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Poincaré and the idea
of a group

In many different fields of mathematics and physics Poincaré found many uses for the idea of
a group, but not for group theory. He used the idea in his work on automorphic functions, in
number theory, in his epistemology, Lie theory (on the so-called Campbell–Baker–Hausdorff
and Poincaré–Birkhoff–Witt theorems), in physics (where he introduced the Lorentz group),
in his study of the domains of complex functions of several variables, and in his pioneering
study of 3-manifolds. However, as a general rule, he seldom appealed to deep results in group
theory, and developed no more structural analysis of any group than was necessary to solve a
problem. It was usually enough for him that there is a group, or that there are different groups.
In this article Jeremy Gray gives a brief history on Poincaré’s group idea.

It is well-known that between 1880 and 1884
Poincaré brought together in a completely un-
expected way the subjects of complex func-
tion theory, linear differential equations, Rie-
mann surfaces, and non-Euclidean geome-
try (see, for example, [42] and [7]). Cauchy’s
approach to complex function theory and the
theory of differential equations were main-
stream topics in the education of a French
mathematician at the time, but Riemann sur-
faces were not, largely because Riemann’s
way of thinking was not congenial to Charles
Hermite, who dominated the scene in the
1870s.

In the spring of 1879 the Académie des Sci-
ences in Paris announced the topic of the
Grand prize for the mathematical sciences
(see C.R. Acad. Sci., 88, 1879, p. 511), which
was “to improve in some important way the
theory of linear differential equations in a
single independent variable”. The topic had
been proposed by Hermite, and his intention
was to draw young French mathematicians to
study the work of Lazarus Fuchs, who was

the German expert on the subject; in the af-
termath of the Franco-Prussian War catching
up with the Germans was on every patriotic
Frenchman’s mind.

Automorphic functions
In a series of papers in 1866 to 1868, starting
with [6], Fuchs had been able to characterise
a class of linear ordinary differential equa-
tions of arbitrary order that have the proper-
ty that their solutions are meromorphic and
have poles only where the coefficients of the
equation themselves have poles. Among this
class is the celebrated hypergeometric equa-
tion,

z(z − 1)
d2w
dz2 + (c − (a + b + 1)z)

dw
dz

− abw = 0
(1)

and we may confine our attention to it, al-
though by then Fuchs had moved on to study
other problems.

Poincaré took from the later work of Fuchs
the idea that the quotient of a basis of solu-
tions to equation (1) was an interesting ob-
ject. If the solutions are denoted w1(z) and
w2(z), and the quotient as ζ(z) = w1(z)

w2(z) , then
analytic continuation of the solutions around
a path enclosing a singular point returns the
quotient in the form

ζ(z) =
a11w1(z) + a12w2(z)
a21w1(z) + a22w2(z)

=
a11ζ(z) + a12

a21ζ(z) + a22
,

where the coefficients ajk are constants that
depend on the path. As this formula makes
clear, the ‘function’ ζ is a multi-valued func-
tion, but its set-theoretic inverse is a general-
isation of a periodic function:

z(ζ) = z
(
a11ζ + a12

a21ζ + a22

)
. (2)

Geometrically, the function ζ(z) maps the up-
per half-plane to a triangle, the vertices of
which are the images of the singular points
0,1,∞ on the real axis, and the angles of
which are determined by the coefficients
a,b, c of the hypergeometric equation. An-
alytic continuation shows that the lower half-
plane is mapped to another triangle (which
will be congruent if the coefficients are all
real) and thereafter the images of the half-
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planes form a net of triangles, provided the
angles are of the form π/n for some integers
n. Moreover, each triangle will have the same
three angles, although their sides will be cir-
cular arcs and not straight, and Poincaré in-
troduced a simple geometric transformation
to straighten them out. This much, but lit-
tle more, formed the content of the essay
Poincaré submitted for the prize in May 1880.
The extra concerned a discussion of the net
of triangles and made some corrections to
Fuchs’s papers. He showed, for example, that
if the angles of the triangles are π

2 , π3 and π
6 ,

then the net covers the plane, eight suitably
chosen triangles form a parallelogram, and
z = z(ζ) is an elliptic function; but if the an-
gles are π

4 and π
2 at the image of z = 0 and

z = 1 respectively and π
6 at ∞, then the net

lies inside a certain circle, and the sides of the
triangles are circular arcs meeting this circle
at right angles.

Fuchsian functions
Poincaré then wrote to Fuchs, and it became
obvious that he had a much clearer idea of
this net of triangles, which he was beginning
to think of as the domain of the inverse func-
tion z = ζ(z), than did Fuchs. The correspon-
dence was very amicable, all the same, and
on 12 June 1880 Poincaré wrote to Fuchs to
say: “I have found some remarkable proper-
ties of the functions you define, and which I
intend to publish. I ask your permission to
give them the name of Fuchsian functions.”
Fuchs, of course, agreed. (The correspon-
dence between Poincaré and Fuchs is repro-
duced in Poincaré’s, Oeuvres 11, pp. 13–25.)
But at this point Poincaré was in fact stuck
on the case of second-order linear differential
equations with no more than three singular
points. What happened next was recalled by
Poincaré twenty-eight years later when he ad-
dressed the Société de Psychologie in Paris
about his experience of mathematical discov-
ery. He explained in the lecture [39, Science et
Méthode, p.51] that one night coffee had kept
him awake, and ideas surged up in his mind,
eventually forming stable combinations until:
“In the morning I had established the exis-
tence of a class of Fuchsian functions, those
which are derived from the hypergeometric
series. I had only to write up the results,
which just took me a few hours.” He then fol-
lowed the analogy with elliptic functions and
created his thetafuchsian series. The restless
night could have been between 29 May and 12
June, when he discovered the Fuchsian func-
tions, or between 12 and 19 June 1880, by
which time he knew much more about them.

Next came the realisation that, more than
anything else in this part of his work, was
to make Poincaré’s name among mathemati-
cians [39, Science et Méthode, pp. 51–52],
when he realised, as he boarded a bus on a
geological expedition organized by the École
des Mines, that “the transformations I had
made use of to define the Fuchsian functions
were identical with those of non-Euclidean ge-
ometry”. If the bus trip took place before
the 12th the two breakthroughs happened
in a rush, which is not quite the impression
Poincaré’s account suggests, so perhaps it
happened between the 12th and the 19th.

The realisation on boarding the bus

Lazarus I. Fuchs (1833–1902)

was surely that his simple geometric trans-
formation converts the pictures of a net in-
side a disc made of triangles with circular-
arc sides into a net of triangles inside a disc
but with straight sides — and this is the non-
Euclidean disc of Beltrami. It follows that
the original net of triangles can be regard-
ed as made up of congruent copies of the
same triangle, where congruence is to be tak-
en with its non-Euclidean meaning. Now in-
stead of analytic continuation as the basic
mechanism, Poincaré had isometries to work
with. We do not know how Poincaré first
heard of non-Euclidean geometry, but Hoüel
had translated the original papers by Bolyai
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and Lobachevskii into French in the 1860s and
Helmholtz had also written on the subject.

On 28 June 1880 Poincaré sent a 70-page
supplement to his entry to the Académie des
Sciences. In it he regarded successive ana-
lytic continuations as rotations, denoted M
and N, of the basic triangle, and the role of
non-Euclidean geometry [42, p. 35]. Signif-
icantly, he defined the geometry through its
group, writing that “the group of operations
formed by means of M and N is isomorphic
to a group contained in the pseudogeomet-
ric group. To study the group of operations
formed by means ofM andN is therefore to do
the geometry of Lobachevskii”. He then de-
scribed the basic features of this convenient
language of non-Euclidean geometry, defin-
ing points, lines, angles, and equality of fig-
ures — two figures are equal if one is obtained
from another by a non-Euclidean transforma-
tion. Then he turned to the study of the Fuch-
sian functions, remarking that “the Fuchsian
function is to the geometry of Lobachevskii
what the doubly periodic function is to that
of Euclid”, but at this stage he was unable to
establish the convergence theorems for the
functions.

Poincaré was still able to work only with tri-
angles until at least 30 July, but at some date
in August he was rescued by his earlier work
on arithmetic. As he recalled in his lecture in
1908, [39, Science et Méthode, pp. 52–53],
while walking on the cliffs he realised that
“the arithmetical transformations of ternary
indefinite quadratic forms were identical with
those of non-Euclidean geometry." We shall
see below that ternary indefinite quadratic
forms (objects of the form x2 +y2 −z2) were
exactly what he had been studying in his pa-
pers on the consequences of Hermite’s num-
ber theory.

The uniformisation theorem
Poincaré now wrote another supplement to
his essay, describing the polygonal case, and
making progress with the convergence argu-
ments, and he followed it with a third sup-
plement before the competition closed. Even
so he did not win, the prize went to Georges
Halphen. But by 1881 he had a lot to pub-
lish, and as he began to do so more and more
ideas occurred to him. This work brought
him international attention of two very differ-
ent kinds. The young Swedish mathemati-
cian Gösta Mittag-Leffler was in the process
of setting up a new mathematical journal, to
be called Acta Mathematica, and he saw im-
mediately that Poincaré’s papers would es-
tablish his journal as one of international sig-

nificance. The young German mathematician
Felix Klein saw someone entering territory he
had staked out as his own, although he did
not perhaps foresee at first what a challenge
this might be.

Both men entered into a correspondence
with Poincaré. Mittag-Leffler got the long pa-
pers he wanted in which Poincaré set out
the theory of the new functions, and Klein
had to realise that the younger, less well-
educated Poincaré was moving faster than
he ever could. Their exchanges are both
scholarly and personal. Klein objected to
the name ‘Fuchsian’ for the new functions
on the grounds that some ideas of Schwarz
were much closer, and Poincaré agreed when
he got round to consulting Schwarz’s paper,
which he had not known. But he could not
agree to change the name, which he had al-
ready used in publications, and Klein railed
against this, doubtless because Fuchs, as a
Berlin-trained mathematician close to Weier-
strass and Kummer, was a rival likely to have
a better career than him but with less talent.
To shut him up Poincaré named the general-
isation of Fuchsian functions that require 3-
dimensional non-Euclidean geometry ‘Kleini-
an functions’. Klein protested, correctly, that
he had had nothing to do with these func-
tions and Schottky’s name would be more
appropriate; “Name ist Schall und Rauch”
Poincaré replied in German (“Name is sound
and fury”, the quotation comes from Gretchen
in Goethe’s Faust).

The correspondence was also a competi-
tion, and it was to cost Klein his health, but
not before both men had come to the deep-
est jewel in the field, what became known as
the uniformisation theorem. Klein took the
lead, because he knew Riemann’s theory of
the moduli of algebraic curves on Riemann
surfaces according to which a Riemann sur-
face of genus g > 1 depends on 3g − 3 com-
plex parameters. On the other hand, it was
possible to show that the non-Euclidean poly-
gons that are mapped around in the disc by
a Fuchsian group in such a way that the quo-
tient space is a Riemann surface of genus g
also depend on 3g − 3 complex parameters.
The implication was obvious: every Riemann
surface arises as a quotient of the disc with
its non-Euclidean metric under the action of
a Fuchsian group. Not only that, but locally
the map from the disc to the Riemann surface
will be an isometry, so all but the Riemann
surfaces of lowest genus locally carry non-
Euclidean geometry. (This copies the case of
elliptic functions, which are quotient spaces
of the Euclidean plane.) Klein’s formulation

of this result [14, 15] was perhaps sharper
than Poincaré’s, but neither man come close
to a proof; Poincaré’s account [24], gener-
alised to apply to the uniformisation of any
many-valued function (not necessarily alge-
braic), was particularly obscure. The topic
was made one of Hilbert’s problems in his
address at the Paris ICM in 1900 (see [13]),
and the first proofs were given independent-
ly by Koebe and Poincaré in 1907. (See [38]
and Koebe’s paper [16] and his many subse-
quent publications.) Poincaré’s many notes
and his long papers in Acta Mathematica ex-
ploited the analogy with elliptic functions. In
[22] he defined a Fuchsian group to be the
one associated to a polygon with angles of
the form π/n where n is an integer, which
identifies the edges of the polygon in pairs,
and where the edges are arcs of circles per-
pendicular to the boundary of a circle. In [23]
he turned to the task of defining automorphic
functions.

New functions (see [23]) were defined by
using sums of the form

F (z) =
∑
γ∈G

f (γz),

where the summation is taken over all the el-
ements of a Fuchsian group G. This would
ensure that the function F is G-invariant, but
first Poincaré had to confront several prob-
lems: the sums had to be convergent, and
it was to turn out that non-trivial examples
could converge to the zero function. To work
round this problem he generalised the idea of
theta functions, and introduced functions of
the form

θ
(
az + b
cz + d

)
= θ(z)(cz + d)m,

(
a b
c d

)
∈ G,

where m is an integer. He established con-
vergence form > 2 by an ingenious argument
mixing Euclidean and non-Euclidean geome-
try, and showed that products of quotients
of these ‘thetafuchsian’ functions were Fuch-
sian functions. He then showed that the in-
verse of a Fuchsian function is a quotient of
two functions that satisfy a second-order lin-
ear differential equation that was intimately
connected to the polygon.

What is very striking is that Poincaré of-
fered a very general theory, with a small num-
ber of examples to illustrate how local difficul-
ties can be tackled. He did not offer a detailed
presentation of Fuchsian groups; if a reader
wanted to know what Fuchsian groups were



4 4

4 4
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like and if in particular there were any well-
known examples in the literature the best that
could be said is that Poincaré left the field
wide open. This is another way in which he
resembled Riemann, and it was to be the pat-
tern throughout his work in mathematics.

Epistemology
In 1891 Poincaré wrote the first of the many
popular essays, [27], that were to keep him
before a large audience thereafter. He had
become famous in 1889 for winning the prize
competition organised by King Oscar II of Swe-
den for his essay, [26], on the stability of the
solar system. (For a rich history of this event,
see [2].) The success also saw him appointed
a Knight of the Legion d’Honnneur, and after
a short essay on what he had done on ce-
lestial mechanics the next popular essay was
a rather cryptic account of geometry. Here
again it became clear that he put the group
ahead of the space, or, as he preferred to say,
the form ahead of the matter. This made him
a person with an eagerly sought-after opinion
on the burning question of the day: Is space
Euclidean or non-Euclidean? His surprising
answer was that one could never tell. In his
view both geometries were consistent, and
he set out a dictionary of terms for translating
from one geometry to the other. This showed
that any contradiction in one geometry would
provide a contradiction in the other, and so
the two were relatively consistent (he admit-
ted this did not establish the consistency of
either but said he had some ideas of how this
could be done).

He asked his readers to imagine some ex-
periment in which a seemingly decisive result
had been obtained, for example the construc-
tion of a figure with light rays marking out four
equal sides meeting at four equal angles for
which the sum of the angles was less than 2π .
This would seem to suggest that space was
non-Euclidean, but, said, Poincaré, there is
another interpretation, which was that space
was Euclidean and light rays were curved.
There could be no way of deciding logically
between these two interpretations, and all we
could do would be to settle for the geometry
we found most convenient, which, indeed, he
said would be the Euclidean one. His reasons
were, however, unexpected, and will be con-
sidered shortly.

Not long after this, Poincaré was drawn in-
to a long dispute with Russell, who began with
the intention of establishing on Kantian lines
that we must be able to form some idea of
geometry, else we could not have a concept
of space, and that, furthermore, that concept

of geometry was necessarily projective geom-
etry. Once this was established, Russell then
sought to graft a concept of distance onto this
framework, but he did not assume that space
was Euclidean (see [44] and [45]).

Poincaré, in his [30], had little trouble de-
molishing the clumsy presentation of projec-
tive geometry that Russell offered, and Rus-
sell endeared himself to Poincaré by his will-
ingness to concede his errors in print (this
ability was to remain a charming feature of all
Russell’s philosophical investigations). But
the further the debate went on the clearer it
became that the two had fundamentally dif-
ferent starting points. To Russell it was clear
“before we begin”, as he put it, that the dis-
tance from London to Paris is greater than a
millimetre. But to Poincaré this was not how
one could begin.

The best account he gave of his philoso-
phy he published in an English translation in
the Monist [29] in 1898. He began by rais-
ing the fundamental question of how we con-
struct a sense of space around us at all. This
was much discussed by psychologists at the
time, and Poincaré observed that we can con-
struct many spaces. A single motionless eye
would construct a two-dimensional projective
geometry with no sense of distance. A pair of
eyes could construct a sense of depth. We
have our sense of touch, and we could con-
struct a high-dimensional space by recording
the muscular sensations needed to put the
tip of a finger somewhere. Out of this welter
of experiences and before we are capable of
formal instruction, we all construct a sense of
three-dimensional space occupied by some
bodies with predictable behaviour. These are
the rigid bodies, and they are singled out by
the fact that we can compensate for the mo-
tion of a rigid body by a motion of our own.
We can, for example, distinguish the motion
of a glass from the motion of the wine swirling
around in it. So, he argued, we build up in our
minds a sense of what rigid bodies are, and
are able to handle them hypothetically. This
mental construction gives us our idea of the
isometries of a hypothetical rigid body, and
from this we construct our concept of space
– notice that rigid bodies and their motions
came first in this analysis. The concept of dis-
tance is derived from the behaviour of rigid
bodies, which is why on this account Poincaré
could dispute Russell’s claim about London,
Paris, and the millimetre. For Poincaré the
claim is true not because we know what dis-
tance in space is, but because we know what
isometries are. This knowledge is innate, it
has evolved with the human species, and it is

triggered by the experiences of every sentient
infant.

For Poincaré it is only via the introduction
of the group that the non-measurable ‘space’
of Helmholtz and Lie becomes a measurable
magnitude “that is to say, a veritable space”.
Therefore [29, Sections 21 and 22]:

“What we call a geometry is nothing but
the formal properties of a certain continuous
group . . . so that we may say, space is a group.
But the assertion is no less true of the notion
of many other continuous groups; for exam-
ple, that which corresponds to the geometry
of Lobachevskii. There are, accordingly, sev-
eral geometries possible, and it remains to be
seen how a choice is made between them.”

Poincaré was adamant that different crea-
tures, with a different history, might be non-
Euclidean in the sense that their brains would
find non-Euclidean geometry convenient. If
we met such creatures, we would not share
their sense of what is easy of natural, nor
would they share ours, but neither side would
be able to trap the other in a contradiction.
Where we and they would differ would be
in our innate understandings of rigid bodies,
and we would be the ones whose brains ap-
preciated that the translations in the group
of isometries formed a normal subgroup, a
statement that is false in the group of non-
Euclidean isometries.

This is fundamental epistemology (and
quite different from his other convention-
alisms). It accounts for the one wry observa-
tion Poincaré had on Hilbert’s foundations of
geometry as they were set out in his Grundla-
gen der Geometrie [12], in 1899. Hilbert gave
a purely axiomatic formulation, with no pre-
tence to being an account of how we can have
knowledge of the external world, and when
Poincaré reviewed them he commented [33,
p. 272] that:

“The objects which he calls points, straight
lines, or planes become thus purely logical
entities which it is impossible to represent to
ourselves. We should not know how to pic-
ture them as sensory images . . . Each of his
geometries is still the study of a group. The
logical point of view alone appears to interest
him. With the foundation of the first propo-
sition, with its psychological origin, he does
not concern himself. His work is then incom-
plete; but this is not a criticism . . . Incomplete
one must indeed resign one’s self to be.”

Groups in number theory
When Poincaré began to publish in 1880 it
was not only on linear differential equations
in the complex domain (as discussed above)
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and on the curves defined by real differen-
tial equations, but on the number theory of
forms in several variables, as well as some
other papers on number theory, and the sub-
ject remained a lifelong interest of his. His
second paper, [21], picked up on a remark of
Hermite’s that there is a group of transforma-
tions mapping an indefinite ternary quadratic
form to itself. Poincaré showed how these
transformations can be regarded as isome-
tries of the non-Euclidean disc, and then how
this illuminates the reduction of these forms
to canonical form.

The most significant of Poincaré’s papers
on number theory were on Fuchsian functions
and arithmetic, and grew out of his previous
work on ternary forms. In [25] he observed
that the linear transformations that map the
ternary quadratic form Φ = y2 − xz to itself
have an eigenvalue +1 or −1, and those with
eigenvalue +1 can all be written in the form

 δ2 −δγ γ2

−2δβ αδ + βγ −2αγ
β2 −αβ α2



where α,β, γ, δ are four arbitrary quantities
such that (αδ−βγ)2 = 1. Poincaré restricted
his attention to the case when they are all
real and moreover αδ − βγ = 1. Moreover,
the groups of Fuchsian transformations

z 7→ αz + β
γz + δ

,

and of 3 by 3 matrices defined above are iso-
morphic.

If, however, T is a linear transformation of
the variables x,y, z that does not map the
form Φ to itself, then the new form, which
Poincaré denoted F = ΦT , that is mapped
to itself by all the transformations of the
form Σ = T−1ST , and so the group of self-
transformations of F and of Φ are isomorphic
(indeed, conjugate).

On the further assumption that the coef-
ficients of the form F are integers and that
the coefficients of the self-transformations
of F are likewise integers, number theorists
such as Hermite had already been led, he re-
marked, to interesting discontinuous groups.
Poincaré had earlier called the correspond-
ing Fuchsian functions ‘arithmetic Fuchsian
functions’, and he now proposed to show that
these functions satisfied a theorem general-
ising the addition theorem for elliptic func-
tions, which more general Fuchsian functions
do not.

To establish this result, Poincaré exam-
ined the Fuchsian groups that are associat-
ed to different (ternary quadratic) forms, and
divided them into four families according as
they have no elliptic or parabolic elements,
elliptic but no parabolic elements, parabolic
but no elliptic elements, or both elliptic and
parabolic elements. He showed that it was
always possible to determine which of these
four cases any given ternary form belonged
to. He then looked at the geometry of the cor-
responding Fuchsian polygon — the number
of its sides, the size of its angles, whether
the vertices lie inside or on the boundary of
the non-Euclidean disc — and showed that in
each case this information was determined by
the quadratic form.

After a consideration of the geometry of the
Fuchsian polygons and its connection to the
arithmetic properties of the form F , Poincaré
turned to the classical example of the modu-
lar function J(z), which is invariant under the
group PSL(2,Z). The transformation S giv-
en by z 7→ z/n is not in this group, and the
relationship between J(z) and J(z/n) is gov-
erned by the celebrated modular equation.
Poincaré noted that the groups Γ and S−1ΓS
are what he called commensurable, that is to
say their intersection is of finite index in each
of them. Indeed, the elements of S−1ΓS are
of the form

z 7→ αz + β/n
γnz + δ

,

whereα,β, γ, δ are integers andαδ−βγ = 1.
The required subgroup of Γ and S−1ΓS con-
sisted of elements of the form

z 7→ αz + β
γz + δ

where γ ≡ 0 modn. A repeat of the same
argument showed that J(z) and J(pz/n) are
algebraically related, and more generally that
J(z) and J

(
αz+β
γz+δ

)
are algebraically related.

To generalise the modular function, Poin-
caré returned to the three groups that map a
given ternary form to itself: those where the
corresponding matrices have real, rational,
or integer coefficients. Each of these group
gives rise to a corresponding Fuchsian group;
when the coefficients are integers Poincaré
called the corresponding Fuchsian group the
principal group. When, however, one starts
from the group of matrices with rational co-
efficients that preserved a given form, the
corresponding Fuchsian group is not discon-
tinuous, and Poincaré chose an element S

in it with rational, non-integral coefficients.
This element gave rise to a Fuchsian transfor-
mation s that was not in the principal Fuch-
sian group, and by his earlier results this
means that a Fuchsian function for the princi-
pal group is algebraically related to its trans-
form by s. Poincaré continued on this theme
in [35], which he extended and corrected in
[41] (as a footnote observes, Poincaré posted
this paper 7 July 1912, the day he went in to
hospital for his fatal operation).

Poincaré and Lie theory
Helmholtz was the first person to draw at-
tention to the importance of rigid-body mo-
tions in geometry, and there is no doubt that
his ideas influenced Poincaré. But his inves-
tigation of the nature of the corresponding
groups, the types of elements they could pos-
sess, and the number of points of space that
could be fixed before the group element was
also fixed was not mathematically rigorous,
and Felix Klein asked Sophus Lie to improve
it, which he did in the third volume of his The-
orie der Transformationsgruppen, 1893. This,
and all of his other investigations, impressed
Poincaré, who had a high opinion of Lie and
assisted in the effort to send promising stu-
dents to work with him so that his ideas could
be written up. But Poincaré did not work on
Lie’s ideas himself until after Lie’s death in
1899. What he then did has remained ob-
scure and unappreciated until the work of
Schmid [46] in 1982, Grivel [9] in 2006, and
most recently Achilles and Bonfiglio [1], and
can only be briefly noted here. (See these
authors for references to the original papers.)

Lie’s third fundamental theorem
For Lie, a transformation from a space to itself
was typically given by an expression of the
formy = f (x,a1, . . . , an), wherex andy be-
long to the space and the a’s are parameters.
For example, the rotation of a sphere about a
fixed axis defines a transformation with the
angle of the rotation as the single parameter
a. Composition of transformations Lie pre-
sumed produced a third transformation of the
same type,

f (f (x,a1, . . . , an), b1, . . . , bn)

= f (x, c1, . . . , cn)
(3)

where the values of the parameters c are de-
termined by the values of thea’s andb’s. The
composition is valid for rotations of a sphere
about an axis, and any pair of parameters de-
termine a third, but in general this is false.



6 6

6 6
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Sophus Lie (1842-1899)

When it is valid Lie said the transforma-
tions formed a group (the modern term is a
group germ). Lie did not demand inverses,
nor indeed did he specify that there be an
identity transformation of this form.

Lie considered the transformations ob-
tained as the parameters vary by an arbitrar-
ily small amount. He often thought of an in-
finitesimal transformation of this kind as a
directional derivative, and wrote it in in the
formy = x+tξ(x), where t is arbitrarily small
and ξ depends on the parameters a. For, any
smooth function ϕ of the x’s, now regarded
as k-tuples x1, . . . , xk, can be given a Taylor
series expansion

ϕ(y1, . . . , yk) = ϕ(x1, . . . , xk)

+ t
(
ξ1
∂ϕ
∂x1

+ · · · + ξk
∂ϕ
∂xk

)
.

Lie denoted ξ1
∂
∂x1

+ · · · + ξk ∂
∂xk

by X; he
called X an infinitesimal operator, and wrote

ϕ(y1, . . . , yk) = 1 + tXϕ(x1, . . . , xk).

These infinitesimal operators combine ac-
cording to rules already studied by Poisson
and Jacobi. The composition of two infinitesi-
mal operatorsXj andXk corresponding to the
same group germ, written [Xj , Xk], is given by
an expression of the form

[Xj , Xk] =
∑
l
cjklXl, (4)

where the cjkl are constants and the Xl run
through a basis for the infinitesimal operators
corresponding to the same group germ. Lie
claimed the converse, that given partial dif-
ferential operatorsX1, . . . , Xn for which equa-
tion (4) holds and for which the constants cjkl
must satisfy some trivial identities, there are
transformations (3) which have theXj as their
infinitesimal counterparts and a rule for de-
termining the c1, . . . , cn as functions of the
a1, . . . , an, and b1, . . . , bn, such that equa-
tion (3) holds. It is this converse, known as
Lie’s third fundamental theorem, that attract-
ed the most interest. In more modern lan-
guage, it concerns the exponential map from
a Lie algebra of a Lie group to the correspond-
ing group. It asks: Given X,Y ∈ g, find Z
such that exp(X). exp(Y ) = exp(Z).

As the above authors show, Lie himself
had offered two proofs of his third fundamen-
tal theorem, one in the special case when
the group has no centre, and one in the
language of differential equations. In 1890
Friedrich Schur had given a different proof,
which showed that the way the c’s depended
on the a’s and b’s was determined by an infi-
nite series of a universal form (independent of
the parameters) in which the coefficients were
polynomial functions of the a’s and b’s. In
1901 the Oxford mathematician John Edward
Campbell addressed the question in its expo-
nential form directly, and dealt successfully
with the formal, algebraic side of the problem
but did not deal with the convergence of the
power series he exhibited.

Convergence of the power series
In [31] and [32] Poincaré offered his proof, as
part of a volume celebrating the work of Sir
George Stokes, only to find that his work was
very close to that of Campbell and Schur, al-
though he hoped that his ideas had enough in
them still to merit publication. He claimed to
have reduced the problem to the solution of
simple differential equations, a process that
could, he said, be carried out in finite terms.
His argument is too long and technical to de-
scribe here, but unlike Campbell he did tackle
the convergence of the power series, making
an ingenious use of the residue calculus of
complex function theory. He otherwise ad-
hered to a purely formal point of view, ab-
stracting, as he put it, completely from the
‘matter’ of the group, the same phrase he
had used earlier in discussing how we use

our innate concept of a group to construct
space in his [29], and found formulae appli-
cable to all isomorphic groups. These formu-
lae gave relations between the parameters in
the transformations from which he could con-
struct a group isomorphic to the one he was
studying, and so establish Lie’s third theo-
rem. The same question was then tackled
by Felix Hausdorff [11], who noted the exis-
tence of a more recent paper by Baker written
when he was finishing his own. Hausdorff
gave an account that he regarded as a consid-
erable simplification of Poincaré’s, as it is, al-
gebraically (convergence is established much
as Poincaré had done). Hausdorff’s account
met with approval of Bourbaki (see [3]), and
that is one reason the result is today known
as the Campbell–Baker–Hausdorff formula.

Poincaré–Birkhoff–Witt theorem
The other major result in this area to which
Poincaré contributed has been known since
Cartan and Eilenberg’s [5] as the Poincaré–
Birkhoff–Witt theorem. Ton-That and Tran, in
their thorough account of the history of this
theorem [47], concluded that: “But by a care-
ful analysis of Poincaré [31] one must con-
clude without a shade of doubt that Poincaré
had discovered the concept of the universal
algebra of a Lie algebra and gave a complete
and rigorous proof of the so-called Birkhoff–
Witt theorem.” Poincaré again displayed his
liking for form over matter in proving this re-
sult, which is a major result about the struc-
ture of a Lie algebra. (See [47] for a thorough
account of Poincaré’s work and the convolut-
ed history of the names for this theorem.)

It is only possible to be brief here
about what Poincaré accomplished. Given
a finite-dimensional family of vector fields
X1, X2, . . . , Xn or infinitesimal transforma-
tions with a multiplication, so

[Xj , Xk] =
∑
l
cjklXl,

where the so-called structure constants cjkl
satisfy certain identities that follow from the
properties the multiplication, Poincaré drew
attention to the largest algebra one can use-
fully construct from these symbols. He
formed equivalence classes of these rela-
tions, and showed that the set of equivalence
classes is the universal enveloping algebra of
L. He then gave a detailed analysis if the best
form for the representatives of each equiva-
lence class, which was highly symmetrical;
the modern statement of this result is the
Poincaré–Birkhoff–Witt theorem. It implies
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that there is a canonical injective map from L
to its universal enveloping algebra, and there-
fore any Lie algebra over a field is isomorphic
to a Lie subalgebra of an associative algebra
and some problems about Lie algebras can
be transferred to problems about associative
algebras.

Poincaré’s Lorentz group
Lorentz, in his Electromagnetic Phenomena
[19] had discussed the failure of attempts to
detect the motion of the Earth relative to the
ether that could have detected effects of the
order of v

2

c2 . He explained this null result by
the hypothesis of a contraction later named
after him, on supposing that bodies contract
in the direction of motion of the Earth, thus
making any attempt to detect motion relative
to the ether impossible. Poincaré, in his short
note [34] said that this was so important that
he had been inspired to take up the question,
and had been able to come to results that
agreed in all important respects with those of
Lorentz, although he wished to modify and
complete them in some respects.

Poincaré did not respond to Lorentz’s argu-
ments, but took from him the observation that
the equations of the electro-magnetic field
were unaltered by transformations of the form

x′ = kl(x + εt), y′ = ly, z′ = lz,

t′ = kl(t + εx),

where x,y, z are the coordinates and t the
time before the transformation and x′, y′, z′

and t′ afterwards. Furthermore, ε is a con-
stant that depends on the transformation,
and k = 1/

√
1− ε2. Poincaré insisted that

these transformations must form a group, and
deduced from this that l = 1, a conclusion,
he observed, that Lorentz had reached in an-
other way. Poincaré’s argument relied on
the fundamental principle of relativity: two
observers in constant relative velocity must
make measurements that differ in a way that
only takes note of their different situations
(positions and velocities). Poincaré had first
explained this argument to Lorentz in a let-
ter in 1904–1905 (see Miller [20, p. 81] for a
facsimile of the letter).

The postulate of relativity
In his long paper [36] Poincaré set forth a
more elaborate position. He raised the im-
possibility of detecting motion with respect
to the ether to the status of a law of nature
and dignified it with the name of the postu-
late of relativity. He agreed that Lorentz trans-

formations do imply the postulate of relativi-
ty, but now the new Lorentz contraction must
be explained, and the deep problem, said
Poincaré, was not that of explaining some-
thing, but knowing what has to be explained.
The speed of light, said Poincaré, appears in
many branches of physics, each time with the
same size, if we admit the principle of relativ-
ity. This might be because everything in the
world is electro-magnetic in origin — a grand
claim much discussed at the time — or simply
from the way we measure everything, which is
based on the assumption that two lengths are
equal if it takes light the same time to traverse
them. That said, Poincaré also apologised
for bringing forward partial results at a time
when the whole theory might be in danger
from fresh discoveries in the study of cathode
rays (i.e., fast-moving electrons).

To study the effect of a Lorentz trans-
formation on electro-magnetic phenomena,
Poincaré wrote Maxwell’s equations in the po-
tential form, and in units in which c = 1. He
then observed (see [36, p. 499]) that if in one
frame the equation of a moving sphere is

(x − ξt)2 + (y − ηt)2 + (z − ζt)2 = r2,

then the equation in transformed coordinates
described a moving ellipsoid, the shape of
which depends on the velocity of the sphere.
He next obtained the components of the elec-
tric and magnetic fields in the new coordi-
nate frame, noting that his results agreed with
those of Lorentz, and observed that Maxwell’s
equations were still satisfied. He also wrote
down the new addition law for velocities [36,
p. 500]: if two electrons have velocities ξ and
ξ′ relative to an observer, one has a velocity of
ξ+ξ′

1+ξξ′ relative to the other. Finally he returned
to the problem of the shape of a moving elec-
tron and the stresses required to ensure that
the electron is in equilibrium. (See [20, p. 55
et seq.] for a discussion of this.)

Poincaré then re-obtained the invariance
of Maxwell’s equations under Lorentz trans-
formations, and in Section 4 of his paper
Poincaré showed that the Lorentz transforma-
tions form a group provided that l = 1. His
argument is notable for using Lie’s method of
infinitesimal generators. Poincaré began by
considering transformations of the form

x′ = kl(x + εt), y′ = ly, z′ = lz,

t′ = kl(t + εx),
(5)

where k−2 = 1− ε2. He wrote down the com-
position law, and then found the infinitesi-

mal transformations that generate the group.
He argued that when l = 1 and ε is infinitely
small, there is a transformation, T1,

δx = εt, δy = 0 = δz, δt = εx,

which can be written in Lie’s fashion as

T1 = t
∂ϕ
∂x

+ x
∂ϕ
∂t
.

There are analogous transformations T2 and
T3 found by replacing x with y and z respec-
tively. Poincaré also defined the transforma-
tion found T0 by setting ε = 0 and l = 1 + δl,
when

δx = xδl, δy = yδl, δz = zδl, δt = tδl,

so

T0 = x
∂ϕ
∂x

+y
∂ϕ
∂y

+ z
∂ϕ
∂z

+ t
∂ϕ
∂t
.

These infinitesimal generators give rise to
transformations that can all be written as
composites of transformations of the form

x′ = lx, y′ = ly, z′ = lz, t′ = lt,

and those that preserve the quadratic form
x2+y2+z2−t2. Poincaré now stipulated that
these transformations form a group, in which
l is a function of ε. The transformation that
consists of a rotation of π around the y-axis
forces equation (5) to imply that l(ε) = l(−ε).
But this transformation is its own inverse, and
so l = 1

l , and so l = 1.
In Sections 7 and 8 Poincaré showed that

Lorentz’s hypothesis was the only one com-
patible with the impossibility of detecting ab-
solute motion, but he gave a different rea-
son, true to lifelong emphasis on the idea
of a group: the Lorentz transformations must
form a group and therefore necessarily l = 1.
This left the possibility of detecting absolute
motion to those phenomena that were not
of electro-magnetic origin, such as gravita-
tion. In [18] Lorentz had argued that gravita-
tion behaved under Lorentz transformations
as the electro-magnetic forces do. To anal-
yse this idea, Poincaré considered the effect
of a Lorentz transformation on any function
of time, position, and velocity such as would
arise in any analysis of time, under the extra
assumptions that any suitable law of attrac-
tion would reduce to Newton’s law for bodies
at rest, and would not disagree with astro-
nomical observations of slowly moving ob-
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jects. He found that if speeds faster than
light are allowed, then time can pass nega-
tively, and when he excluded this possibility
he was left with the proposition that gravity
would travel at the same speed as light, but
he concluded that further investigations were
called for.

Space and time
The most surprising consequence of this work
is that it did not open the way for Poincaré
to embrace space-time. In his opinion in
1912 [40, see Dernières pensées 108] what
changed with the work of Lorentz was that
there were now two principles that could
serve to define space: the old one involv-
ing rigid bodies, and a new one to do with
the transformations that do not alter our dif-
ferential equations. The first one had been
a fundamental epistemological principle for
Poincaré, but the new one is an experimental
truth. Poincaré had always insisted that ge-
ometry belonged to mathematics, and could
not be subject to revision by experimenters,
and so physical relativity must become a con-
vention, but whereas our conventional knowl-
edge of geometry had formerly been root-
ed in the group of Euclidean isometries, it
could now be rooted in the Lorentz group.
The Lorentz group would guarantee our equa-
tions, at the price of placing us in a four-
dimensional space. In an unmistakable ref-
erence to the ideas of Minkowski, although
he did not mention his name, Poincaré went
on [40, Dernières pensées, p. 108]:

“Time itself must be profoundly modified.
Here are two observers, the first linked to fixed
axes, and the second to moving axes, but
each believing themselves to be at rest. Not
only any figure, which the first one considers
as a sphere, appear to the second as an ellip-
soid; but two events which the first will con-
sider as simultaneous will not be so for the
second. Everything happens as if time were
a fourth dimension of space, and as if four-
dimensional space resulting from the combi-
nation of ordinary space and of time could ro-
tate not only around an axis of ordinary space
in such a way that time were not altered, but
around any axis whatever. For the compari-
son to be mathematically accurate, it would
be necessary to assign purely imaginary val-
ues to this fourth coordinate of space. [. . .]
the essential thing is to notice that in the new
conception space and time are no longer two
entirely distinct entities which can be consid-
ered separately, but two parts of the same
whole, two parts which are so closely knit that
they cannot be easily separated.”

So, Poincaré concluded [40, Dernières
pensées, p. 109]:

“What shall be our position in view of these
new conceptions? Shall we be obliged to
modify our conclusions? Certainly not; we
had adopted a convention because it seemed
convenient and we had said that nothing
could constrain us to abandon it. Today some
physicists want to adopt a new convention.
It is not that they are constrained to do so;
they consider this new convention more con-
venient; that is all. And those who are not
of this opinion can legitimately retain the old
one in order not to disturb their old habits.
I believe, just between us, that this is what
they shall do for a long time to come.”

Poincaré chose to be a Galilean to the end.

‘Conformal’ maps of several variables
Another topic that occupied Poincaré for
many years was the function theory of several
complex variables, and he was instrumental
in extending the methods of potential theo-
ry. By the time he published his paper [37]
on the subject in 1907, the German mathe-
matician Friedrich Hartogs had done impor-
tant work on what domains in Cn can be the
domains of holomorphic functions [10]. This
inspired Poincaré to study the nature of maps
between domains in two complex variables,
and he was able to show conclusively that the
boundaries of some domains are such that
there can be no regular map between the inte-
riors of these domains. This showed that the
Riemann mapping theorem cannot be extend-
ed to two complex dimensions, but Poincaré
gave no explicit examples, which were only
exhibited for the first time in Reinhardt’s [43]
in 1921.

Poincaré first observed that in single vari-
able complex function theory, one can ask for
a map that takes a curve ` and a point m on
` to a curve L with a point M on L. The map
is required to map m to M and to be regular
in a neighbourhood of m. Or, one can ask
for a map taking a closed curve ` bounding
a domain d to a closed curve L bounding a
domainD. The first of these problems, which
Poincaré called the local problem, is always
solvable in infinitely many ways, and the sec-
ond, ‘extended’, problem has a unique solu-
tion via the Dirichlet principle.

Poincaré now looked at the analogous
problems for analytic functions of two com-
plex variables, and found that they behave
very differently. The local problem asks for
a map of a three-dimensional ‘surface’ (a
hypersurface) s with a point m to a three-
dimensional hypersurface S with a point M

that takes m to M and is regular in a neigh-
bourhood of m. The extended problem asks
for a map of a closed hypersurface s bounding
a domaind to a closed hypersurface S bound-
ing a domain D, and asks if there is a regular
function that maps s to S and d to D.

Now, the extended problem in two com-
plex dimensions always has a solution.
Poincaré noted that this follows directly from
one of Hartogs’s theorems, and Poincaré also
sketched his own proof of that result. How-
ever, as Poincaré showed, the local problem
will not always have a solution because it asks
for three functions that satisfy four differential
equations. He deduced that the local ques-
tion is one about types of surfaces, which
can be classified according to their groups of
analytic automorphisms (for, if two surfaces
correspond under an analytic automorphism,
their groups are necessarily conjugate, and
so the surfaces belong to the same class).
In particular, if a surface s admits only the
identity analytic automorphism, then the lo-
cal problem has at most one solution, else
the automorphism can be used to generate
a second solution. Poincaré relied on Lie’s
theory of transformation groups in Lie’s The-
orie der Transformationsgruppen, vol. 3, and
Campbell’s Introductory Treatise [4] to estab-
lish that there are 27 possible groups. He then
showed explicitly that for most groups there
is a hypersurface having that group as its an-
alytic automorphism group, but some groups
correspond to two-dimensional surfaces, so
there are hypersurfaces that not analytically
equivalent, and the main result of the paper
is established. But Poincaré’s account was
very unspecific. He described the group of
the hypersurface (hypersphere) with equation
zz̄ + z′z̄′ = 1 explicitly (in Section 7), but all
he did to exhibit a hypersurface with a differ-
ent group was to indicate how its equation
could be found by means of Lie’s theory.

Conclusions
Poincaré thought deeply about what it is to
do good mathematics, to find what he once
called the ‘soul of the fact’ around which a
body of theory grouped itself in the most per-
spicacious way and enabled to mathemati-
cian to do the most effective work. (A fuller
account of Poincaré’s work will appear in [8].)
In both his pure mathematics and his work
on mathematical physics he advocated the
study of what he called form over matter, by
which he meant the abstract system of rela-
tions rather than specific objects that obey
those relations. He looked for analogies that
would enable a system of relations to be
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moved, with a degree of fidelity, from one field
to another. In all of these ways the group idea
was vital to him. In number theory it enabled
him to place the modular equation in a rich-
er setting, one that opened the way for some
types of Fuchsian functions to do arithmetic

work. The group idea was crucial to his anal-
ysis of surfaces at the start of his career, and
his work on 3-manifolds towards the end. It
allowed him to classify domains of holomor-
phic functions in C2. It allowed him to give
an account of how we construct space around

us, and also of the space and time of contem-
porary physics (but not space-time, a step he
refused to take). But in none of these areas
did he then pause to study the groups in any
detail. It was the idea of a group, not group
theory, that animated him. k
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générale des fonctions, Bulletin de la société
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37 H. Poincaré, 1907. Les fonctions analytiques de
deux variables et la représentation conforme,
Rend. Palermo 23, 185–220, Oeuvres 4, 244–
289.

38 H. Poincaré, 1908. Sur l’uniformisation des
fonctions analytiques, Acta mathematica 31, 1–
63, in Oeuvres 4, 70–139.
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40 H. Poincaré, 1912. L’espace et le temps, Scientia
(Rivista di Scienza) 12, 159–170, in Dernières
pensées, 97–109, G. le Bon (ed.), Flammarion,
Paris.
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proof of the so-called Birkhoff–Witt theorem.
Revue d’histoire des mathématiques 5, 249–
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