes Rendus [4].

Analysis Situs describes the relative posi-
tion between objects (points, lines, surfaces)
without bothering about their sizes.

Analysis Situs is written in an intuitive
style, which is quite different from the present
mathematical writing. It reads sometimes like
a novel. It is divided into 18 short chapters
and consists of 121 pages. Definitions and
theorems are not so often mentioned as such.
Poincaré is not always precise and at some
places there are gaps and mistakes. Due to
criticism of other researchers (e.g. Heegard)
he responded by adding supplements (all to-
gether five) during the period 1899–1904. In
the last (fifth) supplement he stated correctly
his question, which we call now the Poincaré
conjecture (which was proved by Perelman in
2003).

Analysis Situs and the supplements con-
tain (in a preliminary stage) many seeds for
further developments: algebraic topology,
Morse theory, topology of algebraic varieties
and cobordism. This article is not a historical
survey of Poincaré’s topological works. It re-
ports on my experiences while reading in his
work. At several places I will be anachronis-
tic and use some of today’s knowledge and
notations and view back to Poincaré’s work.

Several books have been written about
Poincaré’s topological work. We mention first
John Stillwell’s English translation [6] of Anal-
ysis Situs and the five supplements, which
appeared under the title Papers on Topology
[6]. As further reading I propose the article of
Sakaria [7] and the book of Scholz [8].

Why Analysis Situs?
How did Poincaré come to study analysis si-
tus? Most of his work was of a geometric
nature: differential equations (in his disser-
tation), dynamical systems and the theory of
automorphic functions. This last subject is
related to non-Euclidean geometry. In his
study of differential equations he was also
looking to more qualitative aspects. e.g. the
indices of zero’s of a vector field and more
global aspects of the theory. An example is
the index formula for vector fields: the sum of

the indices on a surface of genus p is equal
to 2− 2p. So it only depends on the ‘shape’
of the surface. Moreover he wanted to gen-
eralize this to higher dimensions. He saw a
need for extending the concept of connectivi-
ty (in the surface case related to the genus) to
higher dimensions.

He also looked at spaces of differential
equations on algebraic curves. Depending
on genus and branching order he constructed
an object, depending on many coordinates,
which he called multiplicité. In his theory
of automorphic functions he found in a simi-
lar way a multiplicité of Fuchsian groups with
fundamental region a surface of genus p and
given branching. Also in his work on double
integrals on C2 he entered the theory of sub-
manifolds of R4. At several places he talks
about the need of a ‘hypergeometrical lan-
guage’. In 1892 [4] it was so far that he an-
nounced Analysis Situs as new subdiscipline
in mathematics.

Manifolds
Before Poincaré the concept of (smooth) man-
ifold was already used in the two dimensional
case: classification of embedded surfaces in
R3 was carried out by Möbius in 1863. There
was also a description by identification and
by fundamental region. The notion of an
n-dimensional manifold was already around
and used by e.g. Betti.

Poincaré does not give an abstract defi-
nition of a manifold, but describes them by
constructions. See also Figure 1.
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The first construction was by a set of p
equations in Rn+p with Jacobian matrix of
maximal rank together with some inequali-
ties. This is nowadays called the submersion
condition.

With the second construction he could de-
scribe more complicated situations: by local
parametrizations; in modern language a local
embedding Rm → Rn. Poincaré relates the
first construction to the second by the implicit
function theorem. He also discusses the over-
lap between several local parametrizations,
as a chain (like in the case of analytic contin-
uation of complex functions) but without the
concept of atlas.

In chapter 10 he considered a third con-
struction Geometric Representation, where a
certain number (one or more) of polyhedra in
ordinary space are glued together by identify-
ing pairs of faces. (Of course the gluing has
to be done in such a way that the result is a
manifold!)

Main examples are cube manifolds, which
we will discuss later. Anyhow in the geomet-
ric representation Poincaré made most of his
computations.

The definitions also allowed manifolds
with boundaries, e.g. the solid torus, the n-
ball and the regions between two spheres.

Homologies and Betti numbers
Poincaré wanted to study the (higher) con-
nectedness of a manifold. For this he in-
troduced a calculus with submanifolds. He
wrote:

k1V1 + k2V2 ∼ k3V3 + k4V4, ki ∈ N,

when there exists a submanifold W with a
boundary, which is composed of ki copies of
closed submanifolds Vi (Figure 2 and 3). He

Figure 2 Homology on the torus

Figure 1 Three types of definition of a manifold

said: “Relations of these forms are called ho-
mologies.” And moreover: “Homologies can
be combined like ordinary equations.” He de-
fined the submanifolds V1, . . . , Vλ to be in-
dependent if they are not connected by any
homology with integral coefficients. He de-
fined the connectivity of V with respect to
manifolds of dimensionm as Pm, if there ex-
ist Pm − 1 closed submanifolds of dimension
m, which are linearly independent, but not
less. So we get a set of numbers P1, . . . , Pn
for each manifoldV of dimensionn. He called
this the sequence of Betti numbers. Note
that these Betti numbers are 1 higher than
today’s Betti numbers (which are the ranks
of homology groups). The Betti numbers
occur also in the last chapter, where he
generalized the Euler formula for surfaces to
manifolds.

To allow negative coefficients he used the

Figure 3 Betti numbers and homologies

concept of orientation (Klein, van Dyck) in re-
lation with the sign of Jacobian determinant
of transition maps in the second construction
of manifolds. This allowed him to write:

k1V1 + k2V2 + · · · + kλVλ ∼ 0, ki ∈ Z.

Although this is a linear combination of sub-
manifolds, Poincaré did not consider the
group theoretic aspects. He exploited the
idea of Betti to consider ‘taking-the-boundary’
in order to measure connectivity. This became
the main tool in geometric homology theories
and cobordism.

In Analysis Situs he did not consider tor-
sion. Poincaré allowed divisions: 4v1 ∼ 0

implies v1 ∼ 0. In modern language he
worked only with the free part of the homol-
ogy groups. He discussed torsion in the first
supplement (after criticism of Heegaard).
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Figure 4 Cell decomposition and its dual

Poincaré duality
In examples it turned out that Betti numbers
were symmetric around n

2 . This is the so-
called Poincaré duality, which is valid for ori-
ented closed manifolds. He gave in chapter 9
a sketch of the proof of Pk = Pn−k. The cen-
tral idea is to consider the intersection num-
ber of two (transversal) submanifolds of com-
plementary dimension. For each intersection
point this is the local intersection number +1

or −1, according to orientation of a system
of tangent vectors. He defined the global
intersection N(V,V ′) as the sum of the lo-
cal intersection numbers. He also claimed
the independence under homology relations.
It follows that for every n − k cycle C there
exists a closed k-dimensional submanifold
V such that N(V,C) 6= 0. This explained
the duality (anyhow for the free part of
homology).

The criticism of Heegard (who showed him
a counter example) was reason for him to de-
scribe in more detail the difference between
homology with division and homology with-
out division (including torsion). This was also
a reason to produce a new proof for the dual-
ity (in the first supplement), where he looked
to a decomposition into cells (homeomorphic
to the ball) together with a dual cell decom-
position (Figure 4).

The fundamental group
In chapter 12 Poincaré introduced the funda-
mental group. He knew from the theory of
Fuchsian groups already the relation between
closed curves on a surface and the substitu-
tions in a system of multivalued functions. In
the case of a 2-torus one can e.g. consider the
two angular coordinates (which are defined
local). See Figure 5. In fact ifφ is such a coor-
dinate its differential dφ is well defined and
it gives rise to a multivalued function on the
torus. The integral of dφ over a closed con-
tour gives a integer multiple of 2π . The use

of substitutions is quite typical for the peri-
od 1880–1920. It occurred also in systems of
solutions of differential equations, following
these solutions around different loops around
singularities.

In general a contour produces a substitu-
tion in a multivalued function and a compo-
sition of contours results in a composition of
substitutions. Multivalued functions can be
interpreted as univalued on a certain cover-
ing space of the manifold. Substitutions act
as deck transformations. In fact the ‘group
of substitutions’ is a holomorphic image of
the fundamental group. Be aware that no ab-
stract concept of group was known. A ‘group’
was always connected with an action.

Poincaré’s composition of closed curves
(contours) with common base point is not
commutative, but he used an additive no-
tation. A first definition of equivalent con-
tours (written as ≡) was close to the homol-
ogy relation. This definition was not com-
pletely clear and some corollaries were incor-
rect. He comes back to it in the fifth supple-

Figure 5 Angular coordinate as a multivalued function

Figure 6 The construction of a cube manifold

ment, where he used continuous homotopy
between contours in the modern sense of the
term.

He also made the difference clear between
homology (∼) and homotopy (≡). In homo-
topy:
− composition is not commutative
− all contours have the same base point
− nA ≡ 0 not necessarily implies A ≡ 0

(note that Poincaré did not consider tor-
sion in homology in 1895)
A next step (in chapter 13) was to describe

the fundamental group by generators and re-
lations. Generators are a finite number of
principal substitutions S1, . . . , Sp that corre-
spond to closed contoursC1, . . . , Cp such that
any other contour is equivalent to a combi-
nation of these fundamental contours in a
certain order. These fundamental contours
are not, in general, independent, and there
are certain relations between them which are
called fundamental equivalences. The funda-
mental equivalences enable us to know the
structure of the group.
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Examples: The cube manifolds
Poincaré studied the cube manifolds as an
important set of three-dimensional examples.

Consider the manifoldV as orbit space of a
group generated by the following three trans-
formations:

gi : R3 → R3 (i = 1,2,3)

defined by

g1(x,y, z) = (x + 1, y, z),

g2(x,y, z) = (x,y + 1, z),

g3(x,y, z) = (ax + by, cx + dy,z + 1),

where a,b, c, d are integers and ad−bc = 1.
The fundamental domain is a unit cube.

One identifies opposite faces by the follow-
ing maps: the identity for the x and y co-
ordinates and in the z direction a diffeomor-
phism, which is generated by a linear map
(Figure 6).

Vertical sections of the cube correspond to
tori. We can consider the cube manifold as a
torus bundle over a circle. Such a bundle has
a so-called monodromy. Cut the circle and
look to the induced (trivial) bundle over the
interval. The monodromy is the gluing map of
the tori above the two end points. For cube
manifolds the monodromy is generated by the
linear map.

Figure 7 A handle body of genus 2

Figure 8 The Poincaré sphere

Poincaré sphere: explicit computation
Start with a 3-ball. On its boundary S2 one chooses two pairs of discs (+A,−A) and (+B,−B).
Glue +A (which is shown as the outside region in Figure 8) with −A and glue +B with −B.
Call the new boundary contours δA and δB. The resulting 3-ball with two handles is the
handle body V1. Its boundaryW is a surface of genus 2.
Consider the contours:

C1 = δA, C2 = [connects +A and −A], C3 = δB, C4 = [connects +B and −B].

These four cycles are the fundamental 1-cycles of W , the fundamental group is free and
abelian and equal to the first homology group of W . The fundamental group of V1 is also
free and abelian, generated by C2 and C4 and equal to the first homology group of V1 (C1

and C3 are principal cycles).
Consider nextV2, another 3-ball with two handles. Glue now the two handle bodies together
such that the principal cycles of V1 are mapped to the cycles given by the unbroken and
dotted lines in the picture. In terms of the generators:

3C2 + C1 + C2 − C3 + C2 − C4 − C3 + 2C4,

−2C4 + C3 − C2 − C4 − C3 + 2C4 − C2

(additive notation, not commutative in the fundamental group).
First on the level of homologies he reduces by a detailed computation to two generators
with two relations:

3C2 + 2C4 ∼ 0,

−C4 − 2C2 ∼ 0.

This set of linear equations has determinant−1 and so the first Betti number is 1 and there
is no torsion. This space has the same homology invariants as the 3-sphere.
Next he shows (again explicit) that the fundamental group is non-zero; generated by C2 and
C4 with relations

−C2 + C4 − C2 + C4 ≡ 0, 5C2 ≡ 0, 3C4 ≡ 0.

This is the icosahedral group. It’s commutative image (the first homology group) is trivial.
So we have a homology 3-sphere with non-trivial fundamental group!

Poincaré used the cube model to give a pre-
sentation of the fundamental group. He start-
ed with the 1-skeleton of the cube and added
relations according to the two-dimensional
faces. Next he computed the Betti numbers
(P1 by abelinization and P2 by duality):

P1 = P2 = 2 in case (a− 1)(d− 1)− bc 6= 0,

P1 = P2 = 4 in casea = d = 1, b = c = 0,

P1 = P2 = 3 in other cases.

Finally he looked for conditions when two of
these fundamental groups are isomorphic. A
necessary condition is the conjugation of the
two groups. He concluded that there are
infinitely many different manifolds with the

same Betti numbers.

The Euler–Poincaré characteristic
Euler already showed the formula V −E + F =

2 for the number of vertices V , edges E
and faces F of a convex polyhedron in R3.
Poincaré generalized this in chapters 16–18
to arbitrary closed manifolds of any dimen-
sion p. Given a decomposition in polyhedral
cells he looked at the alternating sum of the
number of cells of dimension i (denoted by
αi):

N = αp −αp−1 · · · + (−1)pα0.

Next he showed thatN does not change under
subdivision. Assuming that polyhedral de-
compositions always exist and that it is pos-
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Figure 9 Spherical dodacahedron space

sible to pass to another by a sequence of sub-
divisions one gets that N does not depend
on the polyhedral decomposition. Moreover
he showed that N only depends on the Betti
numbers of the manifold, so is in fact a ho-
mology invariant. In modern language we call
the number N the Euler–Poincaré character-
istic χ. By duality χ = 0 for odd-dimensional
manifolds.

The Poincaré sphere
Poincaré asked in [4] the question: “Can two
manifolds have the same Betti numbers, but
different fundamental groups?” An interest-
ing test case for this is of course the 3-sphere.
In Supplement 2 (where he was already aware
of torsion) he even “confined himself by stat-
ing the following theorem the proof of which
will require further developments”:
Each polyhedron, which has all its Betti num-
bers equal to the Betti numbers of S3 and has
no torsion is homeomorphic to S3.

Later on in Supplement 5 he disproved this
statement via a manifold, which we call now
the Poincaré sphere.

He constructed this manifold as follows:
Consider two three-dimensional manifolds, in
fact handle bodies, with the same surface as
boundary and next glue these two together by
a diffeomorphism of the boundary.

Note that given any 3-manifold, there ex-
ist always a splitting into two such handle
bodies: a Heegard decomposition. Poincaré
studied these handle bodies (see Figure 7) in
detail and showed, that on each handle body
there exists a system of so-called principal
cycles. For computation of the fundamental
group (and homology) of the handle body one
can start with the presentation of the bound-
ary surface and add these principal cycles as
extra relations.

From a Heegard decomposition with sep-
arating surface of genus two Poincaré con-
structed his homology 3-sphere. See Figure 8.
By duality we only have to look to the funda-
mental group and 1-homologies. He showed
(see the explicit computation) that the fun-
damental group is the icosahedral group.
Its commutative image (the first homology
group) is trivial. So we have a homology 3-
sphere with non-trivial fundamental group!

Next he stated his question: “Is it possible
to have a 3-manifold with trivial fundamen-
tal group which is not diffeomorphic to the
3-sphere.” This became the famous Poincaré
conjecture (proved by Perelmann in 2003).

It is nowadays more common to describe
the Poincaré sphere by conjugating facets of
a regular dodecahedron. This space arises by
identifications opposite face with a twist of
π
5 . This was checked by Kneser [2] in 1929.

See Figure 9 taken from [9]; for details see its
page 224.

The Poincaré sphere appears also in the
theory of singular hypersurfaces in C3. It is
the intersection of a small 5-sphere around
the origin with this singular complex surface
x2 + y3 + z5 = 0. This type of intersection is

called a link of a singularity. Links ofxp+yq+

zr = 0 (p, q, and r pairwise relatively prime
positive integers) are known to be homology
spheres (named Brieskorn spheres).

Conclusion
In this article we could only describe a re-
stricted part of Analysis Situs and its supple-
ments. There are many aspects left, which
I have not touched. There is a discussion
about the triangulability of manifolds in Anal-
ysis Situs, which is continued in the supple-
ments. It took until 1934 that Cairns proved
in full rigour the statement that every differen-
tiable manifold has a polyhedral subdivision.
In supplement 3, 4 and 5 there is a descrip-
tion of the topology of algebraic surfaces in
C3. These are four-dimensional spaces. Here
one already can see the concepts of mon-
odromy and vanishing cycles, related to com-
plex Morse theory. This seems to be the be-
ginning of singularity theory. Another new
subject is the dynamic approach towards an
evolution of a manifold from a simpler one
(e.g. then-ball), by attaching a series of han-
dles. This is a beginning of Morse Theory.

Only a small part of Poincaré’s work was
devoted to topology. With Analysis Situs he
started this new subdicipline in mathemat-
ics. Successors of Poincaré were mostly out-
side France. We mention Brouwer (in Hol-
land), Heegard (in Denmark), Dehn en Hopf
(in Germany). The first textbooks appeared in
1930 (Topology by Letschetz [3]) and in 1934
(Lehrbuch der Topologie by Seiffert and Threll-
fall [9]). As Lefschetz wrote later: “Perhaps
no branch of mathematics did Poincaré lay
his stamp more indelibly than on topology.” I
refer to the book of Dieudonné [1] for the con-
tinuation of this field. There was a lot of work
left to make the theory completely rigorous;
but there were plenty of idea’s available for
future developments. k
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1 J. Dieudonné, A History of Algebraic and Differ-

ential Topology 1900–1960, Birkhäuser, 1989.

2 H. Kneser, Geschlossene Flächen in dreidi-
mensionale Mannigfaltigkeiten, Jahr. Deutsch.
Math.-Verein 38 (1929), pp. 248–260.

3 S. Lefschetz, Topology, Amer. Math. Soc. Coll.
Publ. No 12, Providence, RI, 1930.
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